
2550 Intro to
cybersecurity

abhi shelat

L19: systems
Thanks Christo & Steve

Myers for slides!

Threat Model
Principles
Intro to System Architecture
Hardware Support for Isolation
Examples

Cystemssecurity faiwres.fi EF fFofIAuYFAcwresofDEScff

Threat modeling
Identify assets to protect

Enumerating the attack surface

Define the adversary fso.ae

Survey choose mitigations

Balancing cost versus risks

Threat modeling
Threat modeling is the process of systematically

identifying the threats faced by a system

Threat modeling
Threat modeling is the process of systematically

identifying the threats faced by a system

1. Identify assets to protect

Threat modeling
Threat modeling is the process of systematically

identifying the threats faced by a system

1. Identify assets to protect
2. Enumerate the attack surfaces

Threat modeling
Threat modeling is the process of systematically

identifying the threats faced by a system

1. Identify assets to protect
2. Enumerate the attack surfaces
3. Define adversary’s power and goals
• Adversary’s goal: assets they want from (1)
• Power: ability to target vulnerable surfaces from (2)

Threat modeling
Threat modeling is the process of systematically

identifying the threats faced by a system

1. Identify assets to protect
2. Enumerate the attack surfaces
3. Define adversary’s power and goals
• Adversary’s goal: assets they want from (1)
• Power: ability to target vulnerable surfaces from (2)

4. Survey mitigations

Threat modeling
Threat modeling is the process of systematically

identifying the threats faced by a system

1. Identify assets to protect
2. Enumerate the attack surfaces
3. Define adversary’s power and goals
• Adversary’s goal: assets they want from (1)
• Power: ability to target vulnerable surfaces from (2)

4. Survey mitigations
5. Balance costs versus risks

E

Identify Assets of Value
passwords important assets birthday
credentials in general ssn emailaddress accountnames on socialmedia

contacts addresses

pictures private medical data
credit card info
2fA token physical
tax docs
webcam microphone sensors like gyroscope
Private Informetm locationdata fitteddata

Identify Assets of Value

Saved passwords

Identify Assets of Value

Saved passwords
Monetizable credentials (webmail, social networks)

Identify Assets of Value

Saved passwords
Monetizable credentials (webmail, social networks)
Access to bank accounts, paypal, venmo, credit cards,
or other financial services

Identify Assets of Value

Saved passwords
Monetizable credentials (webmail, social networks)
Access to bank accounts, paypal, venmo, credit cards,
or other financial services
Pics, messages, address book, browsing/search history
(for blackmail)

Identify Assets of Value

Saved passwords
Monetizable credentials (webmail, social networks)
Access to bank accounts, paypal, venmo, credit cards,
or other financial services
Pics, messages, address book, browsing/search history
(for blackmail)
Sensitive business documents

Identify Assets of Value

Saved passwords
Monetizable credentials (webmail, social networks)
Access to bank accounts, paypal, venmo, credit cards,
or other financial services
Pics, messages, address book, browsing/search history
(for blackmail)
Sensitive business documents
Access to sensors (camera, mic, GPS) or network traffic
(for surveillance)

Identify Assets of Value

Saved passwords
Monetizable credentials (webmail, social networks)
Access to bank accounts, paypal, venmo, credit cards,
or other financial services
Pics, messages, address book, browsing/search history
(for blackmail)
Sensitive business documents
Access to sensors (camera, mic, GPS) or network traffic
(for surveillance)
The device itself
• Steal it and sell it
• Use the CPU and network for other criminal activity

Enumerate Attack Surfaces
IT

if
i c

Network itself Ethernet

operating system backdoor

Human social engineering attacks

text specific attack surfaces

Enumerate Attack Surfaces

Intercept and compromise the handset in transit

Enumerate Attack Surfaces

Intercept and compromise the handset in transit
Steal the device and use it

Enumerate Attack Surfaces

Intercept and compromise the handset in transit
Steal the device and use it
Direct connection via USB

Enumerate Attack Surfaces

Intercept and compromise the handset in transit
Steal the device and use it
Direct connection via USB
Close proximity radios (Bluetooth, NFC)

Enumerate Attack Surfaces

Intercept and compromise the handset in transit
Steal the device and use it
Direct connection via USB
Close proximity radios (Bluetooth, NFC)
Passive eavesdropping on the network

Enumerate Attack Surfaces

Intercept and compromise the handset in transit
Steal the device and use it
Direct connection via USB
Close proximity radios (Bluetooth, NFC)
Passive eavesdropping on the network
Active network attacks (e.g. man-in-the-middle, SMS of death)

Enumerate Attack Surfaces

Intercept and compromise the handset in transit
Steal the device and use it
Direct connection via USB
Close proximity radios (Bluetooth, NFC)
Passive eavesdropping on the network
Active network attacks (e.g. man-in-the-middle, SMS of death)
Backdoor access to the OS

Enumerate Attack Surfaces

Intercept and compromise the handset in transit
Steal the device and use it
Direct connection via USB
Close proximity radios (Bluetooth, NFC)
Passive eavesdropping on the network
Active network attacks (e.g. man-in-the-middle, SMS of death)
Backdoor access to the OS
Exploit vulnerabilities in the apps (e.g. email clients, web browsers)

Enumerate Attack Surfaces

Intercept and compromise the handset in transit
Steal the device and use it
Direct connection via USB
Close proximity radios (Bluetooth, NFC)
Passive eavesdropping on the network
Active network attacks (e.g. man-in-the-middle, SMS of death)
Backdoor access to the OS
Exploit vulnerabilities in the apps (e.g. email clients, web browsers)
Social engineering, e.g. trick the user into installing malicious app(s)

Enumerate Attack Surfaces

Intercept and compromise the handset in transit
Steal the device and use it
Direct connection via USB
Close proximity radios (Bluetooth, NFC)
Passive eavesdropping on the network
Active network attacks (e.g. man-in-the-middle, SMS of death)
Backdoor access to the OS
Exploit vulnerabilities in the apps (e.g. email clients, web browsers)
Social engineering, e.g. trick the user into installing malicious app(s)

Cybercrime

High-level goal: $$$ profit $$$

Adegory Define gigs power
adversary

Activity

Good running an arbitrary process on yourcomputer

f
s

t O

history
Adware 744
mining attacks

Power social attacks use zero day vulnerabilityclick on a fish
for a program

Cybercrime

High-level goal: $$$ profit $$$
Immediate goal: running a process on a victim’s
computer
• Ransomware
• Botnet
• Spyware
• Adware

Cybercrime

High-level goal: $$$ profit $$$
Immediate goal: running a process on a victim’s
computer
• Ransomware
• Botnet
• Spyware
• Adware

How to do this?
• Infected storage media (e.g. USB keys)
• Malicious attachments or downloads
• Exploits targeting the OS or common apps
• Guess or crack passwords for remote desktop, etc.

Mitigations & their costs

Authentication
• Physical and remote access is restricted

tools for security

µ

at Etc
Firewalls Intrusion detection systems

Malware antivirus scanners

Pwd manages

Score Remote Logging

Mitigations & their costs

Authentication
• Physical and remote access is restricted

Mitigations & their costs

Authentication
• Physical and remote access is restricted

Mitigations & their costs

Authentication
• Physical and remote access is restricted

Mitigations & their costs

Authentication
• Physical and remote access is restricted

Access control
• Processes cannot read/write any file
• Users may not read/write each other’s files arbitrarily
• Modifying the OS and installing software requires elevated privileges

Firewall
• Unsolicited communications from the internet are blocked
• Only authorized processes may send/receive messages from the internet

Anti-virus
• All files are scanned to identify and quarantine known malicious code

Logging
• All changes to the system are recorded
• Sensitive applications may also log their activity in the secure system log

It

Question: how do you build these
mitigations?
In other words, how do you build secure systems?
How do you reduce their costs?

I

TT

Threat Model
Principles
Intro to System Architecture
Hardware Support for Isolation
Examples

Security Principles

Designing secure systems (and breaking them) remains an art
Security principles help bridge the gap between art and science
• Developed by Saltzer and Schroeder
• “The Protection of Information in Computer Systems”, 1975o

Security Principles/Heuristics

Defense-in-depth

Open Design

Separation of Privilege

Least Privilege Secure Defaults

Compromise Recording/Logging

Work Factor

Simplicity

Complete Mediation

Principles Heuristics

EFEET

Defense in Depth

Don't depend on a single protection
mechanism, since they are apt to fail

Even very simple or formally verified
defenses fail
Layering defenses increases the
difficulty for attackers
Defenses should be complementary!

Defense in Depth

High walls

Moat

Drawbridge Dude with a
crossbow

Don't depend on a single protection
mechanism, since they are apt to fail

Even very simple or formally verified
defenses fail
Layering defenses increases the
difficulty for attackers
Defenses should be complementary!

Example

Built-in security features of Modern OS
• Secure boot: cryptographically verified bootup process
• full-drive encryption
• Kernel protections, e.g. Address Space Layout Randomization (ASLR)
• Cryptographic signing for device drivers
• User authentication
• User Account Control: permission check for privileged operations
• Firewall
• Automated patching
• System logs

Open Design

Kerckhoff's Principle: A cryptosystem should be secure even if everything
about the system, except the key, is public knowledge

Generalization: A system should be secure even if the adversary knows
everything about its design
• Design does not include runtime parameters like secret keys

Contrast with “security through obscurity”

I
I

Security by Default

The absence of explicit permission is equivalent to no
permission

Systems should be secure "out-of-the-box"
• Most users stick with defaults
• Users should "opt-in" to less-secure configurations

Examples. By default…
• New user accounts do not have admin or root privileges
• New apps cannot access sensitive devices
• Passwords must be >8 characters long
• Etc.

I

o

Separation of Privilege

Privilege, or authority, should only be distributed to subjects that require it

Some components of a system should be less privileged than others
• Not every subject needs the ability to do everything
• Not every subject is deserving of full trust

i

Least Privilege

Subjects should possess only that authority that is required to operate
successfully

Closely related to separation of privilege
Not only should privilege be separated, but subjects should have the least
amount necessary to perform a task

I

T.fi

Privilege Over Time

All users
and

processes

DOS, Windows 3.1

Privilege Over Time

All users
and

processes

OS

Users and
Processes

with System
Privileges

DOS, Windows 3.1 Win 95 and 98

Privilege Over Time

All users
and

processes

OS

Users and
Processes

with System
Privileges

OS
Users and

Processes with
System Privileges

Users and
Processes

Unprivileged
Processes

DOS, Windows 3.1 Win 95 and 98
Win NT, XP, 7, 8, 10

Linux, BSD, OSX
L

Sekhar Cray

I

O

Privilege Hierarchy

OS
Users and Processes with

System Privileges

Users and Processes

Unprivileged Processes

Ring 0

Ring 3

• Device drivers, kernel
modules, etc.

• sudo, “administrator”
accounts, OS services

• Everything that is isolated and
subject to access control

• chroot jails, containers, low-
integrity processes

Example: Chrome Multiprocess Architecture
Chrome is split across many
processes

Example: Chrome Multiprocess Architecture
Chrome is split across many
processes

“Core” process has user-
level privileges
• May read/write files
• May access the network
• May render to screen

Example: Chrome Multiprocess Architecture
Chrome is split across many
processes

“Core” process has user-
level privileges
• May read/write files
• May access the network
• May render to screen

Each tab, extension, and
plugin has its own process
• Parse HTML, CSS, JS
• Execute JS

Example: Chrome Multiprocess Architecture
Chrome is split across many
processes

“Core” process has user-
level privileges
• May read/write files
• May access the network
• May render to screen

Each tab, extension, and
plugin has its own process
• Parse HTML, CSS, JS
• Execute JS
• Large attack surface!
• Thus, have no privileges
• All I/O requests are sent to

the core process

Example: Chrome Multiprocess Architecture
Chrome is split across many
processes

“Core” process has user-
level privileges
• May read/write files
• May access the network
• May render to screen

Each tab, extension, and
plugin has its own process
• Parse HTML, CSS, JS
• Execute JS
• Large attack surface!
• Thus, have no privileges
• All I/O requests are sent to

the core process

Compromise Recording

Concede that attacks will occur, but
record the fact

Auditing approach to security
• Detection and recovery

"Tamper-evident" vs. "tamper-proof"

T

Logging

Log everything
Better yet, use remote logging
• Ensures that attacker with local

access cannot erase logs
Logs are useless if they aren’t
monitored
Advanced approaches
• Intrusion Detection Systems

(IDS)
• Anomaly detection
• Machine learning-based

approaches

right

Work Factor

Increase the difficulty of mounting
attacks

Sometimes utilizes non-determinism
• e.g. increasing entropy used in ASLR

Sometimes utilizes time
• Increase the lengths of keys
• Wait times after failed password

attempts

0

bcrypt Example

[cbw@localhost ~] python
>>> import bcrypt
>>> password = “my super secret password”
>>> fast_hashed = bcrypt.hashpw(password, bcrypt.gensalt(0))
>>> slow_hashed = bcrypt.hashpw(password, bcrypt.gensalt(12))
>>> pw_from_user = raw_input(“Enter your password:”)
>>> if bcrypt.hashpw(pw_from_user, slow_hashed) == slow_hashed:
… print “It matches! You may enter the system”
… else:
… print “No match. You may not proceed”

Work factor

Authentication Rate Limiting

Short delay after each failed
authentication attempt
• Delays may increase as the

consecutive failed attempts increase

Does not prevent password cracking
attempts, but slows them down

Economy of Mechanism

Would you depend on a defense system designed like this?

Simplicity

Economy of Mechanism

Simplicity of design implies a smaller attack surface

Correctness of protection mechanisms is critical
• "Who watches the watcher?"
• We need to be able to trust our security mechanisms
• (Or, at least quantify their efficacy)

Essentially the KISS principle
• Keep it simple, stupid

E

Example

Existing operating systems are monolithic
• Kernel contains all critical functionality
• Process and memory management, file systems, network stack,

etc…
Micro-kernel OS
• Kernel only contains critical functionality
• Direct access to hardware resources
• Process and memory management
• Small attack surface

• All other functionality runs in separate processes
• File systems, network stack, device drivers

Examples
• GNU Hurd
• seL4 – formally verified!

Complete Mediation

Complete Mediation

Every access to every object must be checked for authorization

Incomplete mediation implies that a path exists to bypass a security
mechanism
In other words, isolation is incomplete

C I

Q

By default, user could
click Cancel to bypass
the password check :(

Threat Model
Principles
Intro to System Architecture
Hardware Support for Isolation
Examples

CPU MEM

Ethernet

USB

BIOS

What is Memory? Address Contents

114
113 0
112 0
111 0
110 8
109
108 0
107 C
106 B
105 A
104
103 0xAF
102 0x3C
101 0x91
100 0xE3

Memory is essentially a spreadsheet
with a single column
• Every row has a number, called an

address
• Every cell holds 1 byte of data

What is Memory? Address Contents

114
113 0
112 0
111 0
110 8
109
108 0
107 C
106 B
105 A
104
103 0xAF
102 0x3C
101 0x91
100 0xE3

Integers are
typically four

bytes

Memory is essentially a spreadsheet
with a single column
• Every row has a number, called an

address
• Every cell holds 1 byte of data

What is Memory? Address Contents

114
113 0
112 0
111 0
110 8
109
108 0
107 C
106 B
105 A
104
103 0xAF
102 0x3C
101 0x91
100 0xE3

Integers are
typically four

bytes

Each ASCII
character is one
byte, Strings are
null terminated

Memory is essentially a spreadsheet
with a single column
• Every row has a number, called an

address
• Every cell holds 1 byte of data

What is Memory? Address Contents

114
113 0
112 0
111 0
110 8
109
108 0
107 C
106 B
105 A
104
103 0xAF
102 0x3C
101 0x91
100 0xE3

Integers are
typically four

bytes

Each ASCII
character is one
byte, Strings are
null terminated

CPUs understand
instructions in

assembly
language

Memory is essentially a spreadsheet
with a single column
• Every row has a number, called an

address
• Every cell holds 1 byte of data

What is Memory? Address Contents

114
113 0
112 0
111 0
110 8
109
108 0
107 C
106 B
105 A
104
103 0xAF
102 0x3C
101 0x91
100 0xE3

Integers are
typically four

bytes

Each ASCII
character is one
byte, Strings are
null terminated

CPUs understand
instructions in

assembly
language

Memory is essentially a spreadsheet
with a single column
• Every row has a number, called an

address
• Every cell holds 1 byte of data

All data and running code are held in
memory
 int my_num = 8;

What is Memory? Address Contents

114
113 0
112 0
111 0
110 8
109
108 0
107 C
106 B
105 A
104
103 0xAF
102 0x3C
101 0x91
100 0xE3

Integers are
typically four

bytes

Each ASCII
character is one
byte, Strings are
null terminated

CPUs understand
instructions in

assembly
language

Memory is essentially a spreadsheet
with a single column
• Every row has a number, called an

address
• Every cell holds 1 byte of data

All data and running code are held in
memory
 int my_num = 8;

String my_str = “ABC”;

What is Memory? Address Contents

114
113 0
112 0
111 0
110 8
109
108 0
107 C
106 B
105 A
104
103 0xAF
102 0x3C
101 0x91
100 0xE3

Integers are
typically four

bytes

Each ASCII
character is one
byte, Strings are
null terminated

CPUs understand
instructions in

assembly
language

Memory is essentially a spreadsheet
with a single column
• Every row has a number, called an

address
• Every cell holds 1 byte of data

All data and running code are held in
memory
 int my_num = 8;

String my_str = “ABC”;
while (my_num > 0) my_num--;

Memory

0

4 GB
Hard DriveEthernet/Wifi

System Model

Memory

0

4 GB
Hard DriveEthernet/Wifi

OS

System Model

Process 1
(Shell)

Memory

0

4 GB
Hard DriveEthernet/Wifi

OS

System Model

Process 1
(Shell)

Process 2open(“file”)

Memory

0

4 GB
Hard DriveEthernet/Wifi

OS

System Model

Process 1
(Shell)

Process 2open(“file”)

Memory

0

4 GB
Hard DriveEthernet/Wifi

OS

System Model

Process 1
(Shell)

Process 2open(“file”)

On bootup, the Operating System
(OS) loads itself into memory
• eg. DOS (before hw isolation)
• Typically places itself in high memory

Memory

0

4 GB
Hard DriveEthernet/Wifi

OS

System Model

Process 1
(Shell)

Process 2open(“file”)

On bootup, the Operating System
(OS) loads itself into memory
• eg. DOS (before hw isolation)
• Typically places itself in high memory

What is the role of the OS?
• Allow the user to run processes
• Often comes with a shell
• Text shell like bash
• Graphical shell like the Windows desktop

• Provides APIs to access devices
• Offered as a convenience to application

developers

Memory

0

128 MB
Hard DriveEthernet/Wifi

OS

Memory Unsafety

Problem: any process can read/write
any memory

Process 1

Process 2

Memory

0

128 MB
Hard DriveEthernet/Wifi

OS

Memory Unsafety

Problem: any process can read/write
any memory

Process 1

I’m reading from your
process, stealing your

data ;)

Process 2

Memory

0

128 MB
Hard DriveEthernet/Wifi

OS

Memory Unsafety

Problem: any process can
read/write any memory

Memory

0

128 MB
Hard DriveEthernet/Wifi

OS

Memory Unsafety

Problem: any process can
read/write any memory

Memory

0

128 MB
Hard DriveEthernet/Wifi

OS

Memory Unsafety

Problem: any process can
read/write any memory

Scan memory to find
usernames, passwords, saved

credit card numbers, etc.

Memory

0

128 MB
Hard DriveEthernet/Wifi

OS

Memory Unsafety

Problem: any process can
read/write any memory

Infect the OS
code with

malicious code

Scan memory to find
usernames, passwords, saved

credit card numbers, etc.

Memory

0

128 MB
Hard DriveEthernet/Wifi

OS

Device Unsafety

Problem: any process can access
any hardware device directly
Access control is enforced by the
OS, but OS APIs can be bypassed Process 1

Process 2

Memory

0

128 MB
Hard DriveEthernet/Wifi

OS

Device Unsafety

Problem: any process can access
any hardware device directly
Access control is enforced by the
OS, but OS APIs can be bypassed Process 1

Process 2

Memory

0

128 MB
Hard DriveEthernet/Wifi

OS

Device Unsafety

Problem: any process can access
any hardware device directly
Access control is enforced by the
OS, but OS APIs can be bypassed Process 1

Process 2

Memory

0

128 MB
Hard DriveEthernet/Wifi

OS

Device Unsafety

Problem: any process can access
any hardware device directly
Access control is enforced by the
OS, but OS APIs can be bypassed Process 1

Process 2

Memory

0

128 MB
Hard DriveEthernet/Wifi

OS

Device Unsafety

Problem: any process can access
any hardware device directly
Access control is enforced by the
OS, but OS APIs can be bypassed Process 1

Process 2

Memory

0

128 MB
Hard DriveEthernet/Wifi

OS

Device Unsafety

Problem: any process can access
any hardware device directly
Access control is enforced by the
OS, but OS APIs can be bypassed Process 1

Read/write/delete
files owned by other

users or the OS Process 2

Memory

0

128 MB
Hard DriveEthernet/Wifi

OS

Device Unsafety

Problem: any process can access
any hardware device directly
Access control is enforced by the
OS, but OS APIs can be bypassed

Memory

0

128 MB
Hard DriveEthernet/Wifi

OS

Device Unsafety

Problem: any process can access
any hardware device directly
Access control is enforced by the
OS, but OS APIs can be bypassed

Memory

0

128 MB
Hard DriveEthernet/Wifi

OS

Device Unsafety

Problem: any process can access
any hardware device directly
Access control is enforced by the
OS, but OS APIs can be bypassed

Read/write/delete
any file

Memory

0

128 MB
Hard DriveEthernet/Wifi

OS

Device Unsafety

Problem: any process can access
any hardware device directly
Access control is enforced by the
OS, but OS APIs can be bypassed

Send stolen data to the thief,
attack other computers, etc.

Read/write/delete
any file

Review

Old systems did not protect memory or devices
• Any process could access any memory
• Any process could access any device

Problems
• No way to enforce access controls on users

or devices
• Processes can steal from or destroy each

other
• Processes can modify or destroy the OS

On old computers, systems security was literally
impossible

ISOLATION

