2550 Intro to
 cybersecurity L5: Crypto: OWF, PRG

abhi shelat

Perfect secrecy
(Gen, Enc, Dec, \mathcal{M}, \mathcal{K})
is said to be PERFECTLY SECRET if
for every pair $m_{1} m_{2}$ of messages $m \in M$, and every ciphertext, ciphertext c is equally likely to represent either m_{1} or m_{2} (if the key K is uniformly sampled from the Keyset)

- EqvivaleA to "Sharon secunty"

Perfect secrecy

(Gen, Enc, Dec, \mathcal{M}, \mathcal{K})
is said to be PERFECTLY SECRET if
$\forall m_{1}, m_{2} \in \mathcal{M}, \forall c$
$\underline{\operatorname{Pr}}\left[k \leftarrow\right.$ Gen $\left.: \operatorname{Enc}_{k}\left(m_{1}\right)=c\right]$

$$
\operatorname{Pr}\left[k \leftarrow \operatorname{Gen}: \operatorname{Enc}_{k}\left(m_{2}\right)=c\right]
$$

One-time pad (Vernam 1917)

Uniform distribution on strings of Len n

$$
\begin{aligned}
& n=\{0,1\}^{n} \\
& \text { is samuel from }
\end{aligned}
$$

Goal:
pick a small key,
n-bits say 128 bits long
\checkmark
use it to generate a very long one-tine pal key -
\square
\square

$$
1010 * \text { n-bits }
$$

$1010 *$ n-bits
should appear to hove been sampler from $U_{10^{\prime \prime} \cdot n}$
what security properties are needed for this to work?

$$
1010 * \text { n-bits }
$$

should appear to be the same as a random string $\{0,1\}^{10^{10} n}$

$$
\frac{U_{10^{10}} n}{T} \quad \prod_{\text {psevdo-random. }}
$$

random
what does it mean for a process $\{X\}$ to be pseudo-random?
\Rightarrow No efficient algorithm can distinguish \rightarrow between the ot tet of this process $\begin{aligned} & \left.\text { and tron } \begin{array}{l}\xi_{n \in N} \\ \text { arden sample from } U_{n}\end{array}\right]\end{aligned}$

parameterized experiment

a sequence of probability distributions where X_{n} is a distribution over strings of length n

Computational Indistinguishability

"let there be two parameterized experiments, X and Y. as the experiment size increases, no p.p.t. algorithm D succeeds in distinguishing X from Y."
what does it mean for an algorithm D to distinguish a sampte?

$D(\square)=$ "evens"

D()="odds"

Two ensembles are comp. indistinguishable

Two ensembles are comp. indistinguishable

$$
\left\{X_{n}\right\}_{n \in N} \approx\left\{Y_{n}\right\}_{n \in N} \quad \text { n station. }
$$

"for every efficient algorithm D, there exists a negliging function
E(.) sock that

$$
\operatorname{Pr}\left[t \in X_{n}: D(t)=1\right]-\operatorname{Pr}\left[t \in Y_{n}: D(t)=1\right] \mid \leq\left(-C_{n}\right)
$$

Two ensembles are comp. indistinguishable

$$
\left\{X_{n}\right\}_{n \in N} \approx\left\{Y_{n}\right\}_{n \in N}
$$

if for all non-uniform p.p.t. alg D, there exists a negligible function $\epsilon(n)$ such that for all n

Two ensembles are comp. indistinguishable

$$
\left\{X_{n}\right\}_{n \in N} \approx\left\{Y_{n}\right\}_{n \in N}
$$

if for all non-uniform p.p.t. alg D, there exists a negligible function $\quad \epsilon(n)$ such that for all n

$$
\left|\operatorname{Pr}\left[t \leftarrow X_{n}, \underline{D(t)=1}\right]-\operatorname{Pr}\left[t \leftarrow Y_{n}, \underline{(t)=1}\right]\right| \leq \epsilon(n) .
$$

what does it mean
for a process \{X\} to be pseudo-random?
pseudo-random

An ensemble $\{X\}$ is said to be pseudo-random

pseudo-random :

if
$\{X\}_{n \in \mathbb{N}} \approx\left\{U_{n}\right\}_{n \in \mathbb{N}}$
\{your generator is computationally indistinguishable from uniformly random strings.

An ensemble $\{X\}$ is said to be

pseudo-random

$$
\{X\}_{n \in \mathbb{N}} \approx\left\{U_{n}\right\}_{n \in \mathbb{N}}
$$

Original goal

n-bits

1010 * n-bits

Pseudo-random generator
A function $G:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$
is a pseudo-random generator if
an efficient algorithm G that.
\Rightarrow (1) expands its incA. ie. $|G(x)|>|x|$
\rightarrow (2) its output is pseudo-random, ie.
its outed is comp. indistinguishable fan uniformly random strings of the same length.

Pseudo-random generator

A function $\quad G:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$
is a pseudo-random generator if

G can be computed in p.p.t.
$|G(x)|>\ell(|x|)$ for some $\quad \ell(y)>y$
$\left\{x \leftarrow U_{n}: G(x)\right\}_{n \in \mathbb{N}}$ is pseudo-random

How can we build pseudo-random generators?

discrete logarith problem
Incredibly hard!

$$
\begin{aligned}
& Y=12345 \\
& (7, p, Y) \rightarrow x \\
& \text { such that } 7 \bmod p=\underline{Y}
\end{aligned}
$$

World record in discrete logarithms in GF(p)

232 digits ${ }^{(768 \text { bit) })}$

$6600 y$ rs of CPU time
Intel Xeon E5-2660 at 2.2 GHz

$$
2016
$$

One-way function. (one-tway permutation)

We have a one-way function

Blum-Micali Pseudo-random generator
$\operatorname{PRG}(\mathrm{s}):$ parameters: $g, p) \longrightarrow n-b i t$ modulus.
(1) compute $y=g^{s} \bmod p$.
\downarrow compute
stringy
(2) Output the string $y \|\left(s \frac{? n}{\frac{p}{2}}\right)^{3}$ whether $\{0,1\}$ (length net) $T \mathrm{P} / 2$

Blum-Micali Pseudo-random generator

 PRG(s):
2. Output all of the red bits and the first bit of s.

Blum-Micali Pseudo-random generator

$$
\begin{aligned}
& f_{g, p}(x)=g^{x} \bmod p \\
& b(x)= \begin{cases}1 & x<(p-1) / 2 \\
0 & \text { o.w. }\end{cases} \\
& G(s)=b\left(g^{s} \bmod p\right) \mid b\left(g^{g^{s}} \bmod p\right) \cdots \\
& \rightarrow \text { hard-core predicate. }
\end{aligned}
$$

Why is this secure?
$B C_{\text {Em-Micall they show in a matheteratical }}$ proof that "predicting any bit of the PRG outgo given only the prefix is as hard as solving the discrete log problem!!"

Why is this secure?

In this particular case, Blum-Micali *prove* that predicting the "next bit" of the output of this PRG is as hard as solving the hard problem from before: The discrete logarithm problem

But this PRG only expands 1 bit!

Let $G(s):\{0,1\}^{n} \rightarrow\{0,1\}^{n+1}$ be a prg.

Output $\quad b_{1} b_{2} \ldots b_{\ell(n)}$

Let $G(s):\{0,1\}^{n} \rightarrow\{0,1\}^{n+1}$ be a prog.
$X_{0} \leftarrow s$
$X_{i} \mid b_{i} \leftarrow G\left(X_{i-1}\right)$
Output $\quad b_{1} b_{2} \ldots b_{\ell(n)}$

Let $G(s):\{0,1\}^{n} \rightarrow\{0,1\}^{n+1}$ be a prg.
$X_{0} \leftarrow s$
$X_{i} \mid b_{i} \leftarrow G\left(X_{i-1}\right)$
Output $\quad b_{1} b_{2} \ldots b_{\ell(n)}$

Let $G(s):\{0,1\}^{n} \rightarrow\{0,1\}^{n+1}$ be a prg.
$X_{0} \leftarrow s$
$X_{i} \mid b_{i} \leftarrow G\left(X_{i-1}\right)$
Output $b_{1} b_{2} \ldots b_{\ell(n)}$

Example
Lets use $\mathrm{g}=5$ and $\mathrm{p}=167$.
These values are too small to be secure, but illustrate the scheme.
Pick the seed: $5=11$ BMgenerctor (11):
(1) $g^{\prime \prime} \bmod 167=5^{\prime \prime} \bmod 167=164$

$$
11=\frac{167}{2} \cdot Y_{e s} \longrightarrow
$$

(2)

$$
\begin{array}{r}
g^{164}=5^{164} \operatorname{mal} 167=147 \\
164<\frac{167}{2}=N_{0}
\end{array}
$$

(3) $5^{147} \bmod 167=51$

$$
\begin{equation*}
147<\frac{167}{2}=N_{0} \tag{0}
\end{equation*}
$$

\qquad
(4) $5^{51} \mathrm{~mol} 167 .=161$
$51<169 / 2=$

Original goal

"for any pair of messages m_{1}, m_{2}, Boe cannot tell whether $c=E n c_{k}\left(m_{i}\right)$."

咅private key encryption

Gen	Enc 3 algorithms	
2 sets		

Gen (key generation)

$$
k \leftarrow \operatorname{Gen}\left(1^{n}\right) \text { s.t. } k \in \mathcal{K}
$$

Enc (encryption)

$$
c \leftarrow \operatorname{Enc}_{k}(m) \text { for } k \in \mathcal{K}, m \in \mathcal{M}
$$

Dec (decryption)

- $\quad \forall m \in \mathcal{M}, k \in \mathcal{K}$
$\operatorname{Pr}\left[\operatorname{Dec}_{k}\left(\operatorname{Enc}_{k}(m)\right)=m\right]=1$

perfect secrecy

$$
(\text { Gen, Enc, Dec, } \mathcal{M}, \mathcal{K})
$$

is said to be perfectly secret if

$$
\forall m_{1}, m_{2} \in \mathcal{M} \text { s.t. }\left|m_{1}\right|=\left|m_{2}\right|, \forall c
$$

$$
\operatorname{Pr}\left[k \leftarrow \operatorname{Gen}: \operatorname{Enc}_{k}\left(m_{1}\right)=c\right]
$$

$$
\operatorname{Pr}\left[k \leftarrow \operatorname{Gen}: \operatorname{Enc}_{k}\left(m_{2}\right)=c\right]
$$

perfect secrecy

(Gen, Enc, Dec, \mathcal{M}, \mathcal{K})
is said to be perfectly secret if

$$
\forall m_{1}, m_{2} \in \mathcal{M} \text { s.t. }\left|m_{1}\right|=\left|m_{2}\right|, \forall c
$$

perfect secrecy

(Gen, Enc, Dec, \mathcal{M}, \mathcal{K})
is said to be perfectly secret if
$\forall m_{1}, m_{2} \in \mathcal{M}$ s.t. $\left|m_{1}\right|=\left|m_{2}\right|, \forall c$

$$
\left\{k \leftarrow \operatorname{Gen}\left(1^{n}\right): \operatorname{Enc}_{k}\left(m_{1}\right)\right\}
$$

$$
\overline{=}
$$

$$
\left\{k \leftarrow \operatorname{Gen}\left(1^{n}\right): \operatorname{Enc}_{k}\left(m_{2}\right)\right\}
$$

secure encryption

(For one message)
Def:

computational secrecy

(Gen, Enc, Dec, \mathcal{M}, \mathcal{K})
is said to be computationally secure if
$\forall m_{1}, m_{2} \in \mathcal{M}$ s.t. $\left|m_{1}\right|=\left|m_{2}\right|, \forall c$
$\left\{k \leftarrow \operatorname{Gen}\left(1^{n}\right): E n c_{k}\left(m_{1}\right)\right\}$
\approx computationally indistinsuishate
$\underbrace{\left\{k \leftarrow \operatorname{Gen}\left(1^{n}\right)\right.}: E \underline{E n c_{k}\left(m_{2}\right)}\}$

An encryption scheme

An encryption scheme

$\operatorname{Gen}\left(1^{\text {n }}\right) \quad k \leftarrow U_{n / 2} \quad$ (key generation)

$\operatorname{Enc}_{\mathrm{k}}(\mathrm{m})$	$r \leftarrow G(k) \quad\|r\|=n$	(encryption)
$\operatorname{Dec}_{\mathrm{k}}(\mathrm{c})$	output $m \oplus r$	(decryption)

What are the pros/cons of this scheme?

+ (1) shot key may can be very long.
- (2) one modular exponentiation per bit of msg
-(3) traded perfect security for
compotation security
cybusecurityi Evaluate the take offs

