
2550 Intro to
cybersecurity

abhi shelat

L13: Authorization

Thanks Christo for slides!

Authentication:

Authorization
After Authenticating a subject, what next?

Access Control

• Policy specifying how entities can interact with resources
• i.e., Who can access what?
• Requires authentication and authorization

• Access control primitives

PrincipalUser of a system

SubjectEntity that acts on behalf of principals Software program

ObjectResource acted upon by subjects
Files
Sockets
Devices
OS APIs

Access Control Check

• Given an access request from a subject, on behalf of a principal, for an
object, return an access control decision based on the policy

Principal Subject

Object

Policy

Allow

Deny

Access Control Models

• Discretionary Access Control (DAC)
• The kind of access control you are familiar with
• Access rights propagate and may be changed at subject’s discretion

• Mandatory Access Control (MAC)
• Access of subjects to objects is based on a system-wide policy
• Denies users full control over resources they create

Discretionary Access Control
Access Control Matrices
Access Control Lists
Unix Access Control

Discretionary Access Control

• According to Trusted Computer System Evaluation Criteria (TCSEC)

"A means of restricting access to objects based on the identity and
need-to-know of users and/or groups to which they belong.
Controls are discretionary in the sense that a subject with a certain
access permission is capable of passing that permission (directly or
indirectly) to any other subject."

Access Control Matrices

• Introduced by Lampson in 1971
• Static description of protection state
• Abstract model of concrete systems

o1 o2 o3

s1 RW RX

s2 R RWX RW

s3 RWX

Given subjects si ∈ S, objects oj ∈ O, rights {Read, Write, eXecute},

Access Control List (ACL)

• Each object has an associated list of
subject!operation pairs
• Authorization verified for each request by

checking list of tuples
• Used pervasively in filesystems and networks
• "Users a, b, and c and read file x."
• "Hosts a and b can listen on port x."

o1 o2

s1 RW RX

s2 R RWX

s3 RWX

Access Control List (ACL)

• Each object has an associated list of
subject!operation pairs
• Authorization verified for each request by

checking list of tuples
• Used pervasively in filesystems and networks
• "Users a, b, and c and read file x."
• "Hosts a and b can listen on port x."

o1 o2

s1 RW RX

s2 R RWX

s3 RWX

ACL for o2

Windows ACLs

D:\Music D:\Images

System RWX RWX

Administrators RW RW

Users:cbw RWX RW

Windows ACLs

D:\Music D:\Images

System RWX RWX

Administrators RW RW

Users:cbw RWX RW

ACL Review

The Good
• Very flexible
• Can express any possible access

control matrix
• Any principal can be configured to

have any rights on any object

The Bad

ACL Review

The Good
• Very flexible
• Can express any possible access

control matrix
• Any principal can be configured to

have any rights on any object

The Bad
• Complicated to manage
• Every object can have wildly

different policies
• Infinite permutations of subjects,

objects, and rights

Unix-style Permissions

• Based around the concept of owners and groups
• All objects have an owner and a group
• Permissions assigned to owner, group, and everyone else

• Authorization verified for each request by mapping the subject to
owner, group, or other and checking the associated permissions

Unix Permissions

cbw@DESKTOP:~$ ls -l

drwxrwxrwx 0 cbw cbw 512 Jan 29 22:46 my_dir

-rw-rw-rw- 1 cbw cbw 17 Jan 29 22:46 my_file

-rwxrwxrwx 1 cbw faculty 313 Jan 29 22:47 my_program.py

-rw------- 1 root root 896 Jan 29 22:47 sensitive_data.csv

d ! Directory r ! Read w ! Write x ! eXecute

Unix Permissions

cbw@DESKTOP:~$ ls -l

drwxrwxrwx 0 cbw cbw 512 Jan 29 22:46 my_dir

-rw-rw-rw- 1 cbw cbw 17 Jan 29 22:46 my_file

-rwxrwxrwx 1 cbw faculty 313 Jan 29 22:47 my_program.py

-rw------- 1 root root 896 Jan 29 22:47 sensitive_data.csv

Owner

d ! Directory r ! Read w ! Write x ! eXecute

Unix Permissions

cbw@DESKTOP:~$ ls -l

drwxrwxrwx 0 cbw cbw 512 Jan 29 22:46 my_dir

-rw-rw-rw- 1 cbw cbw 17 Jan 29 22:46 my_file

-rwxrwxrwx 1 cbw faculty 313 Jan 29 22:47 my_program.py

-rw------- 1 root root 896 Jan 29 22:47 sensitive_data.csv

OwnerOwner

d ! Directory r ! Read w ! Write x ! eXecute

Unix Permissions

cbw@DESKTOP:~$ ls -l

drwxrwxrwx 0 cbw cbw 512 Jan 29 22:46 my_dir

-rw-rw-rw- 1 cbw cbw 17 Jan 29 22:46 my_file

-rwxrwxrwx 1 cbw faculty 313 Jan 29 22:47 my_program.py

-rw------- 1 root root 896 Jan 29 22:47 sensitive_data.csv

Owner GroupOwner

d ! Directory r ! Read w ! Write x ! eXecute

Unix Permissions

cbw@DESKTOP:~$ ls -l

drwxrwxrwx 0 cbw cbw 512 Jan 29 22:46 my_dir

-rw-rw-rw- 1 cbw cbw 17 Jan 29 22:46 my_file

-rwxrwxrwx 1 cbw faculty 313 Jan 29 22:47 my_program.py

-rw------- 1 root root 896 Jan 29 22:47 sensitive_data.csv

Owner GroupOwner
Group

d ! Directory r ! Read w ! Write x ! eXecute

Unix Permissions

cbw@DESKTOP:~$ ls -l

drwxrwxrwx 0 cbw cbw 512 Jan 29 22:46 my_dir

-rw-rw-rw- 1 cbw cbw 17 Jan 29 22:46 my_file

-rwxrwxrwx 1 cbw faculty 313 Jan 29 22:47 my_program.py

-rw------- 1 root root 896 Jan 29 22:47 sensitive_data.csv

Owner GroupOwner
Group
Other

d ! Directory r ! Read w ! Write x ! eXecute

Unix Permissions

cbw@DESKTOP:~$ ls -l

drwxrwxrwx 0 cbw cbw 512 Jan 29 22:46 my_dir

-rw-rw-rw- 1 cbw cbw 17 Jan 29 22:46 my_file

-rwxrwxrwx 1 cbw faculty 313 Jan 29 22:47 my_program.py

-rw------- 1 root root 896 Jan 29 22:47 sensitive_data.csv

Owner GroupOwner
Group
Other

d ! Directory r ! Read w ! Write x ! eXecute

Directory

Unix Permissions

cbw@DESKTOP:~$ ls -l

drwxrwxrwx 0 cbw cbw 512 Jan 29 22:46 my_dir

-rw-rw-rw- 1 cbw cbw 17 Jan 29 22:46 my_file

-rwxrwxrwx 1 cbw faculty 313 Jan 29 22:47 my_program.py

-rw------- 1 root root 896 Jan 29 22:47 sensitive_data.csv

Owner GroupOwner
Group
Other

d ! Directory r ! Read w ! Write x ! eXecute

Directory Permission to list the contents of a directory

Setting Permissions

chmod [who]<+/-><permissions> <file1> [file2] …

(omitted) ! user, group, and other
a ! user, group, and other
u ! user
g ! group
o ! other

+ ! add permissions
- ! remove
permissions

r ! Read
w ! Write
x ! eXecute

cbw@DESKTOP:~$ ls -l

drwxrwxrwx 0 cbw cbw 512 Jan 29 22:46 my_dir

-rw-rw-rw- 1 cbw cbw 17 Jan 29 22:46 my_file

-rwxrwxrwx 1 cbw faculty 313 Jan 29 22:47 my_program.py

cbw@DESKTOP:~$ chmod ugo-rwx my_dir

cbw@DESKTOP:~$ chmod go-rwx my_program.py

cbw@DESKTOP:~$ chmod u-rw my_program.py

cbw@DESKTOP:~$ chmod +x my_file

cbw@DESKTOP:~$ ls -l

d--------- 0 cbw cbw 512 Jan 29 22:46 my_dir

-rwxrwxrwx 1 cbw cbw 17 Jan 29 22:46 my_file

---x------ 1 cbw faculty 313 Jan 29 22:47 my_program.py

Alternate Form of Setting Permissions

chmod ### <file1> [file2] …

• #s correspond to owner, group, and other
• Each value encodes read, write, and execute permissions
• 1 ! execute
• 2 ! write
• 4 ! read

Alternate Form of Setting Permissions

chmod ### <file1> [file2] …

• #s correspond to owner, group, and other
• Each value encodes read, write, and execute permissions
• 1 ! execute
• 2 ! write
• 4 ! read

• What if you want to set something as read, write, and execute?

Alternate Form of Setting Permissions

chmod ### <file1> [file2] …

• #s correspond to owner, group, and other
• Each value encodes read, write, and execute permissions
• 1 ! execute
• 2 ! write
• 4 ! read

• What if you want to set something as read, write, and execute?
• 1 + 2 + 4 = 7

cbw@DESKTOP:~$ ls -l

drwxrwxrwx 0 cbw cbw 512 Jan 29 22:46 my_dir

-rw-rw-rw- 1 cbw cbw 17 Jan 29 22:46 my_file

-rwxrwxrwx 1 cbw faculty 313 Jan 29 22:47 my_program.py

cbw@DESKTOP:~$ chmod 000 my_dir

cbw@DESKTOP:~$ chmod 100 my_program.py

cbw@DESKTOP:~$ chmod 777 my_file

cbw@DESKTOP:~$ ls -l

d--------- 0 cbw cbw 512 Jan 29 22:46 my_dir

-rwxrwxrwx 1 cbw cbw 17 Jan 29 22:46 my_file

---x------ 1 cbw faculty 313 Jan 29 22:47 my_program.py

Who May Change Permissions?

• Which files is user cbw permitted to chmod?

cbw@DESKTOP:~$ groups

cbw faculty

cbw@DESKTOP:~$ ls -l

-rw-rw-rw- 1 cbw cbw 17 Jan 29 22:46 my_file

-rw-rw-rw- 1 cbw faculty 17 Jan 29 22:46 my_other_file

-rw------- 1 root root 896 Jan 29 22:47 sensitive_data.csv

-rwxrwx--- 1 root faculty 313 Jan 29 22:47 program.py

Who May Change Permissions?

• Which files is user cbw permitted to chmod?
• Only owners can chmod files
• cbw can chmod my_file and my_other_file
• Group membership doesn’t grant chmod ability (cannot chmod program.py)

cbw@DESKTOP:~$ groups

cbw faculty

cbw@DESKTOP:~$ ls -l

-rw-rw-rw- 1 cbw cbw 17 Jan 29 22:46 my_file

-rw-rw-rw- 1 cbw faculty 17 Jan 29 22:46 my_other_file

-rw------- 1 root root 896 Jan 29 22:47 sensitive_data.csv

-rwxrwx--- 1 root faculty 313 Jan 29 22:47 program.py

Setting Ownership

• Unix uses discretionary access control
• New objects are owned by the subject that created them

• How can you modify the owner or group of an object?

chown <owner>:<group> <file1> [file2] …

Who May Change Ownership?

• Which operations are permitted?

cbw@DESKTOP:~$ groups

cbw faculty

cbw@DESKTOP:~$ ls -l

-rw-rw-rw- 1 cbw cbw 17 Jan 29 22:46 my_file

-rw-rw-rw- 1 cbw faculty 17 Jan 29 22:46 my_other_file

-rw------- 1 root root 896 Jan 29 22:47 sensitive_data.csv

-rwxrwx--- 1 root faculty 313 Jan 29 22:47 program.py

chown cbw:faculty my_file Yes, cbw belongs to the faculty group
chown root:root my_other_file No, only root many change file owners!
chown cbw:cbw sensitive_date.csv No, only root many change file owners!
chown cbw:faculty program.py No, only root many change file owners!

Who May Change Ownership?

• Which operations are permitted?

cbw@DESKTOP:~$ groups

cbw faculty

cbw@DESKTOP:~$ ls -l

-rw-rw-rw- 1 cbw cbw 17 Jan 29 22:46 my_file

-rw-rw-rw- 1 cbw faculty 17 Jan 29 22:46 my_other_file

-rw------- 1 root root 896 Jan 29 22:47 sensitive_data.csv

-rwxrwx--- 1 root faculty 313 Jan 29 22:47 program.py

chown cbw:faculty my_file Yes, cbw belongs to the faculty group
chown root:root my_other_file No, only root many change file owners!
chown cbw:cbw sensitive_date.csv No, only root many change file owners!
chown cbw:faculty program.py No, only root many change file owners!

Unix Access Control Exercise (1)
• What Unix group and permission assignments satisfy this access

control matrix?

file1 file2

user1 r-- rwx

user2 r-- rw-

user3 r-- rw-

user4 rwx rw-

Desired Permissions

Unix Access Control Exercise (1)
• What Unix group and permission assignments satisfy this access

control matrix?

file1 file2

user1 r-- rwx

user2 r-- rw-

user3 r-- rw-

user4 rwx rw-

Desired Permissions

~$ ls -l

-rwxr--r-- 1 user4 user4 0 file1

-rwxrw-rw- 1 user1 user1 0 file2

User Groups
user1 user1

user2 user2

user3 user3

user4 user4

Unix Access Control Exercise (2)
• What Unix group and permission assignments satisfy this access

control matrix?

file1 file2

user1 r-- --x

user2 r-x rwx

user3 r-x r--

user4 rwx r--

Desired Permissions

Unix Access Control Exercise (2)
• What Unix group and permission assignments satisfy this access

control matrix?

file1 file2

user1 r-- --x

user2 r-x rwx

user3 r-x r--

user4 rwx r--

Desired Permissions

~$ ls -l

-rwxr-xr-- 1 user4 group1 0 file1

-rwxr----x 1 user2 group2 0 file2

User Groups
user1 user1

user2 user2, group1

user3 user3, group1, group2

user4 user4, group2

Unix Access Control Exercise (3)
• What Unix group and permission assignments satisfy this access

control matrix?

Desired Permissions
file 1 file 2

user 1 --- rw-

user 2 r-- r--

user 3 rwx rwx

user 4 rwx ---

Unix Access Control Exercise (3)
• What Unix group and permission assignments satisfy this access

control matrix?

Desired Permissions
file 1 file 2

user 1 --- rw-

user 2 r-- r--

user 3 rwx rwx

user 4 rwx ---

• Trick question! This matrix cannot be represented

Unix Access Control Exercise (3)
• What Unix group and permission assignments satisfy this access

control matrix?

Desired Permissions
file 1 file 2

user 1 --- rw-

user 2 r-- r--

user 3 rwx rwx

user 4 rwx ---

• Trick question! This matrix cannot be represented

• file2: four distinct privilege levels
• Maximum of three levels (user, group, other)

Unix Access Control Exercise (3)
• What Unix group and permission assignments satisfy this access

control matrix?

Desired Permissions
file 1 file 2

user 1 --- rw-

user 2 r-- r--

user 3 rwx rwx

user 4 rwx ---

• Trick question! This matrix cannot be represented

• file2: four distinct privilege levels
• Maximum of three levels (user, group, other)

• file1: two users have high privileges
• If user3 and user4 are in a group, how to give user2

read and user1 nothing?
• If user1 or user2 are owner, they can grant themselves

write and execute permissions :(

Unix Access Control Review

The Good
• Very simple model
• Owners, groups, and other
• Read, write, execute

• Relatively simple to manage and
understand

The Bad

Unix Access Control Review

The Good
• Very simple model
• Owners, groups, and other
• Read, write, execute

• Relatively simple to manage and
understand

The Bad
• Not all policies can be encoded!
• Contrast to ACL

Unix Access Control Review

The Good
• Very simple model
• Owners, groups, and other
• Read, write, execute

• Relatively simple to manage and
understand

The Bad
• Not all policies can be encoded!
• Contrast to ACL

• Not quite as simple as it seems
• setuid

Midterm review

Security modeling

Symmetric Encryption

Alice Bob

Eve

Public Key Encryption

Alice Bob

Eve

MAC

Alice Bob

Eve

Digital Signatures

Alice Bob

Eve

Password Authentication

Alice Bob

Mallory

Distributed Password Authentication

Alice Bob

Mallory

Server

Security Model for Snell Library

Alice Snell Library

Mallory

Topics
• Kerchoff ’s principle
• Security experiments
• Given an example scenario, be prepared to develop a threat model and a security game to capture the threat
• Review our example cast of attackers, they may come in handy if you are asked to develop a threat model on the exam.
• Confidentiality, Authentication, Integray, Non-repudability
• Perfect and Shannon security
• One time pad
• Computational Indistinguishability
• Pseudo-random generators
• Symmetric key encryption
• Pseudo-random functions
• Message authentication codes
• Hash functions, definitions, security experiment, examples
• Public key encryption, IND-CPA security game, RSA cryptosystem example
• Digital Signature security game, why textbook RSA signing is insecure
• Password storage systems, salting and hashing, slow hash functions
• Pros and cons of biometrics
• two-factor authentication, U2F
• biometrics, their strengths, and their shortcomings
•

