2550 Intro to
 cybersecurity L8: Crypto: PKC

abhi shelat

Basic

Number
theory

$a \bmod p$

Basic number theory

Modular arithmetic
Claim 28.1. For $n>0$ and $a, b \in \mathbb{Z}$,

1. $(\underline{a \bmod } n)+(\underline{b \bmod n})=(a+b) \bmod n$
2. $(a \bmod n)(b \bmod n) \bmod n=a b \bmod n$

Modular Exponentiation

$$
(a, x, n) \rightarrow a^{x} \bmod n
$$

```
Algorithm 2: ModularExponentiation( \(a, x, n\) )
    Input: \(a, x \in[1, n]\)
    \(1 r \leftarrow 1\)
    2 while \(x>0\) do
    3 if \(x\) is odd then
            \(\lfloor r \leftarrow r \cdot a \bmod n\)
            \(x \leftarrow\lfloor x / 2\rfloor\)
            \(a \leftarrow a^{2} \bmod n\)
    7 Return \(r\)
```


Modular Exponentiation

$$
\begin{aligned}
(a, x, n) \rightarrow & a^{x} \bmod n \\
& a^{x} \bmod n=\prod_{i=0}^{\ell} x_{i} a^{2^{i}} \bmod n
\end{aligned}
$$

Algorithm 2: ModularExponentiation (a, x, n)
Input: $a, x \in[1, n]$
$\mathbf{1} r \leftarrow 1$
$\mathbf{2}$ while $x>0$ do
$\mathbf{3} \mid \quad$ if x is odd then
$\mathbf{4}$
$\mathbf{5} \quad x \leftarrow r \cdot a \bmod n$
$\mathbf{6}$
$\mathbf{7}$ Return r

Greatest Common Divisor

$\operatorname{GCD}(\underline{A}, \underline{B})=\operatorname{GCD}(B, A \bmod B)$

Greatest Common Divisor

$$
\begin{aligned}
\operatorname{GCD}(6809,1639) & =\operatorname{GCD}\left(1639, \frac{6809 \operatorname{mol} 1639}{253}\right) \\
& =\operatorname{GCD}\left(253, \frac{1639 \bmod 253}{121}\right) \\
& =\operatorname{GCD}\left(121, \frac{253 \bmod 121}{11}\right) \\
& =\operatorname{GCD}(11,121 \bmod 11)=11,0
\end{aligned}
$$

given (a, b), finds (x, y) s.t. $a x+b y=\operatorname{gcd}(a, b)$

```
Algorithm 1: ExtendedEuclid \((a, b)\)
    Input: \((a, b)\) s.t \(a>b \geq 0\)
    Output: \((x, y)\) s.t. \(a x+b y=\operatorname{gcd}(a, b)\)
    1 if \(a \bmod b=0\) then
    2 | Return \((0,1)\)
    3 else
    \(4 \quad(x, y) \leftarrow\) ExtendedEuclid \((b, a \bmod b)\)
    \(5 \quad \operatorname{Return}(y, x-y(\lfloor a / b\rfloor))\)
```

groups
 closure - if $a, b \in G$, then $a \oplus b \in G$.

$$
\begin{aligned}
\text { associativity } & \rightarrow(a \oplus b) \oplus c=a \oplus(b \oplus c) \\
\text { identity } & -\exists i G G \quad \text { s.t. } \forall a \in G \quad a \Theta i=a \\
\text { inverse } & \rightarrow \forall G G, \exists a^{-1} G \text { sit } a^{-1} \Theta a=
\end{aligned}
$$

example of groups

$\left(\mathbb{Z}_{n},+\right)$

Example of groups we prase the tee relatively prime to n. $\{a \mid \operatorname{gcd}(a, \underline{n})=1\}$ multiplicative group, $\bmod \mathrm{n}$

$$
z_{7}^{*}=\underbrace{\{1,2,3,4,5,6\}}_{\text {multiplication mod }} \text {. }
$$

closure, associativity identity.

$$
3 \cdot 5=15 \mathrm{mod} 7=1
$$

$$
\Rightarrow \begin{aligned}
& \operatorname{gcd}(a, n)
\end{aligned}=1 .
$$

Euler totient $\varphi(n)=$ \#of pisitime integs op to n

$$
\begin{aligned}
& \underline{\varphi(7)}=\left|\mathbb{Z}_{7}^{\neq}\right|=|\{1,2,3,4,5.6\}|=6 \\
& \varphi\left(\begin{array}{l}
\text { P p is a prime } \\
\rho)
\end{array}=p-1\right. \\
& \varphi(15)=|\{1,2,4,, 7,8,11,13,14\}| \\
& =15=3.5 \\
& \varphi(15)=(3-1)(5-1)=2.4=8
\end{aligned}
$$

Euler theorem

$$
\varphi_{t}(\underline{y}) \text { ! total function }
$$

$\forall \underline{a} \in \mathbb{Z}_{n}^{\star}, a \underline{\Phi(n)}=1 \underline{\bmod n}$

$$
4 \in \mathbb{Z}_{15}^{7} \quad 4^{8} \equiv 1 \bmod 15
$$

Euler theorem $\phi(\mu)$

Euler theorem

$\forall a \in \mathbb{Z}_{N}^{\star}, a^{\Phi(N)}=1 \bmod N$

argue: all are distinct spse two are equal. multiply by $\quad a^{-1}$ this implies $2=6$!

Euler theorem

$\forall a \in \mathbb{Z}_{N}^{\star}, a^{\Phi(N)}=1 \bmod N$

Euler theorem
$\forall a \in \mathbb{Z}_{N}^{\star}, a^{\Phi(N)}=1 \bmod N$

Euler theorem
$\forall a \in \mathbb{Z}_{N}^{\star}, a^{\Phi(N)}=1 \bmod N$

Euler theorem
$\forall a \in \mathbb{Z}_{N}^{\star}, a^{\Phi(N)}=1 \bmod N$

Euler theorem
$\forall a \in \mathbb{Z}_{N}^{\star}, a^{\Phi(N)}=1 \bmod N$

El-Gamal encryption
(sk, pk)

$$
\begin{aligned}
& \operatorname{gen}\left(1^{n}\right) \text { prime of size } n \text { bits. } \\
& p \leftarrow \Pi_{n}, \underline{g} \leftarrow \text { Generators }_{p} \\
& s k \in\{1 \ldots p-1\} \in \mathbb{Z}_{p}^{*} \quad p k=g^{s K} \bmod p . \\
& \left.\mathrm{encpk}_{\text {(}} \text { (}\right) \\
& r \leftarrow \mathbb{Z}_{p}^{*} \\
& c_{0}=g^{r} \bmod \rho \quad c_{1}=(p k)^{r} \cdot m \bmod \rho . \\
& \operatorname{dec}_{s k}(\mathrm{C}) \\
& C_{1} \cdot \underbrace{\left(C_{0}^{\delta k}\right)^{-1}} m \cdot d \text {. }
\end{aligned}
$$

El-Gamal encryption

$\operatorname{gen}(1 n)$

$$
\begin{aligned}
& \quad p \leftarrow \Pi_{n} \quad g \leftarrow \text { Generators }_{p} \\
& a \leftarrow \mathbb{Z}_{p} \\
& p k \leftarrow\left(g, g^{a}\right) \quad s k \leftarrow(g, a) \\
& \text { encpk }^{(\mathrm{m})}
\end{aligned}
$$

$$
\begin{aligned}
& r \leftarrow \mathbb{Z}_{p} \\
& \left(g^{r},\left(g^{a}\right)^{r} \cdot m\right)
\end{aligned}
$$

$\operatorname{dec}_{\text {sk }}(\mathrm{c})$

$$
\begin{aligned}
& \left(c_{1}, c_{2}\right) \leftarrow c \\
& m \leftarrow c_{2} /\left(c_{1}\right)^{a}
\end{aligned}
$$

Example ElGamal

$$
\begin{aligned}
& \begin{array}{c}
p k \leftarrow\left(g, g^{a}\right) s k \leftarrow(g, a) \\
\mathrm{enc}_{\mathrm{pk}}(\mathrm{~m}) \\
\vec{r} \mathbb{Z}_{p} \\
\bar{c}\left(g^{r}, p k^{r} \cdot m\right. \\
\operatorname{decsk} \cdot \mathrm{c}) \\
\left(c_{1}, c_{2}\right) \leftarrow c \\
m \leftarrow c_{2} /\left(c_{1}\right)^{a}
\end{array} \\
& m \leftarrow c_{2} /\left(c_{1}\right)^{a}
\end{aligned}
$$

msg="
ExAMPLE
Why it works: $p k=g^{s k .}$

$$
\begin{aligned}
c_{1}=p k^{n} \cdot m=\left(g \frac{s k}{}\right)^{r} \cdot m s y & =\left(g^{r}\right)^{s k} \cdot m s g \\
& =\left(c_{0}\right)^{s k} \cdot m s g
\end{aligned}
$$

Why is ElGamal secure?

decisional Diffie-Hellman assumption (DDH)

$$
\begin{gathered}
p \leftarrow \Pi_{n} g \leftarrow \text { Generators }_{p} \\
a, b, c \leftarrow \mathbb{Z}_{p} \quad \text { (work in a prime order group) } \\
\{p, g, \underbrace{g^{s}}_{g^{s k}, g^{r}, g^{r}}\}_{n} \approx\left\{p, g, g^{\text {sk.r }}, g^{b}, g^{c}\right\}_{n} \\
g^{\delta k}, g^{r}, g^{c}
\end{gathered}
$$

"Textbook" RSA (insecure)
$-\operatorname{Pick} \mathbb{N}=p^{*} q$ where p, q are primes.
\rightarrow Pick e,d such that $e \cdot d=1 \bmod \phi(N)$
$\rightarrow \operatorname{Enc}_{N, e}(m)=m^{e} \bmod N$
$\operatorname{Dec}_{N, d}(c)=c^{d} \bmod N$
Euler's theorem
$\left(\underline{m}^{e}\right)^{d} \bmod N=m^{e d} \bmod N=m^{\prime} \mid \bmod N=m$
"Textbook" RSA (insecure) Example
Pick $N=p^{*} q$ where p, q are primes.
Pick ed such that $e \cdot d=1 \bmod \phi(N)$
$\varphi(N)=(11-1)(13-1)=120$.

$$
\begin{array}{ll}
\operatorname{Enc}_{N, e}(m)=m^{e} \bmod N & e=7 \quad d=103 \\
\operatorname{Dec}_{N, d}(c)=c^{d} \bmod N &
\end{array}
$$

$$
\begin{aligned}
m=5_{\text {enc }}(5) & =5^{7} \bmod 143 . \\
& =47 .
\end{aligned}
$$

$\operatorname{Dec}\left(47^{103} \bmod 143\right)=5 \cdot \operatorname{mad} 143$

"Textbook" RSA (insecure)

Pick $N=p^{*} q$ where p, q are primes.
Why is it insecure against IND-CPA attack?
Pick e,d such that $e \cdot d=1 \bmod \phi(N)$

$$
\begin{aligned}
& \operatorname{Enc}_{N, e}(m)=m^{e} \quad \bmod N \\
& \operatorname{Dec}_{N, d}(c)=c^{d} \quad \bmod N
\end{aligned}
$$

encpk $_{\text {p }}(\mathrm{m})$

pick r as a random string with no $0 s$

(typically 8 bytes)
$c \leftarrow(0\|2\| r\|0\| m)^{e} \bmod N$
"padding oracle" attack against this scheme

Public key digital signature

Public key digital signature message space $\{\mathcal{M}\}_{n}$

Gen(1n)

Signsk(m)
$\operatorname{Ver}_{\text {vk }}(\mathrm{m}, \mathrm{s})$

Public key digital signature

 message space $\{\mathcal{M}\}_{n}$Gen(1n) generates a key pair sk,vk

Signsk(m)
$\operatorname{Ver}_{\text {vk }}(\mathrm{m}, \mathrm{s})$

Public key digital signature

 message space $\{\mathcal{M}\}_{n}$Gen(1n) generates a key pair sk,vk
$\operatorname{Sign}_{\text {sk }}(\mathrm{m})$ generates a signature s for $m \in \mathcal{M}_{n}$
$\operatorname{Ver}_{\text {vk }}(\mathrm{m}, \mathrm{s})$

Public key digital signature

 message space $\{\mathcal{M}\}_{n}$
Gen(1n) generates a key pair sk,vk

$\operatorname{Sign}_{\text {sk }}(\mathrm{m})$ generates a signature s for

$$
m \in \mathcal{M}_{n}
$$

$\operatorname{Ver}_{\mathrm{vk}}(\mathrm{m}, \mathrm{s})$ accepts or rejects a msg,sig pair

$$
\operatorname{Pr}\left[k \leftarrow \operatorname{Gen}\left(1^{n}\right): \operatorname{Ver}_{v k}\left(m, \operatorname{Sign}_{s k}(m)\right)=1\right]=1
$$

existential unforgability

"even when given a signing oracle, an adversary cannot forge a signature for any message of its choosing "

existential unforgability

"even when given a signing oracle, an adversary cannot forge a signature for any message of its choosing "

for all non-uniform ppt A

Pr

$$
]<\mu(n)
$$

for all non-uniform ppt A

卫ை $\left[\begin{array}{l}(v k, s k) \leftarrow \operatorname{Gen}\left(1^{n}\right) ;(m, s) \leftarrow A^{\text {Sign }_{s k}(\cdot)}: \\ V e r_{v k}(m, s)=1 \\ \text { and A didn't query } \mathrm{m}\end{array}\right]<\mu(n)$

Textbook RSA Signatures (insecure)

Pick $N=p^{*} q$ where p, q are primes.
Pick e,d such that $e \cdot d=1 \bmod \phi(N)$

Sign((sk=d, N) m):

$$
\text { Compute the signature: } \quad \sigma \leftarrow m^{d} \bmod N
$$

Verify ((pk=e, N), $\sigma, \mathrm{m})$:

$$
m \stackrel{?}{=} \sigma^{e} \bmod N
$$

RSA Signatures in GPG

Sign((sk, N) m):
Compute the padding:

$$
z \leftarrow 00 \cdot 01 \cdot F F \cdots F F \cdot 00 \cdot \mathrm{ID}_{H} \cdot H(m)
$$

Compute the signature:

$$
\sigma \leftarrow z^{s k} \bmod N
$$

What is this H() function?

goal of a hash function

many bits

hash function h
fewer bits
a hash function is a function

$$
h:\{0,1\}^{d} \rightarrow\{0,1\}^{r}
$$

such that h is easy to evaluate and $r<d$

useful in data structures

```
public class test
{
    public static void main(String[] args)
    {
        System.out.println(args[0].hashCode());
    }
}
```

abhi\$ java test HHHHHHHHHHHHHHHHHHHHGGGDD -1644493785

collisions should be rare

```
public class test
{
    public static void main(String[] args)
    {
        System.out.println(args[0].hashCode());
    }
}
abhi$ java test HHHHHHHHHHHHHHHHHHHHGGGDD
-1644493785
abhi$ java test "hello world"
1794106052
```


java hash function

$$
h(s)=\sum_{i=0}^{n} s[i] 31^{n-i}
$$

java hash function

$$
h(s)=\sum_{i=0}^{n} s[i] 31^{n-i}
$$

it is thus easy to find a pair $\mathrm{s}_{1}, \mathrm{~s}_{2}$
such that $h\left(\mathrm{~s}_{1}\right)=\mathrm{h}\left(\mathrm{s}_{2}\right)$

```
public class test
{
        public static void main(String[] args)
        {
            System.out.println(args[0].hashCode());
        }
}
abhi$ java test HHHHHHHHHHHHHHHHHHHHGGGDD
-1644493785
```

```
public class test
{
        public static void main(String[] args)
        {
            System.out.println(args[0].hashCode());
        }
}
abhi\$ java test HHHHHHHHHHHHHHHHHHHHGGGDD -1644493785
abhi\$ java test HHHHHHHHHHHHHHHHHHHHGGGCc -1644493785
```

```
public class test
{
        public static void main(String[] args)
        {
            System.out.println(args[0].hashCode());
        }
}
```

abhi\$ java test HHHHHHHHHHHHHHHHHHHHGGGDD -1644493785
abhi\$ java test HHHHHHHHHHHHHHHHHHHHGGGCc -1644493785

$$
' D '-{ }^{\prime} C '+31\left({ }^{\prime} D^{\prime}-{ }^{\prime} C '\right)=0
$$

Collision resistant hash function

in addition to being easy to compute, it should be "hard" for a p.p.t. adversary to find a hash collision.

md4 1990
 md5 1992
 sha1 1994

sha256 2005
Sha3 2015

md4 $1990 \quad 128$ bit
 md5 1992128 bit
 sha1 1994160 bit

sha256 2005256 bit
Sha3 2015

md4	1990	128 bit	1995
md5	1992	128 bit	1998
sha1	1994	160 bit	2005^{*}

sha256 2005256 bit
Sha3 2015
abhi18:neu abhi\$ shasum -a 256 Noble patricians, patrons of my right, Defend the justice of my cause with arms. 0c3c007b97cf8b75cfbd717804414a6a79b2defb4400eca9ea764a531a9ff193 -

Sha256

Pre-process the input
Break input into chunks
For each "chunk", repeat this 64 times:

A	B	C	D	E	F	G	H

Most cryptographers consider SHA256

 to be indistinguishable from a "Random oracle", i.e., a random function on arbitrary length messages.Recap:

Passwords

Main problem:

Passwords

Main problem:

Natural authenticators

