2550 Intro to
cybersecurity

19: Passwords

abhi shelat

What is this H() function?

\,\;[/1_ ine T
gfﬂ“ﬁéh\ = @ e fF e © 0 g HU«)>
?uJ Yl pessess Mw(/,

MeS§ Qe

goal of a hash function

many: bits

thon h I

fewer bits

&,Qj
a hash functior}/ is a function S Mo,
h:{0,1}* — {0,1}"

such that h is easy to evaluate
andr<d

—_—

collisions should be rare

S —

public class test

{
public static void main(String[] args)
{
System.out.println(args[@].hashCode());
} = -
ks

abhi$ java test HHHHHHHHHHHHHHHHHHHHGGGDD
-1644493785

abhi$ java test “hello world”
1794106052

Java hash function

n

h(s) =) slil31""

a—N
t—YU

Java hash function

h(s) = Z s[i]31™ "

it is thus easy to find a pai

such that h(s1)= h(s)

-

public class test

{
public static void main(String[] args)
{
System.out.println(args[@].hashCode());
}
ks

abhi$ java test HHHHHHHHHHHHHHHHHHHHGGGDD

-1644493785

-
P—

public class test

{
public static void main(String[] args)
{
System.out.println(args[@].hashCode());
}
ks

abhi$ java test HHHHHHHHHHHHHHHHHHHHGGGDD
-1644493785 l

abhi$ java test HHHHHHHHHHHHHHHHHHHHGGGC@)
-1644493785

—

public class test

{
public static void main(String[] args)
{
System.out.println(args[@].hashCode());
}
ks

abhi$ java test HHHHHHHHHHHHHHHHHHHHGGGDD
-1644493785

abhi$ java test HHHHHHHHHHHHHHHHHHHHGGGCc
-1644493785

‘D’ _ (C’ + 31((D’_‘C’) — @

Collision resistant hash function

T
CUt (e

in addition to being easy to compute,
it should be “hard” for a p.p.t. adversary
to find a hash collision.

md4 1990
mds 1992

shal 1994

sha256 2005

Sha3 2015
——

md4 1990
md5 1992

128 bit
128 bit

shal 1994

sha256 2005

Sha3 2015

o —

160 bit

256 bit

md4 1990 128 bit 1995
‘md5 1992 128bit 1998 - oo

shal 1994 160 bit 2005”

sha256 2005 256 bit

Sha3 2015

abhil8:neu abhi$ shasum —-a 256

Noble patricians, patrons of my right,

Defend the justice of my cause with arms.
0c3c007b97cf8b75cfbd717804414a6a79b2defb4400eca9ea764a531a9ff193 -

Sha256

Pre-process the input
. . ATS
Break input into chunks

For each “chunk” repeat this 64 times:
[AIBICIDIEIFIGIH]
Y

Eﬂ«ﬁﬂ« ‘

-t

it
B -

]

W,

[AIB|CID|E|F[G[H]

Most cryptographers consider SHA256
to be indistinguishable from a
“Random oracle” 1.e., a random
function on arbitrary length messages.

. e~Tec <y ‘-'A— (%v\cr ‘\’TOJ\>
Recap. © Pecfedd Securdy | N
g\,\c_./u\o/\ ge/ovr(\'}

@) Owne— Time Pw&\ contt o
@ Secud ity ?\Ml; (ey {0 LW\Q}
/@ QDM[,&JTMJ \nordae sy, ‘u\(}hs%@
& Pecs, Sl AET

gy
© | .
@ 3@ M,\rJA[rR \/(/bv/ C&‘*/\C/“'\L) Yjﬁ"@-’\} M AT S5 -

S PPN
,@ (,0\7\,\0 \/%? c,r“%‘, IND\CFP& ezv\crj ﬁﬁM, (v m,/ [Lﬁ/sr
@ Dfﬁt)fwl S'\@‘”‘ﬁ‘”‘@ X e \:Uwc‘\'l\m,\ﬂ_,

Oﬁé\»w\o-tti}'7

Passwords

Main problem:

-— -,
- L
- [
~y

Passwords L, esle
pu

Main problem:

- . gy,
- --
- ==
~

\“Genw

pw %" pw

e 3 ~

B

\k'roiseh IDor Emﬁq‘r:mord

Join “NUwave-guest”

LVX
VERITAg

etmas Northeastern University

Northeastern University
Information Technology Services
Welcome to NUwave-guest

Log in to Northeastern’s unsecured wireless network NUwave-guest using
the username and password you received via text message.

Need to register? Click here.

One Day Conference Login Click here.

Have a myNEU login? You must log into NUwave - the secure wireless network.

NUwave-guest Login

Username: ’

Password:

@ clearpass-ri.nunet.neu.edu Cancel

Touch ID or Enter Passcode

© © © @ © ©

Emergency

Authentication

« Authentication is the process of verifying an actor's identity

« Critical for security of systems

« Permissions, capabilities, and e all contingent upon knowing the
identity of the actor

» Typically parameterized as a username and a secret
« The secret attempts to limit unauthorized aecess

* Desirable properties of secrets include being unforgeable,

/«
unguessable, and _

Natural authenticators
@ E:fj(:uSQnAP"}U]ﬂI\/\Z jDJ @”_‘//g Sown .
@ ugbme'\/\/‘f"\?’ vo\i—\;u;'utu

@ B O M 'HTS
VQ)GMAW Mﬁ v Hot 5 Do gos
rod] had To prefoce

Operating R. Stockton Gaines
Systems Editor

Password Security:
A Case History

Robert Morris and Ken Thompson
Beii Laboratories — ——

This paper describes the history of the design of the
password security scheme on a remotely accessed time-
sharing system. The present design was the result of
countering observed attempts to penetrate the system.
The result is a compromise between extreme security
and ease of use.

Key Words and Phrases: operating systems,
passwords, computer security

CR Categories: 2.41, 4.35

Communications November 1979
of Volume 22

the ACM Number 11

"The UNIX system was first implemented with a password
file that contained the actual passwords of all the users,
and for that reason the password file had to be heavily
protected against being either read or written. Although
historically, this had been the technique used for
remote-access systems, it was completely unsatisfactory

for several reasons.”
C_/’

Checking Passwords

« System must validate passwords provided by
users

e Thus, passwords must be stored somewhere
« Basic storage: plain text

password.txt

Alice p4sswOrd

Eve i heart doggies
Charlie 93Gd9#jv*0x3N
bob security

Attacks against the Password Model

Bob
0, % bote /47@ atfoells g

/
(‘/OUWJFef WeaSores -

@ 8 Guestry /”C’L{U/_
@ WJ Iy crene
Pt Ty g {username: pwd}

@ Ao Sjrecvka Hass 6\6 X; password.txt
Alice p4sswOrd

Eve i heart doggies

Charlie 93Gd9#jv*0x3N
bob security

Problem: Passvvorgﬁ File Theft

« Attackers often compromise systems

* They may be able to steal the password file
« Linux: /etc/shadow
. Windomws\systemn\config\sam

« |f the passwords are plain text, what happens?

Problem: Password File Theft

« Attackers often compromise systems

* They may be able to steal the password file
« Linux: /etc/shadow
« Windows: c:\windows\system32\ config\sam

« |f the passwords are plain text, what happens?
« The attacker can now log-in as any user, including root/administrator

z- Passwords should never be stored in plain tex\t/

RockYou Hack: From Bad
To Worse

Nik Cubrilovic C]

@nikcub / 2:42 amEST « Decembef 1%, 2009 Comment

Earlier today news spread that

social application site RockYou

had suffered a data breached that
resulted in the exposure of over Wr
accounts. To compound the severity of the security
mms found that RockYou @ are storing all
user account data in plain text in their database,
exposing all that information to attackers. RockYou
have yet to inform users of the breach, and their blog
is eerily silent — but the details of the security breach

are going from bad to worse.

Data UserAccount [32603388]

1[jennaplanerunner@hotmail.com|mek*****|myspace|0|bebo.com
2|phdlance@gmail.com|mek*****|myspace|1|
3liennaplanerunner@gmail.com|mek****|myspace|0|
5|teamsmackage@gmail.com|pro****|myspacel1|
6layul@email.com|kha*****|myspace|1|tagged.com
7|guera_n_negro@yahoo.com|emi*****|myspace|0|
8|beyootifulgiri@aol.com|hol****|myspace|1|
9|keh2008@yahoo.com|cai*****|myspace|1|
10|mawabiru@yahoo.com|pur****|myspace|1|
11]jodygold@gmail.com|att****|myspace|1|
12]aryan_dedboy@yahoo.comliri****|myspace|0|
13|moe_joe_25@yahoo.com|725****|myspacel1]|
14|xxxnothingbutme@aol.com|1th*****|myspace|0|
15|meandcj069@yahoo.com|too****|myspacel0|
16|stacey_chim@hotmail.com|cxn*****|myspacel|1|
17|barne1en@cmich.edulilo*****|myspace|1|
18|reo154@hotmail.com|ecu™***|myspace|1|
19|natapappaslie@yahoo.com|tor****|myspacel0|
20lypiogirl@aol.com|tob****|myspace|1|
21|brittanyleigh864@hotmail.com|bet™****|myspace|1|myspace.com
22|topenga68@aol.com|che****|myspace|0|
23|marie603412@yahoo.com|cat****|myspace|0|

Hkkkk|

24|mellowchick41@aol.com|chu****|myspace|0|

Operating R. Stockton Gaines
Systems Editor

Password Security:
A Case History

Robert Morris and Ken Thompson
Bell Laboratories

This paper describes the history of the design of the
password security scheme on a remotely accessed time-
sharing system. The present design was the result of
countering observed attempts to penetrate the system.
The result is a compromise between extreme security
and ease of use.

Key Words and Phrases: operating systems,
passwords, computer security

CR Categories: 2.41, 4.35

Communications November 1979
of Volume 22
the ACM Number 11

“The obvious solution is to arrange that the passwords not
appear in the system at all, and it is not difficult to decide
that this can be done by encrypting each user's password,
putting only the encrypted form in the pass- word file, and
throwing away his original password (the one that he typed
in). When the user later tries to log in to the system, the
password that he types s encrypted and compared with the
encrypted version in the password file. If the two match, his
login attempt is accepted.”

Hashed Passwords

« Key idea: store “hashed” versions of passwords
« Use one-way cryptographic hash fun

ctions >
« Examples: @Q‘f», SHA1, SHA256, SHAS1 bcrypt, PBKDF2, scryp

« Cryptographic hash function transform input data into
scrambled output data
« Deterministic: hash(A) = hash(A)
« High entropy:
« MD5(‘security’) = €91e6348157868de9dd8b25c81aebfb9

« MD5(‘security1’) = 8632c375e9eba096df51844a5a43ae93
. MD5(‘Security’) = 2fae32629d4ef4fc6341f1751b405e45

« Collision resistant

« Locating A’ such that hash(A) = hash(A’) takes a long time (hopefully)
* Example: 22" tries for md5

Hashed Password Example

2

User: Charlie

charlie
greta
alice
bob

hashed_password.txt

2a9d119df47ff993b662a8ef36f9ea20

23eb06699da16a3ee5003e5f4636e79f
98bd0ebb3c3ec3fbe21269a8d840127c
€91e6348157868de9dd8b25c81aebfb9

Hashed Password Example
Q ‘ 2a9d119df4?75ff9942’:b66238)e;36f9ea20)

User Charlie

hashed_passwo! txt

charlie 229d119df47ff993b662a8ef36f9ea20

greta 23eb06699da16a3ee5003e5f4636e79f
alice 98bd0ebb3c3ec3fbe21269a8d840127c
bob €91e6348157868de9dd8b25c81aebfb9

Hashed Password Example

MD5(‘p4sswOrd’) =
2a9d119df47ff993b662a8ef36f9ea20

User: Charlie

charlie 229d119df47ff993b662a8ef36f9ea20

hashed_password.txt

greta 23eb06699da16a3ee5003e5f4636e79f
alice 98bd0ebb3c3ec3fbe21269a8d840127c¢
bob €91e6348157868de9dd8b25c81aebfb?9

Hashed Password Example

MD5(‘p4sswOrd’) =
2a9d119df47ff993b662a8ef36f9ea20

User: Charlie
MD5(2a9d119df47ff993b662a8ef36f9ea20’)
- —b35596ed3f0d5134739292faa04f7ca3

hashed_password.txt

charlie 229d119df47ff993b662a8ef36f9ea20

greta 23eb06699da16a3ee5003e5f4636e79f
alice 98bd0ebb3c3ec3fbe21269a8d840127c¢
bob €91e6348157868de9dd8b25c81aebfb?9

Hashed Password Example

2

User: Charlie

MD5(‘p4sswOrd’) =
2a9d119df47ff993b662a8ef36f9ea20

MD5(‘2a9d119df47ff993b662a8ef36f9ea20’)
- = b35596ed3f0d5134739292faa04f7ca3

charlie
greta
alice
bob

hashed_passw xt

2a9d119df47ff993b662a8ef36f9ea20

23eb06699da16a3ee5003e5f4636e79f
98bd0ebb3c3ec3fbe21269a8d840127c
€91e6348157868de9dd8b25c81aebfb9

Attacking Password Hashes

« Recall: cryptographic hashes are collision resistant
« Locating A’ such that hash(A) = hash(A’) takes a long time (hopefully)

« Are hashed password secure from cracking?

Attacking Password Hashes

« Recall: cryptographic hashes are collision resistant
« Locating A’ such that hash(A) = hash(A’) takes a long time (hopefully)

« Are-hashed password secure from cracking?

* Problem: users choose poor passwords
* Most common passwords: 123456, password

« Username: cbw, Password: cbw O{][(fm
» Weak passwords enable dictionary attacks / b
focc

oy

The authors have conducted experiments to try to
determine typical users’ habits in the choice of passwords
when no constraint is put on their choice. The results
were disappointing, except to the bad guy. In a collection
of 3,289 passwords gathered from many users over a
long period of time,

15 were a single ASCII character;

72 were strings of two ASCII characters;

464 were strings of three ASCII characters;

477 were strings of four alphamerics;

706 were five letters, all upper-case or all lower-case;
605 were six letters, all lower-case.

An additional 492 passwords appeared in various avail-
able dictionaries, name lists, and the like. A total of 2,831
or 86 percent of this sample of passwords fell into one of
these classes.

From Rockyou breach

Rank Password Number of Users with it P2 Drd ber o

Password (Absolute) P2 ord (Ab
1 123456 290731 11 Nicole 17168
2 12345 79078 12 Daniel 16409
3 123456789 76790 13 babygirl 16094
4 Password 61958 14 monkey 15294
5 iloveyou 51622 15 Jessica 15162
6 princess 35231 16 Lovely 14950
7 rockyou 22588 17 michael 14898
8 1234567 21726 18 Ashley 14329
9 12345678 20553 19 654321 13984
10 abc123 17542 20 Qwerty 13856

Password Popularity—Top 20

https://www.imperva.com/docs/gated/WP_Consumer_Password_Worst_Practices.pdf

20%

15%
10% [~
5% [~
0 - OO NINMe=OONINMe= O NN
N e= N MO T O O NOOMO In
M NOST N e=nonNW!mON
— = = N ANNMMMN T

Accumulated Percent of Dictionary Attack Success

Most Common Passwords

Rank 2013 2014

1 123456 123456

2 password password
3 12345678 12345

4 gwerty 12345678
5 abc123 gwerty

6 123456789 123456789
7 111111 1234

8 1234567 baseball

9 iloveyou dragon

10 adobe123 football

Dictionary Attacks

English i List of

Dictionary possible
password
B = ke

Common
Passwords

Dictionary Attacks

English l

List of

e " hashed_
ctionary posliolis password.txt
password
I ENES
@
i

Common
Passwords

Dictionary Attacks

English l

Dictionary possible
password
hashes

List of

hashed_
password.txt

Passwords

« Common for 60-70% of hashed passwords to be cracked in <24
hours

Pwd breaches
[Morey

THE CYBERCRIME ECONOMY

More than 6 million
LinkedIln passwords
stolen

By David Goldman @CNNMoneyTech Jut 4 AMET

eIy Word Lavge eal e ™

4> 0w @ AAllc # T F WS« M+ D meienasncomronanioss sone 0
0 W Ao Vot Compebirn TeTube Wkt Mems G710 Peputars

» Lo —

Linked fJ. a
Be great at what you do.

Get started - it's free.
Rapaaton sues s Pan 2 mnes

Fiot ame

B e y ccnng o N o sang L
R] S s A ey

Researchers say a stash of what appear to be LinkedIn passwords were protected by a weak
security scheme.

NEW YORK (CNNMoney) -- Russian hackers released a giant list of
passwords this week, and on Wednesday security researchers identified
their likely source: business social networking site LinkedIn.

2012: 6.51million hashes leaked onto Internet 90% cracked in 2 weeks
2016: 177.5 million more hashes leaked 98% cracked in 1 week j

2012 Linkedin Breach had 117 mHI—)
Million Emails and Passwords
Stolen, Not 6.5M

May 18, 2016 =]]n]

Related ‘

Posts

Long time users of
Linkedin users may
very well need to
change their
passwords once more

Web Skimming
Attack on Blue

* Bear Affects
Qrhnnl Admin

by Paul Ducklin

S0€

One month ago today, we wrote about Adobe's giant

data breach.

yahoo.com-l-gZBGPhNEH% REERVILIDI try: qwerty123] -~

65~ | -~ | ~xxxxx@jcom, home.ne.jp-| ~EhSTLOMK 82CSOVWUDDW==~|~27227 -

4466~ | -~ | -xx@hotmail.com- | ~ahw2b2BELZgRTWYvQGn+kw==~| -quiero a... |-~
i i i 4467~ | ~=l-xxx@vaboo con-l_le
As far as anyone knew, including Adobe, it affected 4468~ | fusernane| =1 |-~
4469~ | ~=T=XRRRRCY 4 e64) |

about 3,000,000 customer records, which made it

4470~ | -~ | pxxx@hotmail cog
- 4471-| - |
sound pretty bad right from the start. 4471- | | STRERSERETTCS
But worse was to come, as recent updates to the story Adobe password data Password hint
110edf2294fb8bf4 -> numbers 123456
bumped the number of affected customers to a T B et
whopping 38.000,000 110edf2294fb8bf4 -> c'est "123456"
8fda7elf0b56593f €2a311ba®9ab4707 ~-> numbers
o o 8fda7elfob56593f e2a311ba@9ab4707 -> 1-8
We took Adobe to task for a lack of clarity in its breach notification. 8fda7elf0b56593f e2a311ba09aba707 -> adigit
2fca9b003de39778 e2a311ba09ab4707 -> the password is password
2fcagh003de39778 e2a311ba®9abd707 -> password
OUR COMPLAINT 2fca9b003de39778 e2a311ba®9ab4707 -> rhymes with assword
e5d8efed9088dbob -=> quwerty
q a . e5d8efed9088dbob => ytrewq tagurpidi RN
One of our complaints was that Adobe said that it had lost encrypted e5d8efedo0aadbab e -
passwords, when we thought the company ought to have said that it had lost ecbag8ccas5eabe2 -> sixxone
ecba98cca55eabc2 -> 1%6 m
ecba98cca55eabc2 -> sixones

Hardening Password Hashes

« Key problem: cryptographic hashes are deterministic
« hash(‘p4ssword’) = hash(‘p4ssword’) —
* This enables attackers to build Tists of hashes

Hardening Password Hashes

« Key problem: cryptographic hashes are deterministic
« hash(‘p4ssword’) = hash(‘p4ssword’)
« This enables attackers to build lists of hashes

« Solution: make each password hash unique
* Add a random salt to each password before hashing

« hash(salt + password) = password hash
—- —

« Each user has a unique, random salt

« Salts can be stores in plain text

Example Salted Hashes

hashed_password.txt

cbw 2a9d119df47ff993b662a8ef36f9ea20

sandi 23eb06699da16a3ee5003e5f4636e79f

amislove 98bd0ebb3c3ec3fbe21269a8d840127¢c
€91e6348157868de9dd8b25c81aebfb9

hashed_and_salted_password.txt ‘/\CSWH I \\fw{)

a8 af19c842f0c781ad726de7aba439b033
sandi OX 67710c2c2797441efb8501f063d42fb6b
amislove 9d03e1f28d39ab373c59c7bb338d0095
bob K@ 479a6d9e59707af4bb2c618fed89c245

Attacking Salted Passwords

List of
possible

password
hashes

Attacking Salted Passwords

hashed_

and_salted_
password.txt

—_—

Attacking Salted Passwords

Attacking Salted Passwords

m

List of hashed
m possible q and_salted_
passwor password.txt

HEHES

cbw : a8 List of
sandi (04 possible
hash(‘a8’ + word) password
hashes w/

w salt a8

Attacking Salted Passwords

m

List of hashed
passwor password.txt

HEHES

cbw a8 List of

sandi OX possible
hash(‘a8’ + word) password
hashes w/

w salt a8

Attacking Salted Passwords

m

List of e
m!» p055|bled gy
e password.txt

HEHES

cbw a8
sandt o List of

hash(‘0X’ + word) possible
w password

hashes w/
salt 0X

Breaking Hashed Passwords

« Stored passwords should always be salted

* Forces the attacker to brute-force each password individually

Breaking Hashed Passwords

« Stored passwords should always be salted

* Forces the attacker to brute-force each password individually
* Problem: it is now possible to compute hashes very quickly

* GPU computing: hundreds of sm cores

» nVidia GeForce GTX TitanZ: 5,760 cores)

« GPUs can be rented from thectoud very cheaply
Wer hour (2018 prices)

Examples of Hashing Speed

« A modern x86 server can hash all possible 6 character

long passwords in 3.5 hours
* Upper and lowercase letters; symbols

« (26+26+10+32)6= 690 illion combinatio
—

Examples of Hashing Speed

« A modern x86 server can hash all possible 6 character

long passwords in 3.5 hours
* Upper and lowercase letters, numbers, symbols
« (26+26+10+32)6 = 690 billion combinations

A moan do the same thing in 16 minutes

Examples of Hashing Speed

« A modern x86 server can hash all possible 6 character

long passwords in 3.5 hours
* Upper and lowercase letters, numbers, symbols
« (26+26+10+32)6 = 690 billion combinations

A modern GPU can do the same thing in 16 minutes

» Most users use (slightly permuted) dictionary words, no

symbols

« Predictability makes cracking much faster
« Lowercase + numbers = (26+10)6 = 2B combinations

Hardening Salted Passwords

* Problem: typical hashing algorithms are too fast
* Enables GPUs to brute-force passwords

« Old solution: hash the password multiple times
« Known as key stretching
« Example: crypt used 25 rounds of DES

. Nlew solution: use hash functions that are designed to be
Ssiow

« Examples: bcrypt, PBKDF2, scrypt

« These algorithms include a work factor that increases the time complexity of the
calculation

* scrypt also requires a large amount of memory to compute, further complicating
brute-force attacks

ow hash movement

WHAT IS A SLOW FOOD COMMUNITY
¢ AND HOW DOES IT WORK?
DISCOVER IT IN 15 EASY STEPS

ne;:: Z”Ezmmm Slow Food members? #7006 lhg creation of
How is the process of communies mean
creating a community that the convivia
managed? willbe closed?
Wit the creation of
Vihat are th requirements communites, does membership
for starting a community, in the association become less
and what are the beneils? important?

What happens if the
community already exists

@ Before joining Slow Food?
3

Whatis aSow Food com- . Cana legal enity
munily and whal elements N S ow F 00 tecome aSow Food

define it? community?

\What does being part)
of acommunity mean?

(an a convivium

S|IJW Fl][ll] prevent the creation
. of a community?
Community
Wiha i the role of the:

(an acommunity Who wilnform "\ COMivia i the opening of
e e Sowfood f_ DBSCeding the foga eaders \ "EW Communies? FIND OUT MORE ON

acommunity involve i
logo? afinanial of the opening of new ’ WWWSL[IWF[I[IDGUM

R communities in the area

where they operate?

Souy ook i

lterated hash function {x times}

Hashed pwd

&

bcrypt Example

« Python example; install the berypt package

[cbw@localhost ~] python Work factor
>>> berypt

>>> password = “my super secret password”

>>> fast_hashed = bcrypt.hashpw(password, bcrypt.gensalt(0))

>>> slow_hashed = bcrypt.hashpw(password, bcrypt.gensalt(12))

>>> pw_from_user = (“Enter your password:”)
>>> If berypt.hashpw(pw_from_user, slow_hashed) == slow_hashed:
“It matches! You may enter the system”

“No match. You may not proceed”

Dealing With Breaches

Dealing With Breaches

* Suppose you build an extremely secure password storage system
« All passwords are salted and hashed by a high-work factor function

* It is still possible for a dedicated attacker to steal and crack

passwords
* Given enough time and money, anything is possible
« E.g. The NSA

« Question: is there a principled way to detect password breaches?

Honeywords

» Key idea: store multiple salted/hashed passwords for each user
« As usual, users create a single password and use it to login
« User is unaware that additional honeywords are stored with their account

Honeywords

» Key idea: store multiple salted/hashed passwords for each user
« As usual, users create a single password and use it to login
« User is unaware that additional honeywords are stored with their account

« Implement a honeyserver that stores the index of the correct password for each user
« Honeyserver is logically and physically separate from the password database
« Silently checks that users are logging in with true passwords, not honeywords

Honeywords

» Key idea: store multiple salted/hashed passwords for each user
« As usual, users create a single password and use it to login
« User is unaware that additional honeywords are stored with their account

« Implement a honeyserver that stores the index of the correct password for each user
« Honeyserver is logically and physically separate from the password database
« Silently checks that users are logging in with true passwords, not honeywords

« What happens after a data breach?
« Attacker dumps the user/password database...
« But the attacker doesn’t know which passwords are honeywords
« Attacker cracks all passwords and uses them to login to accounts
« If the attacker logs-in with a honeyword, the honeyserver raises an alert!

Honeywords Example

Database Honeyserver

y4DvF7 bH cbw
sandi

Honeywords Example

cbw

sandi

Honeywords Example

2

cbw

SHA512(“fl” | “p4sswWOrd”) > bHDJ8I

Database Honeyserver

ééi;iiiiIIIIIIIIIIIIIIIiiIIIIIIIIIIiiiiIIIIIIIIIIIIiiIIiIIIIIiiiﬁiiiilllllllllliiii

y4DVF7 bH cbw
sandi

Honeywords Example

2

cbw

SHA512(“fl” | “p4sswWOrd”) > bHDJ8I

Database Honeyserver

GégigiiiiIIIIIIIIIIIIIIiiiIIIIIIIIIIiiiIIIIIIIIIIII iiii
2

y4DvF7

sandi

Honeywords Example

&

2

cbw

SHA512(“fl” | “p4sswWOrd”) > bHDJ8I

Database Honeyserver

€£éﬁ;iiiiIIIIIIIIIIIIIIIiiIIIIIIIIIIiiiiIIIIIIIIIIIIiiiIiIlllliiﬂﬁiiiilllllllllliiii

y4DVF7 bH cbw
sandi

Honeywords Example

2

Cracked Passwords

cbw 123456
cbw
SHA512(“fl” | “p4sswWOrd”) > bHDJ8I sandi puppies ilo
amislove coff33 3s
Database Honeyserver

y4DVvF7 bH cbw 2
sandi 3

Honeywords Example

2

cbw

Cracked Passwords

SHA512(“fI” | “p4sswo0rd”) > bHDJ8I sandi

amislove coff33 3s

Database Honeyserver

>

Password Storage Summary

Never store passwords in plain text

Always salt and hash passwords before storing them
Use hash functions with a high work factor
Implement honeywords to detect breaches

hODdR

* These rules apply to any system that needs to authenticate users
« Operating systems, websites, etc.

Password Recovery/Reset

« Problem: hashed passwords cannot be recovered (hopefully)
“Hi... | forgot my password. Can
Q you email me a copy? Kthxbye”

« This is why systems typically implement password reset

— Use out-of-band info to authenticate the user
— Overwrite hash(old_pw) with hash(new_pw)

o Be careful: its possible to crack password reset

Cracking Password Reset

« Typical implementations use Knowledge Based Authentication (KBA)
« What was your mother’s maiden name?
« What was your prior street address?
« Where did you go to elementary school

Cracking Password Reset

« Typical implementations use Knowledge Based Authentication (KBA)

« What was your mother’s maiden name?
« What was your prior street address?
« Where did you go to elementary school

 Problems?

Cracking Password Reset

« Typical implementations use Knowledge Based Authentication (KBA)
« What was your mother’s maiden name?
« What was your prior street address?
« Where did you go to elementary school

* Problems?
« This information is widely available to anyone
« Publicly accessible social network profiles
« Background-check services like Spokeo

Cracking Password Reset

« Typical implementations use Knowledge Based Authentication (KBA)

« What was your mother’s maiden name?
« What was your prior street address?
« Where did you go to elementary school

* Problems?
« This information is widely available to anyone
« Publicly accessible social network profiles
« Background-check services like Spokeo

« Experts recommend that services not use KBA
« When asked, users should generate random answers to these questions

Password Cracking

Password Theory
Hash Chains

Rainbow Tables

Attacker Goals and Threat Model

« Assume we have a system storing usernames and passwords
* The attacker has access to the password database/file

| wanna login to
those user accounts!

Database

.| e
A
User H(PW)

cbw iuafNas

sandi 23asZR

Attacker Goals and Threat Model

« Assume we have a system storing usernames and passwords
* The attacker has access to the password database/file

| wanna login to

those user accounts!

Database

° ® Cracked Passwords

iuafNas

cbw p4ssWOrd

sandi 23asZR

Attacker Goals and Threat Model

« Assume we have a system storing usernames and passwords
* The attacker has access to the password database/file

| wanna login to
those user accounts!

Database

iuafNas

p4ssWOrd

sandi 23asZR

Password Quality

S
- log, N

S = logzNL > L

« How do we measure password quality? Entropy

« N - the number of possible symbols (e.g. lowercase, uppercase, numbers, etc.)
e L - the length of the password
S - the strength of the password, in bits

« Formula tells you length L needed to achieve a desired strength S...

Password Quality

S
- log, N

S = logzNL > L

« How do we measure password quality? Entropy

« N - the number of possible symbols (e.g. lowercase, uppercase, numbers, etc.)
e L - the length of the password
S - the strength of the password, in bits

« Formula tells you length L needed to achieve a desired strength S...
... for passwords

* Is this a realistic measure in practice?

The Strength of Random Passwords

S= L xlog,N
200
26+26+10 Characters — 26+26 Character very
— 26 Characters Strong
m 150
@
e
= 100
c
o
(7) Very
50 Weak
0
0 10 20 30 40

Pacecwnrd | annth (Charactarce)

Basic Password Cracking

* Problem: humans are terrible at generating/remembering random strings

« Passwords are often weak enough to be brute-forced
« Naive way: systematically try all possible passwords
« Slightly smarter way: take into account non-uniform distribution of characters

« Dictionary attacks are also highly effective
* Select a baseline wordlist/dictionary full of likely passwords
« Today, the best wordlists come from lists of breached passwords

* Rule-guided word mangling to look for slight variations
* E.g. password > Password > p4ssword > passwOrd > p4sswOrd > password1 > etc.

» Many password cracking tools exist (e.g. John the Ripper, hashcat)

“Deep Crack™ The EFF DES Cracker

* DES uses a 56-bit key

« $250K in 1998, capable of
brute-forcing DES keys in 56

hours
» Uses 1856 custom ASIC chips

e Similar attacks have been
demonstrated against MD5,
SHA1

- » Fr—— L
i s W

“Deep Crack™ The EFF DES Cracker

* DES uses a 56-bit key

« $250K in 1998, capable of
brute-forcing DES keys in 56

hours
» Uses 1856 custom ASIC chips

e Similar attacks have been
demonstrated against MD5,
SHA1

 Modern equivalent?

1l .I'l
- R

“Deep Crack™ The EFF DES Cracker

* DES uses a 56-bit key

« $250K in 1998, capable of
brute-forcing DES keys in 56

hours
» Uses 1856 custom ASIC chips

e Similar attacks have been
demonstrated against MD5,
SHA1

« Modern equivalent? |
« Bitcoin mining ASICs '

A
b)l
TR RO

L) —— v l‘x —
diiile R

Speeding Up Brute-Force Cracking

* Brute force attacks are slow because hashing is CPU intensive
« Especially if a strong function (SHA512, bcrypt) is used

Speeding Up Brute-Force Cracking

* Brute force attacks are slow because hashing is CPU intensive
« Especially if a strong function (SHA512, bcrypt) is used

* [dea: why not pre-compute and store all hashes?

* You would only need to pay the CPU cost once...
. ... fora given salt

* Given a hash function H, a target hash h, and password space P, goal is to
recover p € Psuch that H(p) =h

Speeding Up Brute-Force Cracking

* Brute force attacks are slow because hashing is CPU intensive
« Especially if a strong function (SHA512, bcrypt) is used

* [dea: why not pre-compute and store all hashes?

* You would only need to pay the CPU cost once...
. ... fora given salt

* Given a hash function H, a target hash h, and password space P, goal is to
recover p € Psuch that H(p) =h

« Problem: naive approach requires ©(| P| n) bits, where n is the space of
the output of H

Hash Chains

« Hash chains enable time-space efficient reversal of hash functions

* Key idea: pre-compute chains of passwords of length k...

« ... but only store the start and end of each chain
* Larger k > fewer chains to store, more CPU cost to rebuild chains

*Smallk -=> more chains to store, less CPU cost to rebuild chains

Hash Chains

« Hash chains enable time-space efficient reversal of hash functions

* Key idea: pre-compute chains of passwords of length k...

« ... but only store the start and end of each chain
* Larger k > fewer chains to store, more CPU cost to rebuild chains

*Smallk -=> more chains to store, less CPU cost to rebuild chains

« Building chains require H, as well as a reductionR: H» P

« Begin by selecting some initial set of password P' C P
« Foreach p’ € P, apply H(p’) =, R(h’) = p”for k iterations

« Only store p’ and p’*

Hash Chains

« Hash chains enable time-space efficient reversal of hash functions

* Key idea: pre-compute chains of passwords of length k...

« ... but only store the start and end of each chain
* Larger k > fewer chains to store, more CPU cost to rebuild chains

*Smallk -=> more chains to store, less CPU cost to rebuild chains

« Building chains require H, as well as a reductionR: H» P

« Begin by selecting some initial set of password P' C P
« Foreach p’ € P, apply H(p’) =, R(h’) = p”for k iterations

« Only store p’ and p’*
* To recover hash h, apply R and H until the end of a chain is found

« Rebuild the chain using p’ and p’k
 H(p) = h may be within the chain

Uncompressed Hash Chain Example

abcde WWPNP_ visfap _QOZLR

passw VZDGEF gfnxsk ZLGEKV

12345 SM-QK\9 sawtzg RHKP_D

Uncompressed Hash Chain Example

Only these two columns
get stored on disk

abcde WWPNP_ visfap QOZLR

—TassW VZDGEF gfnxsk ZEGEKV

12345 SM-QK\9 sawtzg RHKP_D

Hash Chain Example

abcde cjldar
K=3
passw ZVXSCS
12345 wijizbn
p H(p) =h R(h) =p’ H(p’) =h’ R(h
sawtzg RHKP.D gvmdwm BYE4LB wijizl

Hash Chain Example

abcde cjldar
K=3
passw ZVXSCS
12345 wijizbn
P R(h) =p’ H(p’) =h’ R(h
sawtzg gvmdwm BYE4LB wijizl
Hash to recover

Hash Chain Example

abcde cjldar
K=3

passw ZVXSCS

12345 wijizbn

Desired password

Hash to recover

H(p’) =h’

BYE4LB

Hash Chain Example

Desired password

Hash to recover

abcde cjldar
K=3
PASSW Leed VX SCS
12345 wijizbn
R(h) =p’ H(p’) = h’ R(h’
gvmawm BYE4LB wjizl

Hash Chain Example
e

abcde cjldar

K=3
| —

passw b__dvxscs

o 12345 SM-QK\9 sawtzg RHKP_L

Desired password Hash to recover

Hash Chain Example
e

abcde cjldar

K=3
| —

passw b__dvxscs

o 12345 SM-QK\9 sawtzg RHKP_L

Desired password Hash to recover

Hash Chain Example
T RSiZe0f the table is dramatically

abcde cjldar reduced...

S K=3 e ... but some computation is necessary

passw be—__dvxscs once a match is found

o 12345 SM-QK\9 sawtzg RHKP_L

Desired password Hash to recover

Problems with Hash Chains

« Hash chains are prone to collisions
« Collisions occur when H(p’) = H(p”) or R(h’) = R(h”) (the latter is more likely)

« Causes the chains to merge or overlap
* Problems caused by collisions

« Wasted space in the file, since the chains cover the same password space

* False positives: a chain may not include the password even if the end matches
* Proper choice of R() is critical

» Goal is to cover likely password space, not entire password space
« R cannot be collision resistant (like H) since it has to map into likely plaintexts

« Difficult to select R under this criterion

Rainbow Tables

« Rainbow tables improve on hash chains by reducing the likelihood
of collisions

* Key idea: instead of using a single reduction R, use a family of
reductions {R4, R,, ..., R}

« Usage of H is the same as for hash chains

« A collisions can only occur between two chains if it happens at the same position (e.g. R; in
both chains)

Final Thoughts on Rainbow Tables

* Caveats
« Tables must be built for each hash function and character set
« Salting and key stretching defeat rainbow tables

* Rainbow tables are effective in some cases, e.g. MD5 and NTLM
* Precomputed tables can be bought or downloaded for free

