
2550 Intro to
cybersecurity

abhi shelat

L8: Crypto: PKC

 Basic
Number
theory

a mod p
17 mod 11

135433238 mod 11

6 It 1 13543323g

toIs
Fy
343
are

Basic number theory
2.5. BASIC COMPUTATIONAL NUMBER THEORY 29

Modular Arithmetic

We state the following basic facts about modular arithmetic:

Claim 28.1. For n > 0 and a, b ⌅ Z,

1. (a mod n) + (b mod n) = (a + b) mod n

2. (a mod n)(b mod n) mod n = ab mod n

Euclid’s algorithm

Euclid’s algorithm appears in text around 300B.C.; it is therefore well-studied.
Given two numbers a and b such that a ⇥ b, Euclid’s algorithm computes the
greatest common divisor of a and b, denoted gcd(a, b). It is not at all obvious
how this value can be efficiently computed, without say, the factorization of
both numbers. Euclid’s insight was to notice that any divisor of a and b will
also be a divisor of b and a � b. The latter is both easy to compute and a
smaller problem than the original one. The algorithm has since been updated
to use a mod b in place of a � b to improve efficiency. An elegant version
of the algorithm which we present here also computes values x, y such that
ax + by = gcd(a, b).

Algorithm 1: ExtendedEuclid(a, b)
Input: (a, b) s.t a > b ⇥ 0
Output: (x, y) s.t. ax + by = gcd(a, b)
if a mod b = 0 then1

Return (0, 1)2

else3

(x, y) ⇤ ExtendedEuclid (b, a mod b)4

Return (y, x� y(⇧a/b⌃))5

Note: by polynomial time we always mean polynomial in the size of the
input, that is poly(log a + log b)

Proof. On input a > b ⇥ 0, we aim to prove that Algorithm 1 returns (x, y)
such that ax + by = gcd(a, b) = d via induction. First, let us argue that the
procedure terminates in polynomial time. The original analysis by Lamé is
slightly better; for us the following suffices since each recursive call involves
only a constant number of divisions and subtraction operations.

Modular arithmetic

To

Modular Exponentiation
519 mod 31

10011

3

I Iy Is
In

5 t 516 52 5 E 25 5T

g
102919

mod 167 t

Modular Exponentiation

2.5. BASIC COMPUTATIONAL NUMBER THEORY 31

Thus, we can write
bx + (a mod b)y = d

and by adding 0 to the right, and regrouping, we get

d = bx� b(⌅a/b⇧)y + (a mod b)y + b(⌅a/b⇧)y
= b(x� (⌅a/b⇧)y) + ay

which shows that the return value (y, x� (⌅a/b⇧)y) is correct.

The assumption that the inputs are such that a > b is without loss of gen-
erality since otherwise the first recursive call swaps the order of the inputs.

Exponentiation modulo n

Given a, x, n, we now demonstrate how to efficiently compute ax mod n. Re-
call that by efficient, we require the computation to take polynomial time in
the size of the representation of a, x, n. Since inputs are given in binary nota-
tion, this requires our procedure to run in time poly(log(a), log(x), log(n)).

The key idea is to rewrite x in binary as x = 2�x�+2��1x��1+· · ·+2x1+x0

where xi ⇤ {0, 1} so that

ax mod n = a2�x�+2��1x��1+···+21x1+x0 mod n

We show this can be further simplified as

ax mod n =
��

i=0

xia
2i

mod n

Algorithm 2: ModularExponentiation(a, x, n)
Input: a, x ⇤ [1, n]
r ⇥ 11

while x > 0 do2

if x is odd then3

r ⇥ r · a mod n4

x ⇥ ⌅x/2⇧5

a ⇥ a2 mod n6

Return r7

Modular Exponentiation

2.5. BASIC COMPUTATIONAL NUMBER THEORY 31

Thus, we can write
bx + (a mod b)y = d

and by adding 0 to the right, and regrouping, we get

d = bx� b(⌅a/b⇧)y + (a mod b)y + b(⌅a/b⇧)y
= b(x� (⌅a/b⇧)y) + ay

which shows that the return value (y, x� (⌅a/b⇧)y) is correct.

The assumption that the inputs are such that a > b is without loss of gen-
erality since otherwise the first recursive call swaps the order of the inputs.

Exponentiation modulo n

Given a, x, n, we now demonstrate how to efficiently compute ax mod n. Re-
call that by efficient, we require the computation to take polynomial time in
the size of the representation of a, x, n. Since inputs are given in binary nota-
tion, this requires our procedure to run in time poly(log(a), log(x), log(n)).

The key idea is to rewrite x in binary as x = 2�x�+2��1x��1+· · ·+2x1+x0

where xi ⇤ {0, 1} so that

ax mod n = a2�x�+2��1x��1+···+21x1+x0 mod n

We show this can be further simplified as

ax mod n =
��

i=0

xia
2i

mod n

Algorithm 2: ModularExponentiation(a, x, n)
Input: a, x ⇤ [1, n]
r ⇥ 11

while x > 0 do2

if x is odd then3

r ⇥ r · a mod n4

x ⇥ ⌅x/2⇧5

a ⇥ a2 mod n6

Return r7

2.5. BASIC COMPUTATIONAL NUMBER THEORY 31

Thus, we can write
bx + (a mod b)y = d

and by adding 0 to the right, and regrouping, we get

d = bx� b(⌅a/b⇧)y + (a mod b)y + b(⌅a/b⇧)y
= b(x� (⌅a/b⇧)y) + ay

which shows that the return value (y, x� (⌅a/b⇧)y) is correct.

The assumption that the inputs are such that a > b is without loss of gen-
erality since otherwise the first recursive call swaps the order of the inputs.

Exponentiation modulo n

Given a, x, n, we now demonstrate how to efficiently compute ax mod n. Re-
call that by efficient, we require the computation to take polynomial time in
the size of the representation of a, x, n. Since inputs are given in binary nota-
tion, this requires our procedure to run in time poly(log(a), log(x), log(n)).

The key idea is to rewrite x in binary as x = 2�x�+2��1x��1+· · ·+2x1+x0

where xi ⇤ {0, 1} so that

ax mod n = a2�x�+2��1x��1+···+21x1+x0 mod n

We show this can be further simplified as

ax mod n =
��

i=0

xia
2i

mod n

Algorithm 2: ModularExponentiation(a, x, n)
Input: a, x ⇤ [1, n]
r ⇥ 11

while x > 0 do2

if x is odd then3

r ⇥ r · a mod n4

x ⇥ ⌅x/2⇧5

a ⇥ a2 mod n6

Return r7

Greatest Common Divisor
GCD(A,B) = GCD()

EUCLID

B A mob B

Greatest Common Divisor
GCD(6809,1639) GCD 1639,6809 11639

253

GCD 253 1639 mod 253
T

GCD 121 253in
Il

GCDC 11 121 mod 11

given (a,b), finds (x,y) s.t.
ax + by = gcd(a,b)

2.5. BASIC COMPUTATIONAL NUMBER THEORY 29

Modular Arithmetic

We state the following basic facts about modular arithmetic:

Claim 28.1. For n > 0 and a, b ⌅ Z,

1. (a mod n) + (b mod n) = (a + b) mod n

2. (a mod n)(b mod n) mod n = ab mod n

Euclid’s algorithm

Euclid’s algorithm appears in text around 300B.C.; it is therefore well-studied.
Given two numbers a and b such that a ⇥ b, Euclid’s algorithm computes the
greatest common divisor of a and b, denoted gcd(a, b). It is not at all obvious
how this value can be efficiently computed, without say, the factorization of
both numbers. Euclid’s insight was to notice that any divisor of a and b will
also be a divisor of b and a � b. The latter is both easy to compute and a
smaller problem than the original one. The algorithm has since been updated
to use a mod b in place of a � b to improve efficiency. An elegant version
of the algorithm which we present here also computes values x, y such that
ax + by = gcd(a, b).

Algorithm 1: ExtendedEuclid(a, b)
Input: (a, b) s.t a > b ⇥ 0
Output: (x, y) s.t. ax + by = gcd(a, b)
if a mod b = 0 then1

Return (0, 1)2

else3

(x, y) ⇤ ExtendedEuclid (b, a mod b)4

Return (y, x� y(⇧a/b⌃))5

Note: by polynomial time we always mean polynomial in the size of the
input, that is poly(log a + log b)

Proof. On input a > b ⇥ 0, we aim to prove that Algorithm 1 returns (x, y)
such that ax + by = gcd(a, b) = d via induction. First, let us argue that the
procedure terminates in polynomial time. The original analysis by Lamé is
slightly better; for us the following suffices since each recursive call involves
only a constant number of divisions and subtraction operations.

u w

groups

closure

identity

inverse

associativity

set of numbersor other O l Z G
elements

operation between 2 elements

if a b E G then a b E G
Catob c a 0 b c

F i GG s t Fa EG a i a

Ha CG F a cG sit a a so

example of groups

Example of groups
multiplicative group, mod n

all integers that are
relativelyprimeto n

77

2 1,2 3,41516 closure

f i multiplication mod n associativity

identity
inverses3 5 15 mrd 7 I
ExtendedEuclid

gcdca.nl I
Fx y a x t y n I

a x modn I

Euler totient 4 n of positive integers up to n
that are relativelyprime to n

12 1 142.345631 6
Ypf

a prime

p 1

CHI 1,2 4 7,8 11 13,143

15 3,5
41151 11 2 9 8131536912 5

Euler theorem yea y
totientfunction

4 Zit 48 1 mod 15

I 2
Y 78 1 mat it

7 4 I 1

Euler theorem

1
2

3

4
5

6

..

x 1
2

3

4
5

6

..

x

0101

how many
in

µ
thiscircle

i Sam set a this circle
of a a

hasthenumbers
46 a a sane set

ofnumbersa a
a as He

why Suppose 2 are the sane say left
these 2 Za Ga molt by a one

Za a e Ga a 2 6
contradiooth

Euler theorem

1
2

3

4
5

6

..

x 1
2

3

4
5

6

..

x

argue: all are distinct
spse two are equal.
multiply by

this implies 2=6!

Euler theorem

1
2

3

4
5

6

..

x 1
2

3

4
5

6

..

x

product

y
Tx tax2

aeons tI I E a modN

Euler theorem

1
2

3

4
5

6

..

x 1
2

3

4
5

6

..

x

Euler theorem

1
2

3

4
5

6

..

x 1
2

3

4
5

6

..

x

=

Euler theorem

1
2

3

4
5

6

..

x 1
2

3

4
5

6

..

x

=

Euler theorem

1
2

3

4
5

6

..

x 1
2

3

4
5

6

..

x

=

compute

(show your work)
11312020 mod 23

i

modeaui

f 23 22 f
1131 mod 23 1 4

0mod
mod 23 LIKE I

3120 mod 22 31 mod22 131 2mn22 FT
1122 1mod

fc2DE 2 1 11 1 10 7 31 Imod22 23
2020mod 10 I

71

m.at K
modzg

113 mod 23 I l mol 23

El-Gamal encryption
gen(1n)

encpk(m)

decsk(c)

D
CY PU pprine

of size n bits

e
s ke El pBez't pk gskmod p

r Z
Co gr modp c PK

r
m modp

G cos und p

El-Gamal encryption
gen(1n)

encpk(m)

decsk(c)

Example ElGamal encpk(m)

decsk(c)msg=“ “
c ← gr, pkr ⋅ mSI

Grafe
whgct worhsipkgskcipkn.m.gs mg gr

S4
msg

ysK.msg

Why is ElGamal secure?

decisional Di!e-Hellman assumption (DDH)

(work in a prime order group)

gskgr gm.gr go

“Textbook” RSA (insecure)
Pick N = p*q where p,q are primes.
Pick e,d such that e ⋅ d = 1 mod ϕ(N)

(me)d mod N =

EncN,e(m) = me mod N
DecN,d(c) = cd mod N

a 0 we

O
Coler's theorem

saw
Medmod N m mod N my

Pee

“Textbook” RSA (insecure) Example
Pick N = p*q where p,q are primes.
Pick e,d such that e ⋅ d = 1 mod ϕ(N)
EncN,e(m) = me mod N
DecN,d(c) = cd mod N

N=11*13 = 143p e

RCN 11 1 131 120

e 7 D 103

m 5
era 51 57mod 143

47
Dec 47 mod143 5 mad 193

“Textbook” RSA (insecure)
Pick N = p*q where p,q are primes.
Pick e,d such that e ⋅ d = 1 mod ϕ(N)
EncN,e(m) = me mod N
DecN,d(c) = cd mod N

Why is it insecure
against IND-CPA attack?

pkcs1.5

pick r as a random string with no 0s
encpk(m)

(typically 8 bytes)

“padding oracle” attack against this scheme

Public key digital signature

Alice Bob

Eve

Gensk vk

Public key digital signature

Alice Bob

Eve

s=Signsk(m)

Gensk vk

Public key digital signature

Alice Bob

Eve

m,s

s=Signsk(m)

Gensk vk

Public key digital signature

Alice Bob

Eve

m,s

s=Signsk(m)

Alice really
did send it.

Vervk(m,s)
Gensk vk

Public key digital signature

Gen(1n)

Signsk(m)

Vervk(m,s)

message space

Public key digital signature

Gen(1n)

Signsk(m)

Vervk(m,s)

generates a key pair sk,vk

message space

Public key digital signature

Gen(1n)

Signsk(m)

Vervk(m,s)

generates a key pair sk,vk

message space

generates a signature s for

Public key digital signature

Gen(1n)

Signsk(m)

Vervk(m,s)

generates a key pair sk,vk

accepts or rejects a msg,sig pair

message space

generates a signature s for

existential unforgability
“even when given a signing oracle,
an adversary cannot forge a signature for
any message of its choosing ”

Alice

Eve

existential unforgability
“even when given a signing oracle,
an adversary cannot forge a signature for
any message of its choosing ”

Alice

Eve

m

for all non-uniform ppt A

and A didn’t query m

for all non-uniform ppt A

Textbook RSA Signatures (insecure)

Sign((sk=d, N) m):

Compute the signature: σ ← md mod N

Pick N = p*q where p,q are primes.
Pick e,d such that e ⋅ d = 1 mod ϕ(N)

Verify((pk=e, N), , m):σ
m = σe mod N?

RSA Signatures in GPG
Sign((sk, N) m):

Compute the padding: z ← 00 ⋅ 01 ⋅ FF⋯FF ⋅ 00 ⋅ IDH ⋅ H(m)

Compute the signature: σ ← zsk mod N

What is this H() function?

goal of a hash function
many bits

hash function h

fewer bits

a hash function is a function

such that h is easy to evaluate
and r < d

useful in data structures
public class test
{
 public static void main(String[] args)
 {
 System.out.println(args[0].hashCode());
 }
}

abhi$ java test HHHHHHHHHHHHHHHHHHHHGGGDD
-1644493785

collisions should be rare
public class test
{
 public static void main(String[] args)
 {
 System.out.println(args[0].hashCode());
 }
}

abhi$ java test “hello world”
1794106052

abhi$ java test HHHHHHHHHHHHHHHHHHHHGGGDD
-1644493785

java hash function

java hash function

it is thus easy to find a pair s1,s2

such that h(s1)= h(s2)

public class test
{
 public static void main(String[] args)
 {
 System.out.println(args[0].hashCode());
 }
}

abhi$ java test HHHHHHHHHHHHHHHHHHHHGGGDD
-1644493785

public class test
{
 public static void main(String[] args)
 {
 System.out.println(args[0].hashCode());
 }
}

abhi$ java test HHHHHHHHHHHHHHHHHHHHGGGDD
-1644493785

abhi$ java test HHHHHHHHHHHHHHHHHHHHGGGCc
-1644493785

public class test
{
 public static void main(String[] args)
 {
 System.out.println(args[0].hashCode());
 }
}

abhi$ java test HHHHHHHHHHHHHHHHHHHHGGGDD
-1644493785

abhi$ java test HHHHHHHHHHHHHHHHHHHHGGGCc
-1644493785

‘D’ - ‘c’ + 31(‘D’-‘C’) = 0

Collision resistant hash function

in addition to being easy to compute,
it should be “hard” for a p.p.t. adversary
to find a hash collision.

md4
md5

sha1

sha256

1990
1992

1994

2005

Sha3 2015

md4
md5

sha1

sha256

1990
1992

1994

2005

128 bit
128 bit

160 bit

256 bit

Sha3 2015

md4
md5

sha1

sha256

1990
1992

1994

2005

128 bit
128 bit

160 bit

256 bit

1995
1998

2005*

Sha3 2015

abhi18:neu abhi$ shasum -a 256
Noble patricians, patrons of my right,
Defend the justice of my cause with arms.
0c3c007b97cf8b75cfbd717804414a6a79b2defb4400eca9ea764a531a9ff193 -

Sha256
Pre-process the input
Break input into chunks

For each “chunk”, repeat this 64 times:

Most cryptographers consider SHA256
to be indistinguishable from a
“Random oracle”, i.e., a random
function on arbitrary length messages.

Recap:

Passwords
Main problem:

Alice Bob

Passwords
Main problem:

Alice Bob

Genpw pw

Natural authenticators

