
2550 Intro to
cybersecurity

abhi shelat

L5: Crypto: OWF, PRG

Perfect secrecy
is said to be PERFECTLY SECRET if

for everypair of message MEM andeveryciphertext

ciphertext c is equally likely to represent
either m or mz if the key K is
uniformly sampled from the Keyset

Equivalet to Shannon Security

Perfect secrecy
is said to be PERFECTLY SECRET if

One-time pad (Vernam 1917)

12 CHAPTER 1. INTRODUCTION

By the definition of conditional probability,

Prk,m [m = m1 | Enck(m) = c] =
Prk,m [m = m1 ⇤ Enck(m) = c]

Prk,m [Enck(m) = c]

=
Prm [m = m1]Prk [Enck(m1) = c]

Prk,m [Enck(m) = c]

=
1
2 · Prk [Enck(m1) = c]
Prk,m [Enck(m) = c]

Analogously,

Prk,m [m = m2 | Enck(m) = c] =
1
2 · Prk [Enck(m2) = c]
Prk,m [Enck(m) = c]

.

Cancelling and rearranging terms, we conclude that

Prk [Enck(m1) = c] = Prk [Enck(m2) = c] .

The One-Time Pad

Given our definition of security, we turn to the question of whether per-
fectly secure encryption schemes exists. It turns out that both the encryption
schemes we have seen so far (i.e., the Caesar and Substitution ciphers) are se-
cure as long as we only consider messages of length 1. However, when con-
sidering messages of length 2 (or more) the schemes are no longer secure—in
fact, it is easy to see that encryptions of the strings AA and AB have disjoint
distributions, thus violating perfect secrecy (prove this!).

Nevertheless, this suggests that we might obtain perfect secrecy by some-
how adapting these schemes to operate on each element of a message inde-
pendently. This is the intuition behind the one-time pad encryption scheme,
invented by Gilbert Vernam and Joseph Mauborgne in 1919.

Definition 12.1. The One-Time Pad encryption scheme is described by the
following tuple (M,K,Gen,Enc,Dec).

M = {0, 1}n

K = {0, 1}n

Gen = k = k1k2. . .kn ⇥ {0, 1}n

Enck(m1m2. . .mn) = c1c2. . .cn where ci = mi � ki

Deck(c1c2. . .cn) = m1m2. . .mn where mi = ci � ki

The � operator represents the binary xor operation.

8D
Key is too

Uniform distribution on strings of len n
Ke 0,13

is sampled from Un O I

amfkd binary

strings of length n

Goal:
n-bits

1010 * n-bits

pick a smallkeg

say 128bits long

use it to generate a verylong
one tire padkey

what security properties are needed for this to work?

n-bits

1010 * n-bits

J should appear to have beensampled from Uw n

1010 * n-bits

{0, 1}10
10n

U1010n

should appear to be the same as a random string

IT
pseudo random

what does it mean
for a process {X} to be
pseudo-random?

No efficient algorithm can distinguish

Et E un

parameterized experiment

a sequence of probability distributions
where Xn is a distribution over strings of length n

ensembles

Computational
Indistinguishability

“let there be two parameterized experiments, X and Y.
as the experiment size increases, no p.p.t. algorithm D
succeeds in distinguishing X from Y.”

efficient

To
e

what does it mean
for an algorithm D to
distinguish a sample?

D()= “evens”

D()= “odds”

Two ensembles are comp. indistinguishable

Two ensembles are comp. indistinguishable

48CHAPTER 3. INDISTINGUISHABILITY AND PSEUDO-RANDOMNESS

• Given any prefix, it is hard to guess the next sequence.

All of the above answers are examples of specific statistical tests—and
many many more such test exist in the litterature. For specific simulations, it
may be enough to use strings that pass some specific statistical tests. How-
ever, for cryptography, we require the use of string that passes all (efficient)
statistical tests.

3.1 Computational Indistinguihability

Towards this goal we introduce the notion of computational indistinguishabil-
ity—formalizing what it means for two probability distributions to “look”
the same in the eyes of a computationally bounded adversary. This notion is
one of the corner stones of modern cryptography. As our treatment is asymp-
totic, the actual formalization of this notion considers sequences—called en-
sembles—of probability distributions (or growing output lenght).

Definition 48.1 (Ensembles of Probability Distributions). ...add

Definition 48.1. (Computational Indistinguishability). Let {Xn}n�N ,{Yn}n�N

be ensembles of probability distributions where Xn, Yn are probability distri-
butions over {0, 1}l(n) for some polynomial l(·). We say that {Xn}n�N and
{Yn}n�N are computationally indistinguishable (abbr. {Xn}n�N ⇤ {Yn}n�N) if
for all non-uniform PPT D (called the “distinguisher”), there exists a negligi-
ble function �(n) s.t ⌃n ⇧ N

|Pr [t ⌅ Xn, D(t) = 1]� Pr [t ⌅ Yn, D(t) = 1] | ⇥ �(n).

In other words, two (ensembles of) probability distributions are computa-
tionally indisinguishable if no efficient distinguisher D can tell them apart
better than with a negligible advantage. [Rafael’s Note: HW, show that this
means i cannot guess better than 1/2 which one it was]

To simplify notation, we say that D distinguishes the distributions Xn and
Yn with probability �

|Pr [t ⌅ Xn, D(t) = 1]� Pr [t ⌅ Yn, D(t) = 1] | > �.

Additionally, we say D distinguishes the probability ensembles {Xn}n�N and
{Yn}n�N with probability µ(·) if ⌃n ⇧ N , D distinguishes Xn and Yn with
probability µ(n).

notation

for every efficient algorithm D there exists a negligiblefunction

souh that

PRE K Xn Det 4 Pr teh D Htt f An

Two ensembles are comp. indistinguishable

48CHAPTER 3. INDISTINGUISHABILITY AND PSEUDO-RANDOMNESS

• Given any prefix, it is hard to guess the next sequence.

All of the above answers are examples of specific statistical tests—and
many many more such test exist in the litterature. For specific simulations, it
may be enough to use strings that pass some specific statistical tests. How-
ever, for cryptography, we require the use of string that passes all (efficient)
statistical tests.

3.1 Computational Indistinguihability

Towards this goal we introduce the notion of computational indistinguishabil-
ity—formalizing what it means for two probability distributions to “look”
the same in the eyes of a computationally bounded adversary. This notion is
one of the corner stones of modern cryptography. As our treatment is asymp-
totic, the actual formalization of this notion considers sequences—called en-
sembles—of probability distributions (or growing output lenght).

Definition 48.1 (Ensembles of Probability Distributions). ...add

Definition 48.1. (Computational Indistinguishability). Let {Xn}n�N ,{Yn}n�N

be ensembles of probability distributions where Xn, Yn are probability distri-
butions over {0, 1}l(n) for some polynomial l(·). We say that {Xn}n�N and
{Yn}n�N are computationally indistinguishable (abbr. {Xn}n�N ⇤ {Yn}n�N) if
for all non-uniform PPT D (called the “distinguisher”), there exists a negligi-
ble function �(n) s.t ⌃n ⇧ N

|Pr [t ⌅ Xn, D(t) = 1]� Pr [t ⌅ Yn, D(t) = 1] | ⇥ �(n).

In other words, two (ensembles of) probability distributions are computa-
tionally indisinguishable if no efficient distinguisher D can tell them apart
better than with a negligible advantage. [Rafael’s Note: HW, show that this
means i cannot guess better than 1/2 which one it was]

To simplify notation, we say that D distinguishes the distributions Xn and
Yn with probability �

|Pr [t ⌅ Xn, D(t) = 1]� Pr [t ⌅ Yn, D(t) = 1] | > �.

Additionally, we say D distinguishes the probability ensembles {Xn}n�N and
{Yn}n�N with probability µ(·) if ⌃n ⇧ N , D distinguishes Xn and Yn with
probability µ(n).

if for all non-uniform p.p.t. alg D,
there exists a negligible function
such that for all n

Two ensembles are comp. indistinguishable

48CHAPTER 3. INDISTINGUISHABILITY AND PSEUDO-RANDOMNESS

• Given any prefix, it is hard to guess the next sequence.

All of the above answers are examples of specific statistical tests—and
many many more such test exist in the litterature. For specific simulations, it
may be enough to use strings that pass some specific statistical tests. How-
ever, for cryptography, we require the use of string that passes all (efficient)
statistical tests.

3.1 Computational Indistinguihability

Towards this goal we introduce the notion of computational indistinguishabil-
ity—formalizing what it means for two probability distributions to “look”
the same in the eyes of a computationally bounded adversary. This notion is
one of the corner stones of modern cryptography. As our treatment is asymp-
totic, the actual formalization of this notion considers sequences—called en-
sembles—of probability distributions (or growing output lenght).

Definition 48.1 (Ensembles of Probability Distributions). ...add

Definition 48.1. (Computational Indistinguishability). Let {Xn}n�N ,{Yn}n�N

be ensembles of probability distributions where Xn, Yn are probability distri-
butions over {0, 1}l(n) for some polynomial l(·). We say that {Xn}n�N and
{Yn}n�N are computationally indistinguishable (abbr. {Xn}n�N ⇤ {Yn}n�N) if
for all non-uniform PPT D (called the “distinguisher”), there exists a negligi-
ble function �(n) s.t ⌃n ⇧ N

|Pr [t ⌅ Xn, D(t) = 1]� Pr [t ⌅ Yn, D(t) = 1] | ⇥ �(n).

In other words, two (ensembles of) probability distributions are computa-
tionally indisinguishable if no efficient distinguisher D can tell them apart
better than with a negligible advantage. [Rafael’s Note: HW, show that this
means i cannot guess better than 1/2 which one it was]

To simplify notation, we say that D distinguishes the distributions Xn and
Yn with probability �

|Pr [t ⌅ Xn, D(t) = 1]� Pr [t ⌅ Yn, D(t) = 1] | > �.

Additionally, we say D distinguishes the probability ensembles {Xn}n�N and
{Yn}n�N with probability µ(·) if ⌃n ⇧ N , D distinguishes Xn and Yn with
probability µ(n).

48CHAPTER 3. INDISTINGUISHABILITY AND PSEUDO-RANDOMNESS

• Given any prefix, it is hard to guess the next sequence.

All of the above answers are examples of specific statistical tests—and
many many more such test exist in the litterature. For specific simulations, it
may be enough to use strings that pass some specific statistical tests. How-
ever, for cryptography, we require the use of string that passes all (efficient)
statistical tests.

3.1 Computational Indistinguihability

Towards this goal we introduce the notion of computational indistinguishabil-
ity—formalizing what it means for two probability distributions to “look”
the same in the eyes of a computationally bounded adversary. This notion is
one of the corner stones of modern cryptography. As our treatment is asymp-
totic, the actual formalization of this notion considers sequences—called en-
sembles—of probability distributions (or growing output lenght).

Definition 48.1 (Ensembles of Probability Distributions). ...add

Definition 48.1. (Computational Indistinguishability). Let {Xn}n�N ,{Yn}n�N

be ensembles of probability distributions where Xn, Yn are probability distri-
butions over {0, 1}l(n) for some polynomial l(·). We say that {Xn}n�N and
{Yn}n�N are computationally indistinguishable (abbr. {Xn}n�N ⇤ {Yn}n�N) if
for all non-uniform PPT D (called the “distinguisher”), there exists a negligi-
ble function �(n) s.t ⌃n ⇧ N

|Pr [t ⌅ Xn, D(t) = 1]� Pr [t ⌅ Yn, D(t) = 1] | ⇥ �(n).

In other words, two (ensembles of) probability distributions are computa-
tionally indisinguishable if no efficient distinguisher D can tell them apart
better than with a negligible advantage. [Rafael’s Note: HW, show that this
means i cannot guess better than 1/2 which one it was]

To simplify notation, we say that D distinguishes the distributions Xn and
Yn with probability �

|Pr [t ⌅ Xn, D(t) = 1]� Pr [t ⌅ Yn, D(t) = 1] | > �.

Additionally, we say D distinguishes the probability ensembles {Xn}n�N and
{Yn}n�N with probability µ(·) if ⌃n ⇧ N , D distinguishes Xn and Yn with
probability µ(n).

if for all non-uniform p.p.t. alg D,
there exists a negligible function
such that for all n

h I ne z
n

what does it mean
for a process {X} to be
pseudo-random?

pseudo-random

pseudo-random
An ensemble {X} is said to be

pseudo-random
if

I

your generator is computationally indistinguishablefrom
uniformly random strings

pseudo-random
An ensemble {X} is said to be

if

Original goal

n-bits

1010 * n-bits

Pseudo-random generator
A function

is a pseudo-random generator if

G : {0,1}n → {0,1}m

an efficient algorithm G that

expands its input i e Glx 7 4
its output is pseudo random i e

its output is comp indistinguishable for uniformly
random strings of the same length

Pseudo-random generator
A function

is a pseudo-random generator if

G can be computed in p.p.t.

for some

is pseudo-random

G : {0,1}n → {0,1}m

How can we build
pseudo-random
generators?

7 · 7 · · · 7{x times

7xmod p

55m t
5 25.35 125.45 625

501 167.3
12Y 5
Go easy

x Y
f(x)

Easy

12345Y =

such that

Incredibly hard!

(7, p, Y) ! x
7x mod p = Y

discrete logarith problem

World record in discrete
logarithms in GF(p)

232 digits
6600yrs of CPU time

2016

Thorsten Kleinjung, Claus Diem, Arjen K. Lenstra, Christine Priplata, and Colin Stahlke

Intel Xeon E5-2660 at 2.2 GHz

(768 bits)

x Y
f(x)

f�1(Y)

Easy

HARD

compute an x such that 7x = Y mod p

0

one way function Cone tray permutation

x Y
f(x)

f�1(Y)

Easy

HARD

http://upload.wikimedia.org/wikipedia/commons/thumb/9/9b/Carl_Friedrich_Gauss.jpg/440px-Carl_Friedrich_Gauss.jpg
http://fabpedigree.com/james/mathmen.htm

in

We have a one-way function

Blum-Micali Pseudo-random generator
PRG(s): parameters i g p X n bit modulus

compute y gs mod p
ls strings

I compute
stringy

Output the string yay s pzj.msjherE

in lessthan

length ney T Plz

Blum-Micali Pseudo-random generator
PRG(s):

S

gs mod p

2. Output all of the red bits and the first bit of s.

1. Compute
Input:

JInisout

1

Blum-Micali Pseudo-random generator

0

hard core predicate

Why is this secure?
Bleu Micau they show in a mathematical

proof that predicting a y bit of the

PRG output given only the prefix is as hard

as solving the discrete toy problem

Why is this secure?

In this particular case, Blum-Micali *prove* that
predicting the “next bit” of the output of this PRG is
as hard as solving the hard problem from before:
The discrete logarithm problem

But this PRG only expands 1 bit!

Output

be a prg.Let

0

Output

be a prg.Let

7
I a

D

TI D
i

Output

be a prg.Let

Output

be a prg.Let

Example Lets use g=5 and p=167.
These values are too small to be secure, but illustrate the scheme.

Pick the seed:f.FI BmgenerAarCll
fatwa

g mod 167 5 mod 167 164
He II yes

d

g't's 51mmol 167 14 7

5 mod 167 51
164 II No 2 DO

147 1627 No 2 DO
551most 167 161 51 e 672 ID

Original goal

“for any pair of messages m1,m2,
Eve cannot tell whether c = Enck(mi).”

c=Enck(m) m=Deck(c)

Alice Bob

Genk k

Eve

c

???
61

O Eman

private key encryption
Gen Enc Dec

3 algorithms 2 sets

Gen (key generation)

Enc (encryption)

Dec (decryption)

re
vi

ew

perfect secrecy
is said to be perfectly secret if

perfect secrecy
is said to be perfectly secret if

perfect secrecy
is said to be perfectly secret if

secure encryption
Def:

(For one message)

computational secrecy
is said to be computationally secure if

t indistinguishable

An encryption scheme

An encryption scheme
Gen(1n) (key generation)

Enck(m) (encryption)

Deck(c) (decryption)output

k

c

m

rG

What are the pros/cons of this scheme?
short key msg can be very long
one modular exponentiation fee bit of Esg
traded perfect security for

computational Security

cybersecurity Evaluate the tradeoffs

