2550 Intro to cybersecurity L8: Crypto: PKC

 \mathcal{N}

Basic Number theory

$a \mod p$

17 + 135435238 =

Basic number theory

Modular arithmetic

Claim 28.1. For n > 0 and $a, b \in \mathbb{Z}$,

- 1. $(a \mod n) + (b \mod n) = (a+b) \mod n$
- 2. $(a \mod n)(\underline{b \mod n}) \mod n = a\underline{b \mod n}$

Modular Exponentiation

$$\frac{5}{5} = \frac{5}{5} = \frac{5}$$

$$5^{1/2} = 5^{1/2} - 5^{1$$

Modular Exponentiation

$$(a, x, n) \to a^x \bmod n$$

Algorithm 2: ModularExponentiation(a, x, n)Input: $a, x \in [1, n]$ 1 $r \leftarrow 1$ 2 while x > 0 do 3 | if x is odd then 4 | $x \leftarrow [x/2]$ 6 | $x \leftarrow [x/2]$ 6 | $x \leftarrow [x/2]$ 7 Return $x \leftarrow [x/2]$

Modular Exponentiation

$$(a, x, n) \to a^x \mod n$$

$$a^x \mod n = \prod_{i=0}^{\ell} x_i a^{2^i} \mod n$$

Algorithm 2: ModularExponentiation(a, x, n)

```
Input: a, x \in [1, n]
```

- $1 r \leftarrow 1$
- 2 while x > 0 do
- **if** x is odd **then**
- 4 | $r \leftarrow r \cdot a \mod n$
- $\begin{array}{c|c}
 5 & x \leftarrow \lfloor x/2 \rfloor \\
 6 & a \leftarrow a^2 \bmod n
 \end{array}$
- 7 Return r

Greatest Common Divisor

$$GCD(A,B) = GCD(B,Amos B)$$

Greatest Common Divisor

=
$$GCD(121, 121 \text{ mod } 11) = [11, 0]$$

given (a,b), finds (x,y) s.t. ax + by = gcd(a,b)

```
Algorithm 1: ExtendedEuclid(a, b)
  Input: (a, b) s.t a > b \ge 0
  Output: (x, y) s.t. ax + \underline{by} = \gcd(a, b)
1 if a \mod b = 0 then
     Return (0,1)
3 else
4 (x,y) \leftarrow \texttt{ExtendedEuclid}(b, a \bmod b)
5 Return (y, x - y(|a/b|))
```

groups set of numbers 20,1,2,-6 generation between 2 elements (G,\oplus) soperation between 2 elements

closure - if $\alpha, b \in G$, then $\alpha \oplus b \in G$.

associativity - $(\alpha \oplus b) \oplus C = \alpha \oplus (b \oplus C)$ identity - $\exists i \in G$ s.+ $\forall a \in G$ $\alpha \oplus i = \alpha$ inverse $\exists \forall a \in G$, $\exists a \in G$ s.+ $\exists a \in G$ $\exists a \in G$

example of groups

$$(\mathbb{Z}_n,+)$$

Example of groups all integers that are relatively prime to n.

 $\mathbb{Z}_n, \star)$ $\{a \mid \gcd(a, \underline{n}) = 1\}$ multiplicative group, mod n $Z_{7}^{*} = 21, 2, 3, 4, 5, 63$

Closure, associationty inverses:

*: multiplication mod n. identity: 3.5= 15 mrd 7 = 1 Extended Euclish. gcd(a,n)=1.

=)] x.y

=

 $a \cdot x + y \cdot n = I$ a-x moder = 1

$$\mathcal{L}(7) = |Z_{7}| = |\xi_{1,2,3,4,5,6}| = |\xi_{1,2,4,5,6}| = |\xi_{1,$$

 $f(15) = (3-1)(5-1) = 2 \cdot 9 = 8$

Euler theorem $\forall a \in \mathbb{Z}_n^{\star}, \ a^{\underline{\Phi(n)}} = 1 \bmod n$ 4E 7/4 48 = 1 mod 15. 1 2 7 9 4 1 1 7 = 1 mod 15.

Euler theorem $\forall a \in \mathbb{Z}_N^*, \ a^{\Phi(N)} = 1 \bmod N$ hiw many ?? this circle?? 2 same Set of

Xa Ta this circle 3 number .c 3a why?? Suppose 2 are the same, say left these 2. $2a = 6a \implies molt by a^{-1}$ ore $2a \cdot a' = 6a \cdot a' =$ Z=6 \times contradio d'

$$\forall a \in \mathbb{Z}_N^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

argue: all are distinct spse two are equal. multiply by a^{-1} this implies 2=6!

$$\forall a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow a \in \mathbb{Z}_{N}^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$orall a \in \mathbb{Z}_N^\star, \ a^{\Phi(N)} = 1 mod N$$

$$\stackrel{\bullet}{\mathbb{Z}_N^\star} \qquad \stackrel{\bullet}{\mathbb{Z}_N^\star} \qquad \stackrel{\bullet}{\mathbb{Z}_$$

$$\forall a \in \mathbb{Z}_N^{\star}, \ a^{\Phi(N)} = 1 \bmod N$$

$$\downarrow 0$$

$$\downarrow$$

mod equiva compute (show your work) \((23) = 22 1/m, 22=(31) 202 mod 22 31 2020 mod 22 = [31 2020 mod 10] $f(22) = (2-1)(11-1) = 10 \Rightarrow 31^{\circ} = 1 \mod 22$ 2020 mod 10 = 0 1 202 mod 7 L = /1.).

El-Gamal encryption

gen(1n) prime of size n bits. (SK, PK) $\underbrace{p \leftarrow \Pi_n \ g} \leftarrow \underbrace{\text{Generators}_p}$ $S \ k \in \{1 \dots p - 1\} \in \mathbb{Z}_p^* \quad p \ k = g^{SK} \quad \text{mod} \quad p.$ $enc_{pk}(m)$ $C_0 = Q^{\prime} \mod p$ $C_1 = (pk)^{\prime} \cdot m \mod p$. $C_1 \cdot (C_0 \times K)^{-1} \text{ mid } \rho$.

El-Gamal encryption

```
gen(1^n)
     p \leftarrow \Pi_n \quad g \leftarrow \text{Generators}_n
     a \leftarrow \mathbb{Z}_p
     pk \leftarrow (g, g^a) sk \leftarrow (g, a)
enc_{pk}(m)
     r \leftarrow \mathbb{Z}_p
     (g^r, (g^a)^r \cdot m)
dec_{sk}(c)
     (c_1,c_2) \leftarrow c
     m \leftarrow c_2/(c_1)^a
```

Example ElGamal ,

C1= pK, m=

$$(g^{SH})^{r}$$
. $msg = (g^{r})^{SH}$. msg

 $pk \leftarrow (q, q^a)$ $sk \leftarrow (q, a)$

 $c \leftarrow g^r, pk^r \cdot m$

 $(c_1,c_2) \leftarrow c$ $m \leftarrow c_2/(c_1)^a$

 $enc_{pk}(m)$

 $dec_{sk}(c)$

 $r \leftarrow \mathbb{Z}_p$

Why is ElGamal secure?

decisional Diffie-Hellman assumption (DDH)

$$p \leftarrow \Pi_n \quad g \leftarrow \text{Generators}_p$$
 $a, b, c \leftarrow \mathbb{Z}_p \quad \text{(work in a prime order group)}$
 $\{p, g, g^a, g^b, g^{ab}\}_n \approx \{p, g, g^a, g^b, g^c\}_n$
 $g^{sl}(g^r, g^{sl}) \qquad g^{sl}(g^r, g^{sl}) \qquad g^{sl}(g^r,$

"Textbook" RSA (insecure)

- \rightarrow Pick N = p*q where p,q are primes.
- \rightarrow Pick e,d such that $e \cdot d = 1 \mod \phi(N)$
- $\rightarrow \operatorname{Enc}_{N,e}(m) = m^e \mod N$

colais theorem $Dec_{N,d}(c) = c^d \mod N$

"Textbook" RSA (insecure) Example

Pick N = p*q where p,q are primes.

Pick e,d such that
$$e \cdot d = 1 \mod \phi(N)$$
 $\forall (N) = (11-1)(13-1) = 120$.

$$e = 7$$
 $d = 103$

$$\operatorname{Enc}_{N,e}(m) = m^e \mod N$$

$$\operatorname{Dec}_{N,d}(c) = c^d \mod N$$

"Textbook" RSA (insecure)

Pick N = p*q where p,q are primes.

Pick e,d such that $e \cdot d = 1 \mod \phi(N)$

 $\operatorname{Enc}_{N,e}(m) = m^e \mod N$

 $Dec_{N,d}(c) = c^d \mod N$

Why is it insecure against IND-CPA attack?

pkcs1.5

```
enc<sub>pk</sub>(m)
```

pick r as a random string with no 0s (typically 8 bytes)

$$c \leftarrow (0||2||r||0||m)^e \mod N$$

"padding oracle" attack against this scheme

message space $\{\mathcal{M}\}_n$

Gen(1ⁿ)

Sign_{sk}(m)

Ver_{vk}(m,s)

message space $\{\mathcal{M}\}_n$

Gen(1ⁿ) generates a key pair sk,vk

Sign_{sk}(m)

Ver_{vk}(m,s)

message space $\{\mathcal{M}\}_n$

Gen(1ⁿ) generates a key pair sk,vk

Sign_{sk}(m) generates a signature s for $m \in \mathcal{M}_n$

Ver_{vk}(m,s)

message space $\{\mathcal{M}\}_n$

Gen(1ⁿ) generates a key pair sk,vk

Sign_{sk}(m) generates a signature s for $m \in \mathcal{M}_n$

Vervk(m,s) accepts or rejects a msg,sig pair

 $\Pr[k \leftarrow Gen(1^n) : Ver_{vk}(m, Sign_{sk}(m)) = 1] = 1$

existential unforgability

"even when given a signing oracle, an adversary cannot forge a signature for any message of its choosing"

existential unforgability

"even when given a signing oracle, an adversary cannot forge a signature for any message of its choosing"

for all non-uniform ppt A

```
\Pr[
```

for all non-uniform ppt A

$$\Pr \begin{bmatrix} (vk,sk) \leftarrow Gen(1^n); (m,s) \leftarrow A^{Sign_{sk}(\cdot)} : \\ Ver_{vk}(m,s) = 1 \\ \text{and A didn't query m} \end{bmatrix} < \mu(n)$$

Textbook RSA Signatures (insecure)

Pick N = p*q where p,q are primes.

Pick e,d such that $e \cdot d = 1 \mod \phi(N)$

Sign((sk=d, N) m):

Compute the signature: $\sigma \leftarrow m^d \mod N$

Verify((pk=e, N), σ , m):

$$m \stackrel{?}{=} \sigma^e \bmod N$$

RSA Signatures in GPG

Sign((sk, N) m):

Compute the padding: $z \leftarrow 00 \cdot 01 \cdot FF \cdots FF \cdot 00 \cdot \mathsf{ID}_H \cdot H(m)$

Compute the signature: $\sigma \leftarrow z^{sk} \mod N$

What is this H() function?

goal of a hash function

a hash function is a function

$$h: \{0,1\}^d \to \{0,1\}^r$$

such that h is easy to evaluate and r < d

useful in data structures

```
public class test
{
    public static void main(String[] args)
    {
        System.out.println(args[0].hashCode());
    }
}
abhi$ java test HHHHHHHHHHHHHHHHHHHHHHGGGDD
-1644493785
```

collisions should be rare

```
public class test
   public static void main(String[] args)
       System.out.println(args[0].hashCode());
abhi$ java test HHHHHHHHHHHHHHHHHHHHGGGDD
-1644493785
abhi$ java test "hello world"
1794106052
```

java hash function

 $h(s) = \sum s[i]31^{n-i}$

i=0

java hash function

$$h(s) = \sum_{i=0}^{n} s[i]31^{n-i}$$

it is thus easy to find a pair s_1, s_2 such that $h(s_1) = h(s_2)$

```
public class test
{
    public static void main(String[] args)
    {
        System.out.println(args[0].hashCode());
    }
}
```

abhi\$ java test HHHHHHHHHHHHHHHHHHHGGGDD

-1644493785

abhi\$ java test ННННННННННННННННННННGGGCc -1644493785

```
public class test
   public static void main(String[] args)
       System.out.println(args[0].hashCode());
abhi$ java test HHHHHHHHHHHHHHHHHHHGGGDD
-1644493785
abhi$ java test НННННННННННННННННННН
-1644493785
```

'D' - 'c' + 31('D'-'C') = 0

Collision resistant hash function

in addition to being easy to compute, it should be "hard" for a p.p.t. adversary to find a hash collision.

md4 1990 md5 1992

sha1 1994

sha256 2005

Sha3 2015

md4 1990 128 bit md5 1992 128 bit sha1 1994 160 bit

sha256 2005 256 bit

Sha3 2015

1995 md4 1990 128 bit md5 1992 128 bit 1998 2005* sha1 1994 160 bit

sha256 2005 256 bit Sha3 2015

0c3c007b97cf8b75cfbd717804414a6a79b2defb4400eca9ea764a531a9ff193

abhi18:neu abhi\$ shasum -a 256

Noble patricians, patrons of my right,

Defend the justice of my cause with arms.

Sha256

Pre-process the input

Break input into chunks

For each "chunk", repeat this 64 times:

Most cryptographers consider SHA256 to be indistinguishable from a "Random oracle", i.e., a random function on arbitrary length messages.

Recap:

Passwords

Main problem:

Passwords

Main problem:

Natural authenticators