2550 Intro to

cybersecurity
[13: Authorization

abhi shelat , .
Thanks Christo for slides!

Authentication:

Authorization

After Authenticating a subject, what next?

Access Control

 Policy specifying how entities can interact with resources

e i.e., Who can access what?
e Requires authentication and authorization

e Access control primitives

Principal User of a system

Subject Entity that acts on behalf of principals

Object Resource acted upon by subjects

Software program

Files

Sockets
Devices
OS APls

Access Control Check

e Given an access request from a subject, on behalf of a principal, for an
object, return an access control decision based on the policy

Object [j

l Allow
2-0—0=g"

Lowm fpmam dolcr ¥ amet, conescinr
wdpicing ait. Pamius of 040 o ok

Policy

Access Control Models

o Discretionary Access Control (DAC)

e The kind of access control you are familiar with
» Access rights propagate and may be changed at subject’s discretion

« Mandatory Access Control (MAC)

o Access of subjects to objects is based on a system-wide policy
e Denies users full control over resources they create

Discretionary Access Control

Access Control Matrices
Access Control Lists

Unix Access Control

Discretionary Access Control

« According to Trusted Computer System Evaluation Criteria (TCSEC)

"A means of restricting access to objects based on the identity and
need-to-know of users and/or groups to which they belong.

Controls are discretionary in the sense that a subject with a certain
access permission is capable of passing that permission (directly or
indirectly) to any other subject."

Access Control Matrices

Given subjects s; € S, objects o; € O, rights {Read, Write, eXecute},

N

e Introduced by Lampson in 1971
o Static description of protection state - RWX

o Abstract model of concrete systems

Access Control List (ACL)

e Each object has an associated list of
subject—>operation pairs

o Authorization verified for each request by
checking list of tuples

- -

o Used pervasively in filesystems and networks

« "Users a, b, and c and read file x."
e "Hosts a and b can listen on port x."

Access Control List (ACL)

e Each object has an associated list of
subject—>operation pairs m
o Authorization verified for each request by

checking list of tuples

o Used pervasively in filesystems and networks -~

« "Users a, b, and c and read file x."

e "Hosts a and b can listen on port x."
RWX

Windows ACLs

4= b
B
"—_

|

1o
_

ﬂ-
y _=.

| —
_

D:\Music

System RWX RWX

Administrators RW RW

Windows ACLs

-
| Documents Properties g

General | Sharing | Security | Previous Versions | Customize

R -~

-

D:\Music

Object name: D:\Documents

Group or user names:

52 SYSTEM -
% Account Unknown(S-1-5-21-1206375286-251249764-221 '|j
33, Administrators (TaylorGibb-PC\Administrators)

Ql | loare Mandard=ikk Py loars)
< | I .

To change pemissions, click Edit.

Pemissions for Account
Unknown(S-1-5-21-1206375286- Allow Deny

Full control
Modify
Read & execute
List folder contents
Read

Write
For special pemissions or advanced settings,
click Advanced.

RWX

m

AN

Leam about access control and pemissions

Administrators

OK

Cancel

ACL Review

The Good The Bad
o Very flexible

« Can express any possible access
control matrix

« Any principal can be configured to
have any rights on any object

ACL Review

The Good The Bad
 Very flexible o Complicated to manage
« Can express any possible access « Every object can have wildly
control matrix different policies
« Any principal can be configured to Infinite permutations of subjects,

have any rights on any object objects, and rights

Unix-style Permissions

e Based around the concept of owners and groups

» All objects have an owner and a group
e Permissions assigned to owner, group, and everyone else

o Authorization verified for each request by mapping the subject to
owner, group, or other and checking the associated permissions

Unix Permissions

cbw@DESKTOP:~S 1ls -1

drwxrwxrwx 0 cbw cbw 512 :46

-rw-rw-rw- 1 cbw cbw 17 :46 my file

-rwxrwxrwx 1 cbw faculty 313 :47 my program.py

root root 896 :47 sensitive data.csv

d > Directory r-> Read w—> Write x—2> eXecute

Unix Permissions

cbw@DESKTOP:~S 1ls -1

drwxrwxrwx 0 cbw cbw 512 :46

-rw-rw-rw- 1 cbw cbw 17 :46 my file

-rwxrwxrwx 1 cbw faculty 313 :47 my program.py

root root 896 :47 sensitive data.csv

|
owner

d > Directory r-> Read w—> Write x—2> eXecute

Unix Permissions

cbw@DESKTOP:~S 1s

drwxrwxrwx 0
—YW-Yw-rw—- 1

—TWXIrwXrwx 1

d > Directory

cbw
cbw
cbw

root

-1

cbw 512
cbw 17
faculty 313
root 896

r-> Read

:46
:46 my file

47 my program.py

:47 sensitive data.csv

w—=> Write x> eXecute

Unix Permissions

cbw@DESKTOP:~S 1ls -1

drwxrwxrwx 0 cbw cbw 512 :46

-rw-rw-rw- 1 cbw cbw 17 :46 my file

-rwxrwxrwx 1 cbw faculty 313 :47 my program.py

root root 896 :47 sensitive data.csv

.) C——
O Owner Group
2
N

d > Directory r-> Read w—> Write x—2> eXecute

Unix Permissions

cbw@DESKTOP:~S 1ls -1

drwxrwxrwx 0 cbw cbw 512 : 46
-rw-rw-rw- 1 cbw cbw 17 :46 my file
-rwxrwxrwx 1 cbw faculty 313 :47 my program.py
root root 896 :47 sensitive data.csv
[— ——
% %{/ Owner Group
Q.

d > Directory r-> Read w—> Write x—2> eXecute

Unix Permissions

cbw@DESKTOP:~S 1ls -1

drwxrwxrwx 0 cbw cbw 512 :46

-rw-rw-rw- 1 cbw cbw 17 :46 my file

-rwxrwxrwx 1 cbw faculty 313 :47 my program.py
root root 896 :47 sensitive data.csv

e e el
Owner Group

O @
2 % %
5 o

d > Directory r-> Read w—> Write x—2> eXecute

Unix Permissions

Directory

cbw@DESKTOP:~S 1ls -1

ldowxrwxrwxXx 0 cbw cbw 512 :46

-rw-rw-rw- 1 cbw cbw 17 :46 my file

-rwxrwxrwx 1 cbw faculty 313 :47 my program.py
root root 896 :47 sensitive data.csv

e e el
Owner Group

O @
2 % %
5 o

d > Directory r-> Read w—> Write x—2> eXecute

Unix Permissions

Directory B Permission to list the contents of a directory

Cbw@DESKTOH@S™ 1s -1

ldowxrwxrwx /0 cbw cbw 512 :46

-rw-rw-rw- 1 cbw cbw 17 :46 my file

-rwxrwxrwx 1 cbw faculty 313 :47 my program.py
root root 896 :47 sensitive data.csv

I
Owner Group

Q @,
%, % %
e B &

d > Directory r-> Read w—> Write x—2> eXecute

Setting Permissions

+ = add permissions
- = remove

permissions

chmod [who]<+/-><permissions> <file1> [file2] ...

(omitted) = user, group, and other

a =2 user, group, and other r=> Read

w 2> Write
eXecute

u-> user
g —> group X 2>
o - other

Ccbw@DESKTOP:~S 1s -1

drwxrwxrwx 0 cbw cbw 512 Jan 29 22:46 my dir
-rw-rw-rw- 1 cbw cbw 17 Jan 29 22:46 my file
-rwxXrwxrwx 1 cbw faculty 313 Jan 29 22:47 my program.py
cbw@DESKTOP: chmod ugo-rwx my dir

cbw@DESKTOP: chmod go-rwx my program.py

cbw@DESKTOP: chmod u-rw my program.py

cbw@DESKTOP: chmod +x my file

cbw@DESKTOP: -1
cbw 512 Jan 29 22:46 my dir
cbw 17 Jan 29 22:46 my file
faculty 313 Jan 29 22:47 my program.py

Alternate Form of Setting Permissions

chmod ### <file1> [file2] ...

e #s correspond to owner, group, and other
« Each value encodes read, write, and execute permissions

e 1 2 execute
e 2 2 write
e 4 2> read

Alternate Form of Setting Permissions

chmod ### <file1> [file2] ...

e #s correspond to owner, group, and other
« Each value encodes read, write, and execute permissions

e 1 2 execute
e 2 2 write
e 4 2> read

« What if you want to set something as read, write, and execute?

Alternate Form of Setting Permissions

chmod ### <file1> [file2] ...

e #s correspond to owner, group, and other
« Each value encodes read, write, and execute permissions

e 1 2 execute
e 2 2 write
e 4 2> read

« What if you want to set something as read, write, and execute?
e 1+2+4=7/

cbw@DESKTOP:~S 1ls -1

drwxrwxrwxXx 0 cbw cbw 512 Jan 29 22:
-rw=-rw-rw—- 1 cbw cbw 17 Jan 29 22:

-rwxrwxrwx 1 cbw faculty 313 Jan 29 22:

cbw@DESKTOP: chmod 000 my dir
cbw@DESKTOP: chmod 100 my program.py
cbw@DESKTOP: chmod 777 my file
cbw@DESKTOP:: ls -1

Cbw 512 Jdan 29 22:
—IrwXrwxXrwx 1 cbw cbw 17 Jan 29 22:
———X—————- 1l cbw faculty 313 Jan 29 22:

my dir
my file
my program.py

my dir

my file
my program.py

Who May Change Permissions?

cbwl@DESKTOP:~$ groups

cbw faculty

cbw@DESKTOP:~S 1s
-rw-rw-rw- 1 cbw
-rw-rw-rw—- 1 cbw
root

—-rwXrwxXx---— 1 root

-1

cbw 17
17

896

faculty 313

29 22
29 22
29 22
29 22

Jan
faculty Jan
root Jan

Jan

« Which files is user cbw permitted to chmod?

247

:46 my file
:46 my other file

:47 sensitive data.csv

program.py

Who May Change Permissions?

cbwl@DESKTOP:~$ groups

cbw faculty

cbw@DESKTOP:~S 1s
-rw-rw-rw- 1 cbw
-rw-rw-rw—- 1 cbw
root

—-rwXrwxXx---— 1 root

-1

cbw 17
17

896

faculty 313

29 22
29 22
29 22
29 22

Jan
faculty Jan
root Jan

Jan

« Which files is user cbw permitted to chmod?

e Only owners can chmod files
e cbw can chmod my_file and my_other_file
« Group membership doesn’t grant chmod ability (cannot chmod program.py)

247

:46 my file
:46 my other file

:47 sensitive data.csv

program.py

Setting Ownership

o Unix uses discretionary access control
 New objects are owned by the subject that created them

« How can you modify the owner or group of an object?

chown <owner>:<group> <file1> [file2] ...

Who May Change Ownership?

cbwl@DESKTOP:~$ groups
cbw faculty
cbw@DESKTOP:~$S 1ls -1

-rw-rw-rw- 1 cbw cbw 17 :46 my file

-rw-rw-rw- 1 cbw faculty 17 :46 my other file
root root 896 :47 sensitive data.csv

-rwxXrwx--- 1 root faculty 313 :47 program.py

« Which operations are permitted?

chown cbw:faculty my_file

chown root:root my_other_file
chown cbw:cbw sensitive date.csv
chown cbw:faculty program.py

Who May Change Ownership?

cbwl@DESKTOP:~$ groups
cbw faculty
cbw@DESKTOP:~$S 1ls -1

-rw-rw-rw- 1 cbw cbw 17 :46 my file

-rw-rw-rw- 1 cbw faculty 17 :46 my other file
root root 896 :47 sensitive data.csv

-rwxXrwx--- 1 root faculty 313 :47 program.py

« Which operations are permitted?

chown cbw:faculty my_file Yes, cbw belongs to the faculty group
chown root:root my_other_file No, only root many change file owners!
chown cbw:cbw sensitive_date.csv No, only root many change file owners!

chown cbw:faculty program.py No, only root many change file owners!

Unix Access Control Exercise (1)

« What Unix group and permission assignments satisfy this access
control matrix?

Desired Permissions

useri r-- rwx
user2 r-- rw-
user3 r-- rw-

user4 WX rW-

Unix Access Control Exercise (1)

« What Unix group and permission assignments satisfy this access
control matrix?

Desired Permissions

-“ - -

userz userz2
useri r--
user3 user3
user2 r--
user4 user4
user3 r-- —YWXr—-Y—— 1 userd4d user4d 0 filel

—YrwXrw-rw— 1 userl userl 0 file2

user4 rw X

Unix Access Control Exercise (2)

« What Unix group and permission assignments satisfy this access
control matrix?

Desired Permissions

user r-- --X
userz2 r-X rwx
user3 r-X r--

user4 WX r--

Unix Access Control Exercise (2)

« What Unix group and permission assignments satisfy this access
control matrix?

Desired Permissions

user = userz user2, group
1 2
user? r-X user3 user3, groupi, group
user4 user4, group?2
user3 r-X

-rwXr-xXxr—-- 1 user4d groupl 0 filel

user4 WX -rwxXr----x 1 user2 group2 0 fileZ2

Unix Access Control Exercise (3)

« What Unix group and permission assignments satisfy this access
control matrix?

Desired Permissions

I e

user 1 rW-
user 2 r-- r--
user 3 rwx rwx

user 4 rwx

Unix Access Control Exercise (3)

« What Unix group and permission assignments satisfy this access
control matrix?

Desired Permissions

I e

e Trick question! This matrix cannot be represented

user 1 rW-
user 2 r-- r--
user 3 rwx rwx

user 4 rwx

Unix Access Control Exercise (3)

« What Unix group and permission assignments satisfy this access
control matrix?

Desired Permissions

I e

e Trick question! This matrix cannot be represented

e file2: four distinct privilege levels

user 1 r'W- .

« Maximum of three levels (user, group, other)
user 2 r-- r--
user 3 rwx rwx

user 4 rwx

Unix Access Control Exercise (3)

« What Unix group and permission assignments satisfy this access

Desired Permissions

I e

user 1

user 2

user 3

user 4

control matrix?

r'wx

r'wXx

'W-

r'wx

o Trick question! This matrix cannot be represented

e file2: four distinct privilege levels
« Maximum of three levels (user, group, other)

e filel: two users have high privileges

o |f user3 and user4 are in a group, how to give user2
read and user1 nothing?

o If userl or user2 are owner, they can grant themselve
write and execute permissions :(

Unix Access Control Review

The Good The Bad
e Very simple model

 Owners, groups, and other
« Read, write, execute

» Relatively simple to manage and
understand

Unix Access Control Review

The Good The Bad
e Very simple model e Not all policies can be encoded!
 Owners, groups, and other » Contrast to ACL

e Read, write, execute

» Relatively simple to manage and
understand

Unix Access Control Review

The Good The Bad
e Very simple model e Not all policies can be encoded!
 Owners, groups, and other » Contrast to ACL
» Read, write, execute . Not quite as simple as it seems

» Relatively simple to manage and . setuid
understand

Midterm review

Security modeling

Symmetric Encryption

Ubot

Public Key Encryption

Ubot

MAC

:

Digital Signatures

Ubot

Password Authentication

Ubot

Distributed Password Authentication

_—----
- -
- o -
— -
y

Security Model for Snell Library

NMallory

Topics

 Kerchoff's principle

* Security experiments

 Given an example scenario, be prepared to develop a threat model and a security game to capture the threat
 Review our example cast of attackers, they may come in handy if you are asked to develop a threat model on the exam.
 Confidentiality, Authentication, Integray, Non-repudability

* Perfect and Shannon security

* One time pad

o Computational Indistinguishability

e Pseudo-random generators

o Symmetric key encryption

* Pseudo-random functions

* Message authentication codes

 Hash functions, definitions, security experiment, examples

* Public key encryption, IND-CPA security game, RSA cryptosystem example

o Digital Signature security game, why textbook RSA signing Is insecure

 Password storage systems, salting and hashing, slow hash functions

* Pros and cons of biometrics

 two-factor authentication, U2F

* biometrics, their strengths, and their shortcomings

