
2550 Intro to
cybersecurity

abhi shelat

L20: systems

e

Threat Model
Principles
Intro to System Architecture
Hardware Support for Isolation
Examples

e

um
Einar

I a iIBm

Ihnen
ma

CPU MEM

Ethernet

USB

BIOS
e

is

What is Memory? Address Contents

114
113 0
112 0
111 0
110 8
109
108 0
107 C
106 B
105 A
104
103 0xAF
102 0x3C
101 0x91
100 0xE3

Memory is essentially a spreadsheet
with a single column
• Every row has a number, called an

address
• Every cell holds 1 byte of data

I

i o

What is Memory? Address Contents

114
113 0
112 0
111 0
110 8
109
108 0
107 C
106 B
105 A
104
103 0xAF
102 0x3C
101 0x91
100 0xE3

Integers are
typically four

bytes

Memory is essentially a spreadsheet
with a single column
• Every row has a number, called an

address
• Every cell holds 1 byte of data

3244
64 bit

What is Memory? Address Contents

114
113 0
112 0
111 0
110 8
109
108 0
107 C
106 B
105 A
104
103 0xAF
102 0x3C
101 0x91
100 0xE3

Integers are
typically four

bytes

Each ASCII
character is one
byte, Strings are
null terminated

Memory is essentially a spreadsheet
with a single column
• Every row has a number, called an

address
• Every cell holds 1 byte of data

is

What is Memory? Address Contents

114
113 0
112 0
111 0
110 8
109
108 0
107 C
106 B
105 A
104
103 0xAF
102 0x3C
101 0x91
100 0xE3

Integers are
typically four

bytes

Each ASCII
character is one
byte, Strings are
null terminated

CPUs understand
instructions in

assembly
language

Memory is essentially a spreadsheet
with a single column
• Every row has a number, called an

address
• Every cell holds 1 byte of data

What is Memory? Address Contents

114
113 0
112 0
111 0
110 8
109
108 0
107 C
106 B
105 A
104
103 0xAF
102 0x3C
101 0x91
100 0xE3

Integers are
typically four

bytes

Each ASCII
character is one
byte, Strings are
null terminated

CPUs understand
instructions in

assembly
language

Memory is essentially a spreadsheet
with a single column
• Every row has a number, called an

address
• Every cell holds 1 byte of data

All data and running code are held in
memory
 int my_num = 8;

What is Memory? Address Contents

114
113 0
112 0
111 0
110 8
109
108 0
107 C
106 B
105 A
104
103 0xAF
102 0x3C
101 0x91
100 0xE3

Integers are
typically four

bytes

Each ASCII
character is one
byte, Strings are
null terminated

CPUs understand
instructions in

assembly
language

Memory is essentially a spreadsheet
with a single column
• Every row has a number, called an

address
• Every cell holds 1 byte of data

All data and running code are held in
memory
 int my_num = 8;

String my_str = “ABC”;

What is Memory? Address Contents

114
113 0
112 0
111 0
110 8
109
108 0
107 C
106 B
105 A
104
103 0xAF
102 0x3C
101 0x91
100 0xE3

Integers are
typically four

bytes

Each ASCII
character is one
byte, Strings are
null terminated

CPUs understand
instructions in

assembly
language

Memory is essentially a spreadsheet
with a single column
• Every row has a number, called an

address
• Every cell holds 1 byte of data

All data and running code are held in
memory
 int my_num = 8;

String my_str = “ABC”;
while (my_num > 0) my_num--;a

How does a computer boot?

https://youtu.be/MsKb0gR-4AM?t=36

CPU MEM

Ethernet

USB

BIOS
0

1mbI

System Model: how does a computer boot?

BIOS init MBR Boot loader Kernel init Full Kernel
init User mode

Memory, I/O, Network

BIOS services Kernel

https://www.intel.com/content/www/us/en/intelligent-systems/intel-boot-loader-development-kit/minimal-intel-architecture-boot-loader-paper.html

a

More details INTI

Management

Engine

Intel

turns on the moment your
computer haspower D

Layout of memory at boot

E e

Details
CPU begins executing at f.!f0

CPU MEM

BIOS

BIOS firmware begins init of hw
Applies microcode patches
Execute Firmware Support Pkg (blob)
[Ram is setup]
Copy firmware to RAM
Begin executing in RAM
Setup interrupts, timers, clocks
Bring up other cores
Setup PCI
Setup ACPI tables
Execute OS loader

Est

I it

tf

Memory

0

4 GB
Hard DriveEthernet/Wifi

OS

System Model

Process 1
(Shell)

Process 2open(“file”)

O

Memory

0

4 GB
Hard DriveEthernet/Wifi

OS

System Model

Process 1
(Shell)

Process 2open(“file”)

On bootup, the Operating System
(OS) loads itself into memory
• eg. DOS (before hw isolation)
• Typically places itself in high memory

Memory

0

4 GB
Hard DriveEthernet/Wifi

OS

System Model

Process 1
(Shell)

Process 2open(“file”)

On bootup, the Operating System
(OS) loads itself into memory
• eg. DOS (before hw isolation)
• Typically places itself in high memory

What is the role of the OS?
• Allow the user to run processes
• Often comes with a shell
• Text shell like bash
• Graphical shell like the Windows desktop

• Provides APIs to access devices
• Offered as a convenience to application

developers

old system
einen

t 0
I

her a
ages resources

Memory

0

4 GB
Hard DriveEthernet/Wifi

OS

System Model

Process 1
(Shell)

Process 2open(“file”)

On bootup, the Operating System
(OS) loads itself into memory
• eg. DOS (before hw isolation)
• Typically places itself in high memory

What is the role of the OS?
• Allow the user to run processes
• Often comes with a shell
• Text shell like bash
• Graphical shell like the Windows desktop

• Provides APIs to access devices
• Offered as a convenience to application

developers

tea

abstract

Memory

0

128 MB
Hard DriveEthernet/Wifi

OS

Memory Unsafety

Process 1

Process 2

Problem: any process can read/write
any memory

Dos

I

Memory

0

128 MB
Hard DriveEthernet/Wifi

OS

Memory Unsafety

Process 1

I’m reading from your
process, stealing your

data ;)

Process 2

Problem: any process can read/write
any memory

Ei

Is

Memory

0

128 MB
Hard DriveEthernet/Wifi

OS

Memory Unsafety

Problem: any process can
read/write any memory

Memory

0

128 MB
Hard DriveEthernet/Wifi

OS

Memory Unsafety

Problem: any process can
read/write any memory4 EFF
ice what I wrote before Is what I
will read in the future

Memory

0

128 MB
Hard DriveEthernet/Wifi

OS

Memory Unsafety

Infect the OS
code with

malicious code

Scan memory to find
usernames, passwords, saved

credit card numbers, etc.

Problem: any process can
read/write any memory

Memory

0

128 MB
Hard DriveEthernet/Wifi

OS

Device Unsafety

Process 1

Process 2

Problem: any process can access
any hardware device directly
Access control is enforced by the
OS, but OS APIs can be bypassed

Memory

0

128 MB
Hard DriveEthernet/Wifi

OS

Device Unsafety

Process 1

Process 2

Problem: any process can access
any hardware device directly
Access control is enforced by the
OS, but OS APIs can be bypassed

Memory

0

128 MB
Hard DriveEthernet/Wifi

OS

Device Unsafety

Process 1

Process 2

Problem: any process can access
any hardware device directly
Access control is enforced by the
OS, but OS APIs can be bypassed

Memory

0

128 MB
Hard DriveEthernet/Wifi

OS

Device Unsafety

Process 1

Process 2

Problem: any process can access
any hardware device directly
Access control is enforced by the
OS, but OS APIs can be bypassed

Memory

0

128 MB
Hard DriveEthernet/Wifi

OS

Device Unsafety

Process 1

Process 2

Problem: any process can access
any hardware device directly
Access control is enforced by the
OS, but OS APIs can be bypassed

D

Memory

0

128 MB
Hard DriveEthernet/Wifi

OS

Device Unsafety

Process 1

Read/write/delete
files owned by other

users or the OS Process 2

Problem: any process can access
any hardware device directly
Access control is enforced by the
OS, but OS APIs can be bypassed

MATPAE

Memory

0

128 MB
Hard DriveEthernet/Wifi

OS

Device Unsafety

Problem: any process can access
any hardware device directly
Access control is enforced by the
OS, but OS APIs can be bypassed

Memory

0

128 MB
Hard DriveEthernet/Wifi

OS

Device Unsafety

Problem: any process can access
any hardware device directly
Access control is enforced by the
OS, but OS APIs can be bypassed

Memory

0

128 MB
Hard DriveEthernet/Wifi

OS

Device Unsafety

Read/write/delete
any file

Problem: any process can access
any hardware device directly
Access control is enforced by the
OS, but OS APIs can be bypassed

Memory

0

128 MB
Hard DriveEthernet/Wifi

OS

Device Unsafety

Send stolen data to the thief,
attack other computers, etc.

Read/write/delete
any file

Problem: any process can access
any hardware device directly
Access control is enforced by the
OS, but OS APIs can be bypassed

Monolithic memory address space
r

with no protecting

how 05 worked for first 15 years

Dinu

Review

Old systems did not protect memory or devices
• Any process could access any memory
• Any process could access any device

Problems
• No way to enforce access controls on users

or devices
• Processes can steal from or destroy each

other
• Processes can modify or destroy the OS

On old computers, systems security was literally
impossible

u C

in ms

c I

ISOLATIONhow

prevent
processes

from
interacting

illegally
with the
system
resources

Threat Model
Principles
Intro to System Architecture
Hardware Support for Isolation
Examples

Modern
hw
support

strong
isolation

Rings
virtual
memory
virtualization
instructions

Towards Modern Architecture

To achieve systems security, we need process isolation
• Processes cannot read/write memory arbitrarily
• Processes cannot access devices directly

How do we achieve this?
Hardware support for isolation

1. Protected mode execution (a.k.a. process rings)
2. Virtual memoryE

Protected Mode

Protected Mode

Ring 0
OS

Ring 1

Ring 2

Ring 3

Device Drivers

Device Drivers

Applications

Most modern CPUs support protected mode
x86 CPUs support three rings with different privileges
• Ring 0: Operating System
• Code in this ring may directly access any device

legacy
operation

Protected Mode

Ring 0
OS

Ring 1

Ring 2

Ring 3

Device Drivers

Device Drivers

Applications

Most modern CPUs support protected mode
x86 CPUs support three rings with different privileges
• Ring 0: Operating System
• Code in this ring may directly access any device

• Ring 1, 2: device drivers
• Code in these rings may directly access some devices
• May not change the protection level of the CPU

Protected Mode

Ring 0
OS

Ring 1

Ring 2

Ring 3

Device Drivers

Device Drivers

Applications

Most modern CPUs support protected mode
x86 CPUs support three rings with different privileges
• Ring 0: Operating System
• Code in this ring may directly access any device

• Ring 1, 2: device drivers
• Code in these rings may directly access some devices
• May not change the protection level of the CPU

• Ring 3: userland
• Code in this ring may not directly access devices
• All device access must be via OS APIs
• May not change the protection level of the CPU

I Bae

e
m

i

Protected Mode

Ring 0
OS

Ring 1

Ring 2

Ring 3

Device Drivers

Device Drivers

Applications

Most modern CPUs support protected mode
x86 CPUs support three rings with different privileges
• Ring 0: Operating System
• Code in this ring may directly access any device

• Ring 1, 2: device drivers
• Code in these rings may directly access some devices
• May not change the protection level of the CPU

• Ring 3: userland
• Code in this ring may not directly access devices
• All device access must be via OS APIs
• May not change the protection level of the CPU

Most OSes only use rings 0 and 3
processes

Ring -1,-2,-3

“Google cited worries that the Intel ME (actually MINIX)
code runs on their CPU's deepest access level — Ring "-3"
— and also runs a web server component that allows
anyone to remotely connect to remote computers, even
when the main OS is turned o!.”

0

If

System Boot Sequence

1. On startup, the CPU starts in 16-bit real mode
• Protected mode is disabled
• Any process can access any device

System Boot Sequence

1. On startup, the CPU starts in 16-bit real mode
• Protected mode is disabled
• Any process can access any device

2. BIOS executes, finds and loads the OS

System Boot Sequence

1. On startup, the CPU starts in 16-bit real mode
• Protected mode is disabled
• Any process can access any device

2. BIOS executes, finds and loads the OS
3. OS switches CPU to 32-bit protected mode
• OS code is now running in Ring 0
• OS decides what Ring to place other processes in

System Boot Sequence

1. On startup, the CPU starts in 16-bit real mode
• Protected mode is disabled
• Any process can access any device

2. BIOS executes, finds and loads the OS
3. OS switches CPU to 32-bit protected mode
• OS code is now running in Ring 0
• OS decides what Ring to place other processes in

4. Shell gets executed, user may run programs
• User processes are placed in Ring 3

F

F

Restriction on Privileged Instructions

What CPU instructions are restricted in protected mode?
• Any instruction that modifies the CR0 register
• Controls whether protected mode is enabled

• Any instruction that modifies the CR3 register
• Controls the virtual memory configuration
• More on this later…

• hlt – Halts the CPU
• sti/cli – enable and disable interrupts
• in/out – directly access hardware devices

If a Ring 3 process tries any of these things, it immediately crashes

I

f I Iat Ee

How to change modes Memory

0

4 GB
Hard Drive

OS

Process 1
(Shell)

Process 2open(“file”)

system call Liff Ro

method for a user land process

running at R3 to

communicate with the 05
running in fo

RS

How to change modes Memory

0

4 GB
Hard Drive

OS

Process 1
(Shell)

Process 2open(“file”)

Tf

syacall

Changing Modes

Applications often need to access the OS APIs
• Writing files
• Displaying things on the screen
• Receiving data from the network
• etc…

But the OS is Ring 0, and processes are Ring 3
How do processes get access to the OS?

q

Changing Modes

Applications often need to access the OS APIs
• Writing files
• Displaying things on the screen
• Receiving data from the network
• etc…

But the OS is Ring 0, and processes are Ring 3
How do processes get access to the OS?
• Invoke OS APIs with special assembly instructions
• Interrupt: int 0x80
• System call: sysenter or syscall

• int/sysenter/syscall cause a mode transfer from Ring 3 to Ring 0

med

interrupt
handler

setupon

our
properly

der

the

ItSexecute int 80

Mode Transfer
U

se
rla

nd
Ke

rn
el

 M
od

e

1. Application executes trap (int) instruction
• EIP, CS, and EFLAGS get pushed onto the stack
• Mode switches from ring 3 to ring 0

Mode Transfer
U

se
rla

nd
Ke

rn
el

 M
od

e

1. Application executes trap (int) instruction
• EIP, CS, and EFLAGS get pushed onto the stack
• Mode switches from ring 3 to ring 0

2. Save the state of the current process
• Push EAX, EBX, …, etc. onto the stack

Mode Transfer
U

se
rla

nd
Ke

rn
el

 M
od

e

1. Application executes trap (int) instruction
• EIP, CS, and EFLAGS get pushed onto the stack
• Mode switches from ring 3 to ring 0

2. Save the state of the current process
• Push EAX, EBX, …, etc. onto the stack

3. Locate and execute the correct syscall handler

Mode Transfer
U

se
rla

nd
Ke

rn
el

 M
od

e

1. Application executes trap (int) instruction
• EIP, CS, and EFLAGS get pushed onto the stack
• Mode switches from ring 3 to ring 0

2. Save the state of the current process
• Push EAX, EBX, …, etc. onto the stack

3. Locate and execute the correct syscall handler
4. Restore the state of process
• Pop EAX, EBX, … etc.

Mode Transfer
U

se
rla

nd
Ke

rn
el

 M
od

e

1. Application executes trap (int) instruction
• EIP, CS, and EFLAGS get pushed onto the stack
• Mode switches from ring 3 to ring 0

2. Save the state of the current process
• Push EAX, EBX, …, etc. onto the stack

3. Locate and execute the correct syscall handler
4. Restore the state of process
• Pop EAX, EBX, … etc.

5. Place the return value in EAX

convention

ensures
access control

can be
appliedby

0 Kernel
handler

safety

Mode Transfer
U

se
rla

nd
Ke

rn
el

 M
od

e

1. Application executes trap (int) instruction
• EIP, CS, and EFLAGS get pushed onto the stack
• Mode switches from ring 3 to ring 0

2. Save the state of the current process
• Push EAX, EBX, …, etc. onto the stack

3. Locate and execute the correct syscall handler
4. Restore the state of process
• Pop EAX, EBX, … etc.

5. Place the return value in EAX
6. Use iret to return to the process
• Switches back to the original mode (typically 3)

Memory

0

128 MB
Hard DriveEthernet/Wifi

Protection in Action
OS

Protected mode stops direct access to devices
All device access must go through the OS
OS will impose access control checks

Po

7

Memory

0

128 MB
Hard DriveEthernet/Wifi

Protection in Action

CPU Ring

0

OS

Protected mode stops direct access to devices
All device access must go through the OS
OS will impose access control checks

Memory

0

128 MB
Hard DriveEthernet/Wifi

Protection in Action

CPU Ring

03

OS

Protected mode stops direct access to devices
All device access must go through the OS
OS will impose access control checks

Memory

0

128 MB
Hard DriveEthernet/Wifi

Protection in Action

CPU Ring

03

OS

Protected mode stops direct access to devices
All device access must go through the OS
OS will impose access control checks

i

Memory

0

128 MB
Hard DriveEthernet/Wifi

Protection in Action

CPU Ring

03

OS

Protected mode stops direct access to devices
All device access must go through the OS
OS will impose access control checks

Memory

0

128 MB
Hard DriveEthernet/Wifi

Protection in Action

CPU Ring

03

Ring 3 = protected mode.
No direct device access

OS

Protected mode stops direct access to devices
All device access must go through the OS
OS will impose access control checks

Memory

0

128 MB
Hard DriveEthernet/Wifi

Protection in Action

CPU Ring

03

OS

Protected mode stops direct access to devices
All device access must go through the OS
OS will impose access control checks

Memory

0

128 MB
Hard DriveEthernet/Wifi

Protection in Action

CPU Ring

03

OS

Protected mode stops direct access to devices
All device access must go through the OS
OS will impose access control checks F

X

Memory

0

128 MB
Hard DriveEthernet/Wifi

Protection in Action

CPU Ring

03

OS

Ring 3 = protected mode.
Cannot change protection state

Protected mode stops direct access to devices
All device access must go through the OS
OS will impose access control checks

cannot Coco
change

Memory

0

128 MB
Hard DriveEthernet/Wifi

Protection in Action

CPU Ring

03

OS

Protected mode stops direct access to devices
All device access must go through the OS
OS will impose access control checks

D

Memory

0

128 MB
Hard DriveEthernet/Wifi

Protection in Action

CPU Ring

0

OS

Protected mode stops direct access to devices
All device access must go through the OS
OS will impose access control checks

Syscall

Memory

0

128 MB
Hard DriveEthernet/Wifi

Protection in Action

CPU Ring

0

Subject to access controls checks,
e.g. file permissions and firewalls

OS

Protected mode stops direct access to devices
All device access must go through the OS
OS will impose access control checks

B

T

subject

Virtual Memory

Status Check Memory

0

4 GB
Hard DriveEthernet/Wifi

OS

CPU Ring

3

At this point we have
protected the devices
attached to the system…

… But we have not
protected memory

gg
E

Status Check Memory

0

4 GB
Hard DriveEthernet/Wifi

OS

Scan memory to find
usernames, passwords, saved

credit card numbers, etc.

CPU Ring

3

At this point we have
protected the devices
attached to the system…

… But we have not
protected memory

Status Check Memory

0

4 GB
Hard DriveEthernet/Wifi

OS

Infect the OS
code with

malicious code

Scan memory to find
usernames, passwords, saved

credit card numbers, etc.

CPU Ring

3

At this point we have
protected the devices
attached to the system…

… But we have not
protected memory

Memory Isolation and Virtual Memory

Modern CPUs support virtual memory
Creates the illusion that each process runs in its own, empty memory
space
• Processes can not read/write memory used by other processes
• Processes can not read/write memory used by the OS

O

Memory Isolation and Virtual Memory

Modern CPUs support virtual memory
Creates the illusion that each process runs in its own, empty memory
space
• Processes can not read/write memory used by other processes
• Processes can not read/write memory used by the OS

In later courses, you will learn how virtual memory is implemented
• Base and bound registers
• Segmentation
• Page tables

Today, we will do the cliffnotes version…

C

Physical
Memory

0

4 GB

OSD
a

Physical
Memory

0

4 GB

OS

ED
D

Physical
Memory

0

4 GB

OS

Virtual Memory
Process 1

0

4 GB

Chrome
believes it is the

only thing in
memory

O

Physical
Memory

0

4 GB

OS

Virtual Memory
Process 1

0

4 GB

Chrome
believes it is the

only thing in
memory

D

Physical
Memory

0

4 GB

OS

Virtual Memory
Process 1

0

4 GB

Virtual Memory
Process 2

0

4 GB

Chrome
believes it is the

only thing in
memory

Skype believes
it is the only

thing in
memory

Physical
Memory

0

4 GB

OS

Virtual Memory
Process 1

0

4 GB

CPU

Physical
Memory

0

4 GB

OS

Virtual Memory
Process 1

0

4 GB

CPU

Physical
Address:

81102Read
Address
16734

Physical
Memory

0

4 GB

OS

Virtual Memory
Process 1

0

4 GB

CPU

Physical
Address:

81102

Virtual Addr. Physical Addr.

16732 81100
16734 81102
16736 93568
16738 93570

Read
Address
16734

Page Table

Physical
Memory

0

4 GB

OS

Virtual Memory
Process 1

0

4 GB

CPU

Physical
Address:

81102

Virtual Addr. Physical Addr.

16732 81100
16734 81102
16736 93568
16738 93570

Read
Address
16734

Page Table

Virtual Memory Implementation

Each process has its own virtual memory space
• Each process has a page table that maps is virtual space into physical space
• CPU translates virtual address to physical addresses on-the-fly

Virtual Memory Implementation

Each process has its own virtual memory space
• Each process has a page table that maps is virtual space into physical space
• CPU translates virtual address to physical addresses on-the-fly

OS creates the page table for each process
• Installing page tables in the CPU is a protected, Ring 0 instruction
• Processes cannot modify their page tables

Virtual Memory Implementation

Each process has its own virtual memory space
• Each process has a page table that maps is virtual space into physical space
• CPU translates virtual address to physical addresses on-the-fly

OS creates the page table for each process
• Installing page tables in the CPU is a protected, Ring 0 instruction
• Processes cannot modify their page tables

What happens if a process tries to read/write memory outside its page
table?
• Segmentation Fault or Page Fault
• Process crashes
• In other words, no way to escape virtual memory

VM in Action Memory

0

4 GB
Hard DriveEthernet/Wifi

OS

CPU Ring

3Page Table

Processes can only read/
write within their own
virtual memory
Processes cannot change
their own page tables

VM in Action Memory

0

4 GB
Hard DriveEthernet/Wifi

OS

CPU Ring

3Page Table

Processes can only read/
write within their own
virtual memory
Processes cannot change
their own page tables

VM in Action Memory

0

4 GB
Hard DriveEthernet/Wifi

CPU Ring

3Page Table

Processes can only read/
write within their own
virtual memory
Processes cannot change
their own page tables

VM in Action Memory

0

4 GB
Hard DriveEthernet/Wifi

CPU Ring

3

Memory
appears to be

empty

Page Table

Processes can only read/
write within their own
virtual memory
Processes cannot change
their own page tables

VM in Action Memory

0

4 GB
Hard DriveEthernet/Wifi

CPU Ring

3Page Table

Processes can only read/
write within their own
virtual memory
Processes cannot change
their own page tables

VM in Action Memory

0

4 GB
Hard DriveEthernet/Wifi

CPU Ring

3Page Table

Processes can only read/
write within their own
virtual memory
Processes cannot change
their own page tables

VM in Action Memory

0

4 GB
Hard DriveEthernet/Wifi

CPU Ring

3Page Table

Ring 3 = protected mode.
Cannot change page table.

Processes can only read/
write within their own
virtual memory
Processes cannot change
their own page tables

Threat Model
Intro to System Architecture
Hardware Support for Isolation
Examples
Principles

Review

At this point, we have achieved process isolation
• Protected mode execution prevents direct device access
• Virtual memory prevents direct memory access

Requires CPU support
• All moderns CPUs support these techniques

Requires OS support
• All moderns OS support these techniques
• OS controls process rings and page tables

Review

Warning: bugs in the OS may compromise
process isolation

At this point, we have achieved process isolation
• Protected mode execution prevents direct device access
• Virtual memory prevents direct memory access

Requires CPU support
• All moderns CPUs support these techniques

Requires OS support
• All moderns OS support these techniques
• OS controls process rings and page tables

Towards Secure Systems

File Access Control

Firewall

Anti-virus

Secure Logging

Now that we have process isolation, we can build more complex
security features

File Access Control

Hard Drive

Process 1 Process 3Process 2

OS

All disk access is mediated
by the OS
OS enforces access controls

File Access Control

Hard Drive

Process 1 Process 3Process 2

OS

All disk access is mediated
by the OS
OS enforces access controls

File Access Control

Hard Drive

Process 1 Process 3Process 2

OS

All disk access is mediated
by the OS
OS enforces access controls

File Access Control

Hard Drive

Process 1 Process 3Process 2

OS

All disk access is mediated
by the OS
OS enforces access controls

Limitations

Hard Drive

OS

Malware can still cause
damage
Discretionary access
control means that
isolation is incomplete

Limitations

Hard Drive

OS

Malware can still cause
damage
Discretionary access
control means that
isolation is incomplete

Limitations

Hard Drive

OS

Malware can still cause
damage
Discretionary access
control means that
isolation is incomplete

Anti-virus

Hard Drive

OS

Anti-virus process is privileged
• Often runs in Ring 0

Scans all files looking for
signatures
• Each signature uniquely identifies

a piece of malware

Files scanned on creation and
access

Anti-virus

Anti-virus

Hard Drive

OS

Anti-virus process is privileged
• Often runs in Ring 0

Scans all files looking for
signatures
• Each signature uniquely identifies

a piece of malware

Files scanned on creation and
access

Anti-virus

Anti-virus

Hard Drive

OS

Anti-virus process is privileged
• Often runs in Ring 0

Scans all files looking for
signatures
• Each signature uniquely identifies

a piece of malware

Files scanned on creation and
access

Anti-virus

Anti-virus

Hard Drive

OS

Anti-virus process is
privileged
• Typically runs in Ring 0

Scans all files looking for
signatures
• Each signature uniquely

identifies a piece of
malware

Files scanned on creation
and access

Anti-virus

Process 1

Anti-virus

Hard Drive

OS

Anti-virus process is
privileged
• Typically runs in Ring 0

Scans all files looking for
signatures
• Each signature uniquely

identifies a piece of
malware

Files scanned on creation
and access

Anti-virus

Process 1

Anti-virus

Hard Drive

OS

Anti-virus process is
privileged
• Typically runs in Ring 0

Scans all files looking for
signatures
• Each signature uniquely

identifies a piece of
malware

Files scanned on creation
and access

Anti-virus

Process 1

