2550 Intro to

cybersecurity
120: systems

abhi shelat

Intro to System Architecture

- ot

Ua\x

~

%c r‘V\ic((

"T/@[\/\ S(JS 360

i 0
U™

Embedded
DisplayPort
1.4b

3DDI
HDMI 2.0b,
DP 1.4,
HDCP 2.2

Integrated
USB Type-
(USB 3.1 Gen 2,

Thunderbglit™ 3,
DisplayPorf 1.4) -
up to 4 ports

P(Cle 3.0

Integrated
WiFi 6 (Gig+)

ntel

Optane™

e y
PCle 3.

eSPI

SPI

"

Intel® 300 Series

Mobile ChiBset

LPC

HD
Audio

SMBus

DDR4/
LPDDR3 2Ch
fg———

Mem

DDR4/x 373

USB 3.1
(10 Gbps)

USB 3
(5 Gbps)

f/o

PMTFLWZ,{/(

USB 2.0

SATA 3.0 p .

Intel
LAN PHY

2

What 1s Memory?

)

>
o
S P
]
wn
wn

. . 114
Memory is essentially a spreadsheet — ;
with a single column N
« Every row has a number, called an 111 0
address 8

« Every cell holds 1 byte of data

P o ————

(o N - c C
H

s

What 1s Memory?

Memory is essentially a spreadsheet
with a single column

« Every row has a number, called an
address

« Every cell holds 1 byte of data

Integers are
typically four

bytes

>
(=
Q.
=
(]
(V2]
(7,]

114

113 0

m |

111 0
8

(. . c c C

What 1s Memory?

Memory is essentially a spreadsheet
with a single column

« Every row has a number, called an
address

« Every cell holds 1 byte of data

Integers are

typically four
bytes

Each ASCII
character is one

byte, Strings are
null terminated

114

What 1s Memory?

iiiiiii'll

Memory is essentially a spreadsheet

. ! Integers are 0
with a single column typically four ST ¥
« Every row has a number, called an bytes 111 0

address
« Every cell holds 1 byte of data

I
(o]

09
108
107

Each ASCII
character is one
byte, Strings are
null terminated

1
II
\> @ O O

OxAF
0x3C
0x91
OXxE3

CPUs understand
instructions in

assembly
language

What 1s Memory?

Memory is essentially a spreadsheet
with a single column

« Every row has a number, called an
address

« Every cell holds 1 byte of data

All data and running code are held in
memory

int my_num = 8;

Integers are
typically four
bytes

Each ASCII
character is one
byte, Strings are
null terminated

CPUs understand
instructions in

assembly
language

>
(=
Q.
=
(]
(V2]
(7,]

[ury
[y

c O O O

> W O O

OxAF
0x3C
0x91
OXE3

What 1s Memory?

Memory is essentially a spreadsheet
with a single column

« Every row has a number, called an
address

« Every cell holds 1 byte of data

All data and running code are held in
memory

int my_num = 8;

String my_str = “ABC”;

Integers are
typically four
bytes

Each ASCII
character is one
byte, Strings are
null terminated

CPUs understand
instructions in

assembly
language

>
(=
Q.
=
(]
(V2]
(7,]

[ury
[y

c O O O

> W O O

OxAF
0x3C
0x91
OXE3

What 1s Memory?

Memory is essentially a spreadsheet
with a single column

« Every row has a number, called an
address

« Every cell holds 1 byte of data

All data and running code are held in
memory

int my_num = 8; —
String my_str = “ABC”; -~
while (my_num > 0) my_num--; Z)

Integers are
typically four
bytes

Each ASCII
character is one
byte, Strings are
null terminated

CPUs understand
instructions in

assembly
language

How does a computer boot?

https://youtu.be/MsKb0gR-4AM?t=36

System Model: how does a computer boot?

Boot loader uII il:ﬁrnel User mode

BIOS services Kernel

Memory, I1/0, Network

https://www.intel.com/content/www/us/en/intelligent-systems/intel-boot-loader-development-kit/minimal-intel-architecture-boot-loader-paper.html
——
. SN

N

More detalls .

T’\ | J os
N

T
&)
@ ~\-U an oNn '\A,\Q o~)/(\0._./\} a o sLoT2
c,mm‘odlrd\ \/\0\) ()avw(“

Filters

UEFI
Sensors
ME FW

LS ME Data

LAN FW

LAN Controller

PHY

Layout of memorv at boot

Figure 3

Reset Vector
OxFFFFFFFO

OXFFFFF
—

=

0xF0000<

0x0000,0000

EIP (last 16 bytes of
memory

4 GB — 16 bytes

Unaddressable
memory in real
mode

1MB

BIOS/Firmware ‘
/

Reset vector read
from Oxffff:ffff0
\aliased from
OXFFFFO

960KB

Exterded System

BIOS

—_—

896KB

Xpansion area
maps ROMs for old

peripheral cards)

768 KB

Legacy video card
memory

640 KB

Accessible RAM
memory

B

Intel® Architecture Memory Map at Power On

Detalls

PU begins executing at £.fff0
BIOS firmware begins init of h L

Applies microcode patches — ¢y f/
xecute Firmware Support Pkg (lﬁ)b)
[Ram is setup)
Copy weio RAM
Begin executing in RAM

— Setup interrupts, tlmers clocks, g\m
Bring up other cores
Setup PCI

System Model

Memory
4GB

Open(“f”e”)

Process 1

(Shell)

System Model

On bootup, the Operating System
(OS) loads itself into memory

« eg. DOS (before hw isolation)

« Typically places itself in high memory

i Lo

open(“file”)

Memory

oS

Process 2

Process 1
(Shell)

4GB

old eystem
System Model (rhe Qo&)

Ethernet/Wifi |l Hard Drive

On bootup, the Operating System -~ abibacton b I/ 0

(OS) loads itself into memory
« eg. DOS (before hw isolation) Weher wddeg
« Typically places itself in high memory

What is the role of the OS?

 Allow the user to run processes

« Often comes with a shell
« Text shell like bash
» Graphical shell like the Windows desktop

» Provides APIs to access devices

» Offered as a convenience to application
developers

- MMAQ/Z) [eSeJece(

Memory

Process 2

4GB

System Model

Hard Drive

On bootup, the Operating System
(OS) loads itself into memory

« eg. DOS (before hw isolation)

« Typically places itself in high memory

What is the role of the OS?
 Allow the user to run processes

« Often comes with a shell ob stoninn.
« Text shell like bash
» Graphical shell like the Windows desktop

» Provides APIs to access devices

» Offered as a convenience to application
developers

Memory

Process 2

Process 1

(Shell)

4GB

Memory Unsafety »*

Memory
128 MB

J A
(bess 1J
-

Process 2

Problem: any process can read/write
any memory

Memory Unsafety

Problem: any process can read/write
any memory

I'm reading from your
process, stealing your
data;)

Memory

128 MB

P

emory Unsafety
e —

—

Problem: any process can
read/write any memory

e e

Memory

128 MB

Memory Unsafety

_

i Lo

read/write any memory

ﬁroblem: any process can
IOLESS
0-\/\& “\’\’\U) o ()('bceié‘ Can
(\(’J\a - SKFQ (V\QV"W/?/ S—Q.V\AO\/L'I“?QJ"

. Wadh VQ wake Vet Ts wLﬁ“p
wTL(cend M]Q/i‘um“

Memory

128 MB

Memory Unsafety

Problem: any process can
read/write any memory

Memory
128 MB

Infect the OS
code with
malicious code

Scan memory to find

usernames, passwords, saved
credit card numbers, etc.

Device Unsafety

-_—

Memory

Problem: any process can access
any hardware device directly

Access control is enforced by the
OS, but OS APIs can be bypassed Process 1

Process 2

Memory

Device Unsafety

e

L

Problem: any process can access
any hardware device directly

Access control is enforced by the
OS, but OS APIs can be bypassed Process 1

Process 2

Memory

Device Unsafety

e 2

Problem: any process can access
any hardware device directly

Access control is enforced by the
OS, but OS APIs can be bypassed Process 1

Process 2

Memory

Device Unsafety

e 2

Problem: any process can access
any hardware device directly

Access control is enforced by the
OS, but OS APIs can be bypassed Process 1

Device Unsafety

Problem: any process can access
any hardware device directly

Access control is enforced by the
OS, but OS APIs can be bypassed

e

Memory
128 MB

Process 1

Device Unsafety

Problem: any process can access
any hardware device directly

Access control is enforced by the
OS, but OS APIs can be bypassed Process 1

Read/write/delete
files owned by other
users or the OS

Process 2

Device Unsafety

Memory
128 MB

Problem: any process can access
any hardware device directly

Access control is enforced by the
OS, but OS APIs can be bypassed

Device Unsafety

Memory
128 MB

Problem: any process can access
any hardware device directly

Access control is enforced by the
OS, but OS APIs can be bypassed

Memory
128 MB

Device Unsafety m

Problem: any process can access
any hardware device directly

Access control is enforced by the
OS, but OS APIs can be bypassed

Hard Drive

Read/write/delete
any file

128 MB

Device Unsafety m |
_ {VLV\‘D \L\’L\rc M/wf?//o\akolff $) SFOCC

wikn wa pntedtiung

Problem: any process can access
any hardware device directly

-_— —

Access control is enforced by the
OS, but OS APIs can be bypassed

—fuw 05 vl for Bt S e

Read/write/delete
any file

Send stolen data to the thief,

attack other computers, etc.

\°1°r°5>

_upl\x
K/L\ Old systems did not protect memory or devices
o naad, « Any process could access any memory
wes WY « Any process could access any device
(vmukcx Syt Wl Suf’f;“Jr) Problems
« No way to enforce access controls on users
. or devices
ReV| CW » Processes can steal from or destroy each
other
o Processes can modify or destroy the OS

(bn old computers, systems security was)

= ISOLATION
e N

Hardware Support for Isolation

— \)T/‘Wo\y\

/V\QMM’J/

— JS /'k-U o\,\? Mh
< z\,s\‘ru J‘fow\)_

Towards Modern Architecture

To achieve systems security, we need process isolation
« Processes cannot read/write memory arbitrarily
* Processes cannot access devices directly

How do we achieve this?

Hardware support for isolation
1. Protected mode execution (a.k.a. process rings)
- = =—————
2. Virtual memory

-_

< —

Protected Mode

Protected Mode

Most modern CPUs support protected mode

x86 CPUs support three rings with different privileges
* Ring 0: Operating System
« Code in this ring may directly access any device

/€9ac7,-
O netina,

Protected Mode

Most modern CPUs support protected mode

x86 CPUs support three rings with different privileges
* Ring 0: Operating System
« Code in this ring may directly access any device

* Ring 1, 2: device drivers Ring 1
'—/_.-1 ——— . .
+ Code in these rings may directly access some device
 May not change the protection level of the CPU Ring O
0S

Device Drivers

Protected Mode

Most modern CPUs support protected mode

x86 CPUs support three rings with different privileges
(Ring 0: Operating System

Code in this ring may directly access any device ~
* Ring 1, 2: device drivers Ring 1
« Code in these rings may directly access some devices
 May not change the protection level of the CPU Ring O
ing 3: userland 03
« Code in this ring may not directly access devices ey recess
* All device access must be via OS APIs Cnblority
* May not change the protection level of the CPU Lo “'m%sqh,

Device Drivers

Applications

Protected Mode

Most modern CPUs support protected mode

x86 CPUs support three rings with different privileges
* Ring 0: Operating System
« Code in this ring may directly access any device

* Ring 1, 2: device drivers Ring 1
« Code in these rings may directly access some devices
 May not change the protection level of the CPU Ring O
* Ring 3: userland 0S

+ Code in this ring may not directly access devices Device Drivers
* All device access must be via OS APIs
* May not change the protection level of the CPU

Most 0Ses only useTings { a@ Applications
——
U =& ffbc €sSe [
—_——

Kernel 05
—_—

_— = | ==

Ring 1,23 /

“Google cited worries that the Intel ME (actually MINIX)
code runs on their CPU's deepest access level — Ring "-3"
—and also runs a web server component that allows
anyone to remotely connect to remote computers, even
when the main OS is turned off”

System Boot Sequence

1. On startup, the CPU starts in 16-bit real mode

» Protected mode is disabled
« Any process can access any device

System Boot Sequence

1. On startup, the CPU starts in 16-bit real mode

» Protected mode is disabled
« Any process can access any device

2. BIOS executes, finds and loads the OS

System Boot Sequence

1. On startup, the CPU starts in 16-bit real mode

» Protected mode is disabled
« Any process can access any device

2. BIOS executes, finds and loads the OS

3. OS switches CPU to 32-bit protected mode

« OS code is now running in Ring 0
» OS decides what Ring to place other processes in

System Boot Sequence

On startup, the CPU starts in 16-bit real mode
—
» Protected mode is dlsabled

« Any process can access any device
BIOS executes, finds and loads the OS

. OS switches CPU to 32-bit protected mode

« OS code is now running in Ring 0_
» OS decides what Ring to place other processes in
——

4. Shell gets executed, user may run programs
» User processes are placed in Ring 3

Restriction on Privileged Instructions

[What CPU instructions are restricted in protected mode?]

—

Any instruction that modifies the CRO register — bl cearabens £ He fu

Controls whether protected mode is enabled
.) e) tndkicahe Py (ewel
(Any instruction that modifies the CR3 register !

 Controls the virtual memory configuration
« More on this later...

1!t - Halts the CPU
sti/cli - enable and disable interrupts
in/out - directly access hardware devices

If a Ring 3 process tries any of these things, it immediately crashes

How to change modes

¢ \)
(‘SB ;\‘QW\ Cm

— o] fw /. USes —lond proces

,{‘W\/\Tr\a, ov’% Q’B +

XISV I Y] w?jf&‘ Heo 05
FUN\?/?/ M {Z/Q

Hard Drive

M\
N

AN

open(“file”)

Memory

Process 2

Process 1

(Shell)

4GB

Memory

4GB

How to change modes

Hard Drive

S:’CC“-kx

open(“file”)

Process 2

Process 1

(Shell)

Changing Modes

Applications often need to access the 0S APIs
* Displaying things on then

* Receiving data from the network
. etc

But the OS is Ring 0, and processes are Ring 3
How do processes get access to the 0S?

Changing Modes

Applications often need to access the 0S APIs

* Writing files ﬂmﬂwQ cup ™
* Displaying things on the screen ﬂfq(\j \,\MM@/
* Receiving data from the network 1 vf\-e/”f’*d/m
. etc... T
But the OS is Ring 0, and processes ar
?
How do processes.get acgesst e QS. . St wihod
* Invoke OS APIs with specialassembly instructions
* Interrupt: jnt ~\ook ogomtfts b o
« System call: or Syseal 1ty g stes

« int/sysenter/syscall cause a mode transfer from Ring3to Ring 0 | ~ e xecote 4l 80,

Mode Transfer

1. Application executes trap (int) instruction
- EIP, CS, and EFLAGS get pushed onto the stack
« Mode switches from ring 3toring 0

Userland

Kernel Mode

Mode Transfer

1. Application executes trap (int) instruction
 EIP, CS, and EFLAGS get pushed onto the stack
« Mode switches from ring 3 toring 0

2. Save the state of the current process
« Push EAX, EBX, ..., etc. onto the stack

Userland

Kernel Mode

Mode Transfer

1. Application executes trap (int) instruction
 EIP, CS, and EFLAGS get pushed onto the stack
« Mode switches from ring 3 toring 0

2. Save the state of the current process
« Push EAX, EBX, ..., etc. onto the stack

3. Locate and execute the correct syscall handler

Userland

Kernel Mode

Mode Transfer

Userland

Kernel Mode

1. Application executes trap (int) instruction
 EIP, CS, and EFLAGS get pushed onto the stack
« Mode switches from ring 3 toring 0

2. Save the state of the current process
« Push EAX, EBX, ..., etc. onto the stack

3. Locate and execute the correct syscall handler

4. Restore the state of process
» Pop EAX, EBX, ... etc.

Mode Transfer

Userland

Kernel Mode

1. Application executes trap (int) instruction
 EIP, CS, and EFLAGS get pushed onto the stack

« Mode switches from ring 3 toring 0 Coapeat 1o\
2. Save the state of the current process _
« Push EAX, EBX, ..., etc. onto the stack ensile)
3. Locate and execute the correct syscall handler acces) Goatnly
4. Restore the state of process o Lﬁ AL
. Pop EAX, EBX, ... etc. ety
5. Place the return value in Wernd
Ve o

=) SQL)C@/L()/

Mode Transfer

1. Application executes trap (int) instruction
 EIP, CS, and EFLAGS get pushed onto the stack
« Mode switches from ring 3 toring 0

2. Save the state of the current process
« Push EAX, EBX, ..., etc. onto the stack

3. Locate and execute the correct syscall handler

Userland

4. Restore the state of process
» Pop EAX, EBX, ... etc.

5. Place the return value in EAX

Kernel Mode

6. Use iret to return to the process
« Switches back to the original mode (typically 3)

Protection in Action

e

Protected mode stops direct access to devices
All device access must go through the 0S
0S will impose access control checks

Memory

128 MB

Protection in Action

Protected mode stops direct access to devices
All device access must go through the 0S
0S will impose access control checks

i Lo

CPU Ring

Memory

128 MB

Protection in Action

Protected mode stops direct access to devices
All device access must go through the 0S
0S will impose access control checks

i Lo

Memory

128 MB

Memory

Protection in Action

i Lo

Protected mode stops direct access to devices
All device access must go through the 0S
0S will impose access control checks

128 MB

128 MB

Protection in Action

Hard Drive

Protected mode stops direct access to devices
All device access must go through the 0S
0S will impose access control checks

Protection in Action 126 MB
Ring 3 = protected mode.
No direct device access

Protected mode stops direct access to devices
All device access must go through the 0S
0S will impose access control checks

Protection in Action

i Lo

Protected mode stops direct access to devices
All device access must go through the 0S
0S will impose access control checks

Memory

128 MB

Protection in Action

Memory
128 MB

Protected mode stops direct access to devices
All device access must go through the 0S
0S will impose access control checks

Protection in Action

e Lo

Ring 3 = protected mode.
Cannot change protection state

Protected mode stops direct access to devices
All device access must go through the 0S
0S will impose access control checks

oransX C/@
Q\/\M”K, i’

Memory

128 MB

Protection in Action

o Lo
¢

Protected mode stops direct access to devices
All device access must go through the 0S
0S will impose access control checks

Memory

128 MB

Protection in Action

Memory

Protected mode stops direct access to devices
All device access must go through the 0S
0S will impose access control checks

CPU Ring

Protection in Action

128 MB
Hard Drive

Subject to access controls checks,

e.g. file permissions and firewalls

Protected mode stops direct access to devices
All device access must go through the 0S
0S will impose access control checks

CPU Ring

Virtual Memory

Status Check

Memory

At this point we have
protected the devices
attached to the system...

... But we have not
protected memory

Status Check

Memory
4GB

At this point we have
protected the devices
attached to the system...

Scan memory to find

But we have not usernames, passwords, saved
protected memory

credit card numbers, etc.

Status Check

At this point we have
protected the devices

attached to the system...

... But we have not
protected memory

Memory
4GB

Infect the OS
code with
malicious code

Scan memory to find
usernames, passwords, saved

credit card numbers, etc.

Memory Isolation and Virtual Memory:

Modern CPUs suppoft virtual memor

Creates the illusion that each process runs in its own, empty memory
space

» Processes can not read/write memory used by other processes

» Processes can not read/write memory used by the OS

Memory Isolation and Virtual Memory

Modern CPUs support virtual memory

Creates the illusion that each process runs in its own, empty memory
space

» Processes can not read/write memory used by other processes

» Processes can not read/write memory used by the OS

@n later courses, you will learn how virtual memory is implemented
» Base and bound registers
« Segmentation
» Page tables

Today, we will do the cliffnotes version...

Physical
Memory
= 4GB

(0N

Physical
Memory

4GB

Physical
Memory

Virtual Memory

4GB

Chrome
believes it is the
only thing in
memory

Process 1

4GB

Physical
Memory

Virtual Memory

4GB

Chrome

believes it is the
only thing in
memory

Process 1

4GB

Physical
Memory

Virtual Memory

4GB

Chrome
believes it is the
only thing in

memory

Process 1

4GB

Skype believes
it is the only
thing in
memory

Virtual Memory

Process 2
4GB

—VirtuaHMemory

Process 1

4GB

CPU

sical
Memory

4GB

Virtual Memory Physical

Process 1 Memory
4GB

Physical
Address:
81102

Read
Address
16734 CPU

Virtual Memory Physical

Process 1 Page Table Memory
4GB
16732 81100
16734 81102
16736 93568 Physical
16738 93570 Address:
Read N 81102
Address
16734 CPU

Read
Address

16734

Virtual Memory

Process 1

4GB

Page Table

Virtual Addr.

16734
16736

16738

Physical Addr.

81102
93568
93570

CPU

Physical
Memory

Physical
Address:
81102

Virtual Memory Implementation

Each process has its own virtual memory space
» Each process has a page table that maps is virtual space into physical space
« CPU translates virtual address to physical addresses on-the-fly

Virtual Memory Implementation

Each process has its own virtual memory space
» Each process has a page table that maps is virtual space into physical space
« CPU translates virtual address to physical addresses on-the-fly
OS creates the page table for each process
« Installing page tables in the CPU is a protected, Ring O instruction
» Processes cannot modify their page tables

Virtual Memory Implementation

Each process has its own virtual memory space
» Each process has a page table that maps is virtual space into physical space
« CPU translates virtual address to physical addresses on-the-fly

OS creates the page table for each process
« Installing page tables in the CPU is a protected, Ring O instruction
» Processes cannot modify their page tables

What happens if a process tries to read/write memory outside its page
table?

« Segmentation Fault or Page Fault

 Process crashes

 In other words, no way to escape virtual memory

VM In Action

Processes can only read/
write within their own
virtual memory

Processes cannot change
their own page tables

e Lo

Page Table F

CPU Ring

Memory

4GB

VM In Action

Processes can only read/
write within their own
virtual memory

Processes cannot change
their own page tables

e Lo

Page Table F

CPU Ring

Memory

4GB

VM In Action

Processes can only read/
write within their own
virtual memory

Processes cannot change
their own page tables

e Lo

Page Table F

CPU Ring

Memory

4GB

Memory
4GB

VM In Action

Processes can only read/ Memory
appears to be

write within their own empty
virtual memory

Processes cannot change
their own page tables

CPU Ring

Page Table F EE

VM In Action

Processes can only read/
write within their own
virtual memory

Processes cannot change
their own page tables

e Lo

Page Table F

CPU Ring

Memory

4GB

VM In Action

Memory
4GB

Processes can only read/
write within their own
virtual memory

Processes cannot change
their own page tables

Page Table F

VM In Action

Processes can only read/
write within their own
virtual memory

Processes cannot change
their own page tables

Ring 3 = protected mode.
Cannot change page table.
[] ® »
Page Table F: 3 .
[] o L

Memory

4GB

Examples
Principles

Review

At this point, we have achieved process isolation
» Protected mode execution prevents direct device access
« Virtual memory prevents direct memory access
Requires CPU support
« All moderns CPUs support these techniques
Requires OS support

 All moderns OS support these techniques
» OS controls process rings and page tables

Review

At this point, we have achieved process isolation
» Protected mode execution prevents direct device access
« Virtual memory prevents direct memory access
Requires CPU support
« All moderns CPUs support these techniques
Requires OS support
 All moderns OS support these techniques
» OS controls process rings and page tables

Warning: bugs in the OS may compromise
process isolation

Towards Secure Systems

Now that we have process isolation, we can build more complex
security features

File Access Control Anti-virus

A - 7 -
Firewall Secure Logging

:I':|$ I».

File Access Control @

o » o
All disk access is mediated Lad

0S enforces access controls

File Access Control @

. : : »’
All disk access is mediated Lad
by the 0S

0S enforces access controls

Aad

Iyl iyl Iiplyyly! Ioplyylyy!

ﬁ' ﬁ"’ Hard Drive ﬁ«'} i"’

File Access Control @

&
dad

Process 1 | Process 2 Process 3

£

All disk access is mediated
by the 0S

0S enforces access controls

Iyl iyl w Ioplyylyy!

LD Hard Drive ¢ =@

File Access Control @

&
dad

Aad

P

Iyl iyl w Ioplyylyy!

All disk access is mediated
by the 0S

0S enforces access controls

LD Hard Drive ¢ =@

@ Limitations

Malware can still cause
damage

Discretionary access
control means that
isolation is incomplete

Limitations

Malware can still cause
damage

Discretionary access
control means that
isolation is incomplete

£
£

_ D !’; Hard Drive sy

@ Limitations

£

Malware can still cause
damage

Discretionary access
control means that
isolation is incomplete

_ D !’; Hard Drive sy

%) Anti-virus

Anti-virus process is privileged
« OftenrunsinRing0

o
T

Scans all files looking for
signatures

* Each signature uniquely identifies

3 Anti-virus
a piece of malware

Files scanned on creation and
access

Hard Drive

%) Anti-virus

Anti-virus process is privileged
« OftenrunsinRing0

Scans all files looking for
signatures

* Each signature uniquely identifies
a piece of malware

Files scanned on creation and
access

Hard Drive

%) Anti-virus

Anti-virus process is privileged
« OftenrunsinRing0

Scans all files looking for
signatures

* Each signature uniquely identifies
a piece of malware

Files scanned on creation and
access

Hard Drive

Anti-virus &

3 o
Anti-virus process is
privileged

« Typically runs in Ring O

I

Scans all files looking for 0
signatures
« Each signature uniquely

identifies a piece of
malware

Anti-virus

Files scanned on creation
and access Hard Drive

%) Anti-virus

Anti-virus process is
privileged

« Typically runs in Ring O
Scans all files looking for
signatures

« Each signature uniquely
identifies a piece of
malware

Files scanned on creation
and access

&
dak

Process 1

I

Hard Drive

%) Anti-virus

Anti-virus process is
privileged

« Typically runs in Ring O
Scans all files looking for
signatures

« Each signature uniquely
identifies a piece of
malware

Files scanned on creation
and access

&
dak

Process 1

I

Hard Drive

