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What is Memory? Address Contents

114
113 0
112 0
111 0
110 8
109
108 0
107 C
106 B
105 A
104
103 0xAF
102 0x3C
101 0x91
100 0xE3

Memory is essentially a spreadsheet 
with a single column
• Every row has a number, called an 

address
• Every cell holds 1 byte of data
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What is Memory? Address Contents

114
113 0
112 0
111 0
110 8
109
108 0
107 C
106 B
105 A
104
103 0xAF
102 0x3C
101 0x91
100 0xE3

Integers are 
typically four 

bytes

Each ASCII 
character is one 
byte, Strings are 
null terminated

CPUs understand 
instructions in 

assembly 
language

Memory is essentially a spreadsheet 
with a single column
• Every row has a number, called an 

address
• Every cell holds 1 byte of data

All data and running code are held in 
memory
 int my_num = 8;

String my_str = “ABC”;
while (my_num > 0) my_num--;a



How does a computer boot?

https://youtu.be/MsKb0gR-4AM?t=36
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System Model: how does a computer boot?

BIOS init MBR Boot loader Kernel init Full Kernel 
init User mode

Memory, I/O, Network

BIOS services Kernel

https://www.intel.com/content/www/us/en/intelligent-systems/intel-boot-loader-development-kit/minimal-intel-architecture-boot-loader-paper.html
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Layout of memory at boot
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Details
CPU begins executing at f.!f0 

CPU MEM

BIOS

BIOS firmware begins init of hw 
Applies microcode patches 
Execute Firmware Support Pkg (blob) 
[Ram is setup] 
Copy firmware to RAM 
Begin executing in RAM 
Setup interrupts, timers, clocks 
Bring up other cores 
Setup PCI 
Setup ACPI tables 
Execute OS loader

Est

I it

tf



Memory

0

4 GB
Hard DriveEthernet/Wifi

OS

System Model
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(Shell)

Process 2open(“file”)
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System Model

Process 1 
(Shell)

Process 2open(“file”)

On bootup, the Operating System 
(OS) loads itself into memory 
• eg. DOS (before hw isolation) 
• Typically places itself in high memory

What is the role of the OS? 
• Allow the user to run processes 
• Often comes with a shell 
• Text shell like bash 
• Graphical shell like the Windows desktop 

• Provides APIs to access devices 
• Offered as a convenience to application 

developers
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On bootup, the Operating System 
(OS) loads itself into memory 
• eg. DOS (before hw isolation) 
• Typically places itself in high memory

What is the role of the OS? 
• Allow the user to run processes 
• Often comes with a shell 
• Text shell like bash 
• Graphical shell like the Windows desktop 

• Provides APIs to access devices 
• Offered as a convenience to application 

developers
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OS

Device Unsafety

Process 1

Read/write/delete 
files owned by other 

users or the OS Process 2

Problem: any process can access 
any hardware device directly 
Access control is enforced by the 
OS, but OS APIs can be bypassed
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Memory
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OS

Device Unsafety

Send stolen data to the thief, 
attack other computers, etc.

Read/write/delete 
any file

Problem: any process can access 
any hardware device directly 
Access control is enforced by the 
OS, but OS APIs can be bypassed

Monolithic memory address space
r

with no protecting

how 05 worked for first 15 years
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Review

Old systems did not protect memory or devices 
• Any process could access any memory 
• Any process could access any device 

Problems 
• No way to enforce access controls on users 

or devices 
• Processes can steal from or destroy each 

other 
• Processes can modify or destroy the OS 

On old computers, systems security was literally 
impossible
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Towards Modern Architecture

To achieve systems security, we need process isolation 
• Processes cannot read/write memory arbitrarily 
• Processes cannot access devices directly 

How do we achieve this? 
Hardware support for isolation 

1. Protected mode execution (a.k.a. process rings) 
2. Virtual memoryE



Protected Mode



Protected Mode

Ring 0 
OS

Ring 1

Ring 2

Ring 3

Device Drivers

Device Drivers

Applications

Most modern CPUs support protected mode
x86 CPUs support three rings with different privileges
• Ring 0: Operating System
• Code in this ring may directly access any device

legacy
operation
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Applications

Most modern CPUs support protected mode
x86 CPUs support three rings with different privileges
• Ring 0: Operating System
• Code in this ring may directly access any device

• Ring 1, 2: device drivers
• Code in these rings may directly access some devices
• May not change the protection level of the CPU



Protected Mode

Ring 0 
OS

Ring 1

Ring 2

Ring 3

Device Drivers

Device Drivers

Applications

Most modern CPUs support protected mode
x86 CPUs support three rings with different privileges
• Ring 0: Operating System
• Code in this ring may directly access any device

• Ring 1, 2: device drivers
• Code in these rings may directly access some devices
• May not change the protection level of the CPU

• Ring 3: userland
• Code in this ring may not directly access devices
• All device access must be via OS APIs
• May not change the protection level of the CPU
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Protected Mode

Ring 0 
OS

Ring 1

Ring 2

Ring 3

Device Drivers

Device Drivers

Applications

Most modern CPUs support protected mode
x86 CPUs support three rings with different privileges
• Ring 0: Operating System
• Code in this ring may directly access any device

• Ring 1, 2: device drivers
• Code in these rings may directly access some devices
• May not change the protection level of the CPU

• Ring 3: userland
• Code in this ring may not directly access devices
• All device access must be via OS APIs
• May not change the protection level of the CPU

Most OSes only use rings 0 and 3
processes



Ring -1,-2,-3

“Google cited worries that the Intel ME (actually MINIX) 
code runs on their CPU's deepest access level — Ring "-3" 
— and also runs a web server component that allows 
anyone to remotely connect to remote computers, even 
when the main OS is turned o!.”
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System Boot Sequence

1. On startup, the CPU starts in 16-bit real mode
• Protected mode is disabled
• Any process can access any device
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System Boot Sequence

1. On startup, the CPU starts in 16-bit real mode
• Protected mode is disabled
• Any process can access any device

2. BIOS executes, finds and loads the OS
3. OS switches CPU to 32-bit protected mode
• OS code is now running in Ring 0
• OS decides what Ring to place other processes in



System Boot Sequence

1. On startup, the CPU starts in 16-bit real mode
• Protected mode is disabled
• Any process can access any device

2. BIOS executes, finds and loads the OS
3. OS switches CPU to 32-bit protected mode
• OS code is now running in Ring 0
• OS decides what Ring to place other processes in

4. Shell gets executed, user may run programs
• User processes are placed in Ring 3

F
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Restriction on Privileged Instructions

What CPU instructions are restricted in protected mode? 
• Any instruction that modifies the CR0 register 
• Controls whether protected mode is enabled 

• Any instruction that modifies the CR3 register 
• Controls the virtual memory configuration 
• More on this later… 

• hlt – Halts the CPU 
• sti/cli – enable and disable interrupts 
• in/out – directly access hardware devices 

If a Ring 3 process tries any of these things, it immediately crashes

I
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How to change modes Memory
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4 GB
Hard Drive
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Process 1 
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Changing Modes

Applications often need to access the OS APIs
• Writing files
• Displaying things on the screen
• Receiving data from the network
• etc…

But the OS is Ring 0, and processes are Ring 3
How do processes get access to the OS?

q



Changing Modes

Applications often need to access the OS APIs
• Writing files
• Displaying things on the screen
• Receiving data from the network
• etc…

But the OS is Ring 0, and processes are Ring 3
How do processes get access to the OS?
• Invoke OS APIs with special assembly instructions
• Interrupt: int 0x80
• System call: sysenter or syscall

•  int/sysenter/syscall cause a mode transfer from Ring 3 to Ring 0

med

interrupt
handler

setupon

our
properly

der

the

ItSexecute int 80
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1. Application executes trap (int) instruction
• EIP, CS, and EFLAGS get pushed onto the stack
• Mode switches from ring 3 to ring 0
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1. Application executes trap (int) instruction
• EIP, CS, and EFLAGS get pushed onto the stack
• Mode switches from ring 3 to ring 0

2. Save the state of the current process
• Push EAX, EBX, …, etc. onto the stack

3. Locate and execute the correct syscall handler
4. Restore the state of process
• Pop EAX, EBX, … etc.

5. Place the return value in EAX

convention

ensures
access control

can be
appliedby

0 Kernel
handler

safety



Mode Transfer
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1. Application executes trap (int) instruction
• EIP, CS, and EFLAGS get pushed onto the stack
• Mode switches from ring 3 to ring 0

2. Save the state of the current process
• Push EAX, EBX, …, etc. onto the stack

3. Locate and execute the correct syscall handler
4. Restore the state of process
• Pop EAX, EBX, … etc.

5. Place the return value in EAX
6. Use iret to return to the process
• Switches back to the original mode (typically 3)
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All device access must go through the OS 
OS will impose access control checks
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Memory Isolation and Virtual Memory

Modern CPUs support virtual memory
Creates the illusion that each process runs in its own, empty memory 
space
• Processes can not read/write memory used by other processes
• Processes can not read/write memory used by the OS

O



Memory Isolation and Virtual Memory

Modern CPUs support virtual memory
Creates the illusion that each process runs in its own, empty memory 
space
• Processes can not read/write memory used by other processes
• Processes can not read/write memory used by the OS

In later courses, you will learn how virtual memory is implemented
• Base and bound registers
• Segmentation
• Page tables

Today, we will do the cliffnotes version…
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• Each process has a page table that maps is virtual space into physical space
• CPU translates virtual address to physical addresses on-the-fly
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Virtual Memory Implementation

Each process has its own virtual memory space
• Each process has a page table that maps is virtual space into physical space
• CPU translates virtual address to physical addresses on-the-fly

OS creates the page table for each process
• Installing page tables in the CPU is a protected, Ring 0 instruction
• Processes cannot modify their page tables

What happens if a process tries to read/write memory outside its page 
table?
• Segmentation Fault or Page Fault
• Process crashes
• In other words, no way to escape virtual memory
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VM in Action Memory
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4 GB
Hard DriveEthernet/Wifi

CPU Ring

3Page Table

Ring 3 = protected mode. 
Cannot change page table.

Processes can only read/
write within their own 
virtual memory 
Processes cannot change 
their own page tables
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Review

At this point, we have achieved process isolation 
• Protected mode execution prevents direct device access 
• Virtual memory prevents direct memory access 

Requires CPU support 
• All moderns CPUs support these techniques 

Requires OS support 
• All moderns OS support these techniques 
• OS controls process rings and page tables



Review

Warning: bugs in the OS may compromise 
process isolation

At this point, we have achieved process isolation 
• Protected mode execution prevents direct device access 
• Virtual memory prevents direct memory access 

Requires CPU support 
• All moderns CPUs support these techniques 

Requires OS support 
• All moderns OS support these techniques 
• OS controls process rings and page tables



Towards Secure Systems

File Access Control

Firewall

Anti-virus

Secure Logging

Now that we have process isolation, we can build more complex 
security features
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