
2550 Intro to
cybersecurity

abhi shelat

L9: Passwords

What is this H() function?

goal of a hash function
many bits

hash function h

fewer bits

a hash function is a function

such that h is easy to evaluate
and r < d

collisions should be rare
public class test
{
 public static void main(String[] args)
 {
 System.out.println(args[0].hashCode());
 }
}

abhi$ java test “hello world”
1794106052

abhi$ java test HHHHHHHHHHHHHHHHHHHHGGGDD
-1644493785

java hash function

java hash function

it is thus easy to find a pair s1,s2

such that h(s1)= h(s2)

public class test
{
 public static void main(String[] args)
 {
 System.out.println(args[0].hashCode());
 }
}

abhi$ java test HHHHHHHHHHHHHHHHHHHHGGGDD
-1644493785

public class test
{
 public static void main(String[] args)
 {
 System.out.println(args[0].hashCode());
 }
}

abhi$ java test HHHHHHHHHHHHHHHHHHHHGGGDD
-1644493785

abhi$ java test HHHHHHHHHHHHHHHHHHHHGGGCc
-1644493785

public class test
{
 public static void main(String[] args)
 {
 System.out.println(args[0].hashCode());
 }
}

abhi$ java test HHHHHHHHHHHHHHHHHHHHGGGDD
-1644493785

abhi$ java test HHHHHHHHHHHHHHHHHHHHGGGCc
-1644493785

‘D’ - ‘c’ + 31(‘D’-‘C’) = 0

Collision resistant hash function

in addition to being easy to compute,
it should be “hard” for a p.p.t. adversary
to find a hash collision.

md4
md5

sha1

sha256

1990
1992

1994

2005

Sha3 2015

md4
md5

sha1

sha256

1990
1992

1994

2005

128 bit
128 bit

160 bit

256 bit

Sha3 2015

md4
md5

sha1

sha256

1990
1992

1994

2005

128 bit
128 bit

160 bit

256 bit

1995
1998

2005*

Sha3 2015

abhi18:neu abhi$ shasum -a 256
Noble patricians, patrons of my right,
Defend the justice of my cause with arms.
0c3c007b97cf8b75cfbd717804414a6a79b2defb4400eca9ea764a531a9ff193 -

Sha256
Pre-process the input
Break input into chunks

For each “chunk”, repeat this 64 times:

Most cryptographers consider SHA256
to be indistinguishable from a
“Random oracle”, i.e., a random
function on arbitrary length messages.

Recap:

Passwords
Main problem:

Alice Bob

Passwords
Main problem:

Alice Bob

Genpw pw

Authentication
• Authentication is the process of verifying an actor’s identity
• Critical for security of systems
• Permissions, capabilities, and access control are all contingent upon knowing the

identity of the actor

• Typically parameterized as a username and a secret
• The secret attempts to limit unauthorized access

• Desirable properties of secrets include being unforgeable,
unguessable, and revocable

Natural authenticators

"The UNIX system was first implemented with a password
file that contained the actual passwords of all the users,
and for that reason the password file had to be heavily
protected against being either read or written. Although
historically, this had been the technique used for
remote-access systems, it was completely unsatisfactory
for several reasons.”

Checking Passwords
• System must validate passwords provided by

users
• Thus, passwords must be stored somewhere
• Basic storage: plain text

Alice p4ssw0rd
Eve i heart doggies
Charlie 93Gd9#jv*0x3N
bob security

password.txt

Attacks against the Password Model
BobMallory

{username: pwd}

Alice p4ssw0rd
Eve i heart doggies
Charlie 93Gd9#jv*0x3N
bob security

password.txt

Problem: Password File Theft
• Attackers often compromise systems
• They may be able to steal the password file
• Linux: /etc/shadow
• Windows: c:\windows\system32\config\sam

• If the passwords are plain text, what happens?

Problem: Password File Theft
• Attackers often compromise systems
• They may be able to steal the password file
• Linux: /etc/shadow
• Windows: c:\windows\system32\config\sam

• If the passwords are plain text, what happens?
• The attacker can now log-in as any user, including root/administrator

• Passwords should never be stored in plain text

“The obvious solution is to arrange that the passwords not
appear in the system at all, and it is not difficult to decide
that this can be done by encrypting each user's password,
putting only the encrypted form in the pass- word file, and
throwing away his original password (the one that he typed
in). When the user later tries to log in to the system, the
password that he types is encrypted and compared with the
encrypted version in the password file. If the two match, his
login attempt is accepted.”

Hashed Passwords
• Key idea: store “hashed” versions of passwords
• Use one-way cryptographic hash functions
• Examples: MD5, SHA1, SHA256, SHA512, bcrypt, PBKDF2, scrypt

• Cryptographic hash function transform input data into
scrambled output data
• Deterministic: hash(A) = hash(A)
• High entropy:
• MD5(‘security’) = e91e6348157868de9dd8b25c81aebfb9
• MD5(‘security1’) = 8632c375e9eba096df51844a5a43ae93
• MD5(‘Security’) = 2fae32629d4ef4fc6341f1751b405e45

• Collision resistant
• Locating A’ such that hash(A) = hash(A’) takes a long time (hopefully)
• Example: 221 tries for md5

Hashed Password Example

charlie 2a9d119df47ff993b662a8ef36f9ea20
greta 23eb06699da16a3ee5003e5f4636e79f
alice 98bd0ebb3c3ec3fbe21269a8d840127c
bob e91e6348157868de9dd8b25c81aebfb9

hashed_password.txt

User: Charlie

Hashed Password Example

charlie 2a9d119df47ff993b662a8ef36f9ea20
greta 23eb06699da16a3ee5003e5f4636e79f
alice 98bd0ebb3c3ec3fbe21269a8d840127c
bob e91e6348157868de9dd8b25c81aebfb9

hashed_password.txt

User: Charlie

MD5(‘p4ssw0rd’) =
2a9d119df47ff993b662a8ef36f9ea20

Hashed Password Example

charlie 2a9d119df47ff993b662a8ef36f9ea20
greta 23eb06699da16a3ee5003e5f4636e79f
alice 98bd0ebb3c3ec3fbe21269a8d840127c
bob e91e6348157868de9dd8b25c81aebfb9

hashed_password.txt

User: Charlie

MD5(‘p4ssw0rd’) =
2a9d119df47ff993b662a8ef36f9ea20

Hashed Password Example

charlie 2a9d119df47ff993b662a8ef36f9ea20
greta 23eb06699da16a3ee5003e5f4636e79f
alice 98bd0ebb3c3ec3fbe21269a8d840127c
bob e91e6348157868de9dd8b25c81aebfb9

hashed_password.txt

User: Charlie

MD5(‘p4ssw0rd’) =
2a9d119df47ff993b662a8ef36f9ea20

MD5(‘2a9d119df47ff993b662a8ef36f9ea20’)
= b35596ed3f0d5134739292faa04f7ca3

Hashed Password Example

charlie 2a9d119df47ff993b662a8ef36f9ea20
greta 23eb06699da16a3ee5003e5f4636e79f
alice 98bd0ebb3c3ec3fbe21269a8d840127c
bob e91e6348157868de9dd8b25c81aebfb9

hashed_password.txt

User: Charlie

MD5(‘p4ssw0rd’) =
2a9d119df47ff993b662a8ef36f9ea20

MD5(‘2a9d119df47ff993b662a8ef36f9ea20’)
= b35596ed3f0d5134739292faa04f7ca3

Attacking Password Hashes
• Recall: cryptographic hashes are collision resistant
• Locating A’ such that hash(A) = hash(A’) takes a long time (hopefully)

• Are hashed password secure from cracking?

Attacking Password Hashes
• Recall: cryptographic hashes are collision resistant
• Locating A’ such that hash(A) = hash(A’) takes a long time (hopefully)

• Are hashed password secure from cracking?
• No!

• Problem: users choose poor passwords
• Most common passwords: 123456, password
• Username: cbw, Password: cbw

•Weak passwords enable dictionary attacks

From Rockyou breach

https://www.imperva.com/docs/gated/WP_Consumer_Password_Worst_Practices.pdf

Most Common Passwords
Rank 2013 2014

1 123456 123456

2 password password

3 12345678 12345

4 qwerty 12345678

5 abc123 qwerty

6 123456789 123456789

7 111111 1234

8 1234567 baseball

9 iloveyou dragon

10 adobe123 football

Dictionary Attacks

English
Dictionary

Common
Passwords

Dictionary Attacks

English
Dictionary

Common
Passwords

hash()

hash()

List of
possible

password
hashes

Dictionary Attacks

English
Dictionary

Common
Passwords

hash()

hash()

List of
possible

password
hashes

hashed_
password.txt

Dictionary Attacks

• Common for 60-70% of hashed passwords to be cracked in <24
hours

English
Dictionary

Common
Passwords

hash()

hash()

List of
possible

password
hashes

hashed_
password.txt

Pwd breaches

2012: 6.5 million hashes leaked onto Internet 90% cracked in 2 weeks
2016: 177.5 million more hashes leaked 98% cracked in 1 week

Hardening Password Hashes
• Key problem: cryptographic hashes are deterministic
• hash(‘p4ssw0rd’) = hash(‘p4ssw0rd’)
• This enables attackers to build lists of hashes

Hardening Password Hashes
• Key problem: cryptographic hashes are deterministic
• hash(‘p4ssw0rd’) = hash(‘p4ssw0rd’)
• This enables attackers to build lists of hashes

• Solution: make each password hash unique
• Add a random salt to each password before hashing
• hash(salt + password) = password hash
• Each user has a unique, random salt
• Salts can be stores in plain text

Example Salted Hashes

cbw a8 af19c842f0c781ad726de7aba439b033
sandi 0X 67710c2c2797441efb8501f063d42fb6
amislove hz 9d03e1f28d39ab373c59c7bb338d0095
bob K@ 479a6d9e59707af4bb2c618fed89c245

hashed_and_salted_password.txt

cbw 2a9d119df47ff993b662a8ef36f9ea20
sandi 23eb06699da16a3ee5003e5f4636e79f
amislove 98bd0ebb3c3ec3fbe21269a8d840127c
bob e91e6348157868de9dd8b25c81aebfb9

hashed_password.txt

Attacking Salted Passwords

hash()
List of

possible
password

hashes

Attacking Salted Passwords

hash()
List of

possible
password

hashes

hashed_
and_salted_
password.txt

Attacking Salted Passwords

hash()
List of

possible
password

hashes

hashed_
and_salted_
password.txt

No matches

Attacking Salted Passwords

hash()
List of

possible
password

hashes

hashed_
and_salted_
password.txt

No matches

hash(‘a8’ + word)

List of
possible

password
hashes w/

salt a8

cbw a8
sandi 0X

Attacking Salted Passwords

hash()
List of

possible
password

hashes

hashed_
and_salted_
password.txt

No matches

hash(‘a8’ + word)

List of
possible

password
hashes w/

salt a8

cbw a8
sandi 0X

cbw XXXX

Attacking Salted Passwords

hash()
List of

possible
password

hashes

hashed_
and_salted_
password.txt

No matches

hash(‘a8’ + word)

List of
possible

password
hashes w/

salt a8

List of
possible

password
hashes w/

salt 0X

cbw a8
sandi 0X

hash(‘0X’ + word) cbw XXXXsandi YYYY

Breaking Hashed Passwords
• Stored passwords should always be salted
• Forces the attacker to brute-force each password individually

Breaking Hashed Passwords
• Stored passwords should always be salted
• Forces the attacker to brute-force each password individually

• Problem: it is now possible to compute hashes very quickly
• GPU computing: hundreds of small CPU cores
• nVidia GeForce GTX Titan Z: 5,760 cores
• GPUs can be rented from the cloud very cheaply
• $0.9 per hour (2018 prices)

Examples of Hashing Speed
• A modern x86 server can hash all possible 6 character

long passwords in 3.5 hours
• Upper and lowercase letters, numbers, symbols
• (26+26+10+32)6 = 690 billion combinations

Examples of Hashing Speed
• A modern x86 server can hash all possible 6 character

long passwords in 3.5 hours
• Upper and lowercase letters, numbers, symbols
• (26+26+10+32)6 = 690 billion combinations

• A modern GPU can do the same thing in 16 minutes

Examples of Hashing Speed
• A modern x86 server can hash all possible 6 character

long passwords in 3.5 hours
• Upper and lowercase letters, numbers, symbols
• (26+26+10+32)6 = 690 billion combinations

• A modern GPU can do the same thing in 16 minutes
•Most users use (slightly permuted) dictionary words, no

symbols
• Predictability makes cracking much faster
• Lowercase + numbers ! (26+10)6 = 2B combinations

Hardening Salted Passwords
• Problem: typical hashing algorithms are too fast
• Enables GPUs to brute-force passwords

• Old solution: hash the password multiple times
• Known as key stretching
• Example: crypt used 25 rounds of DES

• New solution: use hash functions that are designed to be
slow
• Examples: bcrypt, PBKDF2, scrypt
• These algorithms include a work factor that increases the time complexity of the

calculation
• scrypt also requires a large amount of memory to compute, further complicating

brute-force attacks

Slow hash movement

Pw
Salt

Iterated hash function {x times}

Hashed pwd

bcrypt Example
• Python example; install the bcrypt package

47

[cbw@localhost ~] python
>>> import bcrypt
>>> password = “my super secret password”
>>> fast_hashed = bcrypt.hashpw(password, bcrypt.gensalt(0))
>>> slow_hashed = bcrypt.hashpw(password, bcrypt.gensalt(12))
>>> pw_from_user = raw_input(“Enter your password:”)
>>> if bcrypt.hashpw(pw_from_user, slow_hashed) == slow_hashed:
… print “It matches! You may enter the system”
… else:
… print “No match. You may not proceed”

Work factor

Dealing With Breaches

Dealing With Breaches

• Suppose you build an extremely secure password storage system
• All passwords are salted and hashed by a high-work factor function

• It is still possible for a dedicated attacker to steal and crack
passwords
• Given enough time and money, anything is possible
• E.g. The NSA

• Question: is there a principled way to detect password breaches?

Honeywords
• Key idea: store multiple salted/hashed passwords for each user
• As usual, users create a single password and use it to login
• User is unaware that additional honeywords are stored with their account

Honeywords
• Key idea: store multiple salted/hashed passwords for each user
• As usual, users create a single password and use it to login
• User is unaware that additional honeywords are stored with their account
• Implement a honeyserver that stores the index of the correct password for each user
• Honeyserver is logically and physically separate from the password database
• Silently checks that users are logging in with true passwords, not honeywords

Honeywords
• Key idea: store multiple salted/hashed passwords for each user
• As usual, users create a single password and use it to login
• User is unaware that additional honeywords are stored with their account
• Implement a honeyserver that stores the index of the correct password for each user
• Honeyserver is logically and physically separate from the password database
• Silently checks that users are logging in with true passwords, not honeywords
• What happens after a data breach?
• Attacker dumps the user/password database…
• But the attacker doesn’t know which passwords are honeywords
• Attacker cracks all passwords and uses them to login to accounts
• If the attacker logs-in with a honeyword, the honeyserver raises an alert!

Honeywords Example

User Salt 1 H(PW 1) Salt 2 H(PW 2) Salt 3

cbw aB y4DvF7 fI bHDJ8l 52

User Index

cbw 2
sandi 3

Database Honeyserver

Honeywords Example

User Salt 1 H(PW 1) Salt 2 H(PW 2) Salt 3

cbw aB y4DvF7 fI bHDJ8l 52

User Index

cbw 2
sandi 3

Database Honeyserver

cbw

Honeywords Example

User Salt 1 H(PW 1) Salt 2 H(PW 2) Salt 3

cbw aB y4DvF7 fI bHDJ8l 52

User Index

cbw 2
sandi 3

Database Honeyserver

SHA512(“fI” | “p4ssW0rd”) ! bHDJ8l

cbw

Honeywords Example

User Salt 1 H(PW 1) Salt 2 H(PW 2) Salt 3

cbw aB y4DvF7 fI bHDJ8l 52

User Index

cbw 2
sandi 3

Database Honeyserver

SHA512(“fI” | “p4ssW0rd”) ! bHDJ8l

cbw

Honeywords Example

User Salt 1 H(PW 1) Salt 2 H(PW 2) Salt 3

cbw aB y4DvF7 fI bHDJ8l 52

User Index

cbw 2
sandi 3

Database Honeyserver

SHA512(“fI” | “p4ssW0rd”) ! bHDJ8l

cbw

Honeywords Example

User Salt 1 H(PW 1) Salt 2 H(PW 2) Salt 3

cbw aB y4DvF7 fI bHDJ8l 52

User Index

cbw 2
sandi 3

Database Honeyserver

SHA512(“fI” | “p4ssW0rd”) ! bHDJ8l

cbw

User PW 1 PW 2

cbw 123456 p4ssW0rd

sandi puppies iloveyou

amislove coff33 3spr3ss0

Cracked Passwords

Honeywords Example

User Salt 1 H(PW 1) Salt 2 H(PW 2) Salt 3

cbw aB y4DvF7 fI bHDJ8l 52

User Index

cbw 2
sandi 3

Database Honeyserver

SHA512(“fI” | “p4ssW0rd”) ! bHDJ8l

cbw

User PW 1 PW 2

cbw 123456 p4ssW0rd

sandi puppies iloveyou

amislove coff33 3spr3ss0

!

Cracked Passwords

Password Storage Summary
1. Never store passwords in plain text
2. Always salt and hash passwords before storing them
3. Use hash functions with a high work factor
4. Implement honeywords to detect breaches

• These rules apply to any system that needs to authenticate users
• Operating systems, websites, etc.

Password Recovery/Reset
• Problem: hashed passwords cannot be recovered (hopefully)

“Hi… I forgot my password. Can
you email me a copy? Kthxbye”

• This is why systems typically implement password reset
– Use out-of-band info to authenticate the user
– Overwrite hash(old_pw) with hash(new_pw)

• Be careful: its possible to crack password reset

Cracking Password Reset

• Typical implementations use Knowledge Based Authentication (KBA)
• What was your mother’s maiden name?
• What was your prior street address?
• Where did you go to elementary school

Cracking Password Reset

• Typical implementations use Knowledge Based Authentication (KBA)
• What was your mother’s maiden name?
• What was your prior street address?
• Where did you go to elementary school

• Problems?

Cracking Password Reset

• Typical implementations use Knowledge Based Authentication (KBA)
• What was your mother’s maiden name?
• What was your prior street address?
• Where did you go to elementary school

• Problems?
• This information is widely available to anyone
• Publicly accessible social network profiles
• Background-check services like Spokeo

Cracking Password Reset

• Typical implementations use Knowledge Based Authentication (KBA)
• What was your mother’s maiden name?
• What was your prior street address?
• Where did you go to elementary school

• Problems?
• This information is widely available to anyone
• Publicly accessible social network profiles
• Background-check services like Spokeo

• Experts recommend that services not use KBA
• When asked, users should generate random answers to these questions

Password Cracking
Password Theory
Hash Chains
Rainbow Tables

Attacker Goals and Threat Model
• Assume we have a system storing usernames and passwords
• The attacker has access to the password database/file

User H(PW)

cbw iuafNas

sandi 23asZR

Database

I wanna login to
those user accounts!

Attacker Goals and Threat Model
• Assume we have a system storing usernames and passwords
• The attacker has access to the password database/file

User H(PW)

cbw iuafNas

sandi 23asZR

User Password

cbw p4ssW0rd

Cracked Passwords

Database

I wanna login to
those user accounts!

Attacker Goals and Threat Model
• Assume we have a system storing usernames and passwords
• The attacker has access to the password database/file

User H(PW)

cbw iuafNas

sandi 23asZR

User Password

cbw p4ssW0rd

Cracked Passwords

Database

I wanna login to
those user accounts!

Password Quality
 ! 𝑆 = 𝑙𝑜𝑔2 𝑁

𝐿 𝐿 =
𝑆

𝑙𝑜𝑔2 𝑁

• How do we measure password quality? Entropy
• N – the number of possible symbols (e.g. lowercase, uppercase, numbers, etc.)
• L – the length of the password
• S – the strength of the password, in bits

• Formula tells you length L needed to achieve a desired strength S…

Password Quality
 ! 𝑆 = 𝑙𝑜𝑔2 𝑁

𝐿 𝐿 =
𝑆

𝑙𝑜𝑔2 𝑁

• How do we measure password quality? Entropy
• N – the number of possible symbols (e.g. lowercase, uppercase, numbers, etc.)
• L – the length of the password
• S – the strength of the password, in bits

• Formula tells you length L needed to achieve a desired strength S…
• … for randomly generated passwords

• Is this a realistic measure in practice?

The Strength of Random Passwords
𝑆 = 𝐿 ∗ 𝑙𝑜𝑔2𝑁

St
re

ng
th

 (B
its

)

0

50

100

150

200

Password Length (Characters)
0 10 20 30 40

26+26+10 Characters 26+26 Characters
26 Characters

Very
Weak

Very
Strong

Basic Password Cracking

• Problem: humans are terrible at generating/remembering random strings
• Passwords are often weak enough to be brute-forced
• Naïve way: systematically try all possible passwords
• Slightly smarter way: take into account non-uniform distribution of characters

• Dictionary attacks are also highly effective
• Select a baseline wordlist/dictionary full of likely passwords
• Today, the best wordlists come from lists of breached passwords

• Rule-guided word mangling to look for slight variations
• E.g. password ! Password ! p4ssword ! passw0rd ! p4ssw0rd ! password1 ! etc.

•Many password cracking tools exist (e.g. John the Ripper, hashcat)

“Deep Crack”: The EFF DES Cracker
• DES uses a 56-bit key
• $250K in 1998, capable of

brute-forcing DES keys in 56
hours
• Uses 1856 custom ASIC chips

• Similar attacks have been
demonstrated against MD5,
SHA1

“Deep Crack”: The EFF DES Cracker
• DES uses a 56-bit key
• $250K in 1998, capable of

brute-forcing DES keys in 56
hours
• Uses 1856 custom ASIC chips

• Similar attacks have been
demonstrated against MD5,
SHA1
•Modern equivalent?

“Deep Crack”: The EFF DES Cracker
• DES uses a 56-bit key
• $250K in 1998, capable of

brute-forcing DES keys in 56
hours
• Uses 1856 custom ASIC chips

• Similar attacks have been
demonstrated against MD5,
SHA1
•Modern equivalent?
• Bitcoin mining ASICs

Speeding Up Brute-Force Cracking

• Brute force attacks are slow because hashing is CPU intensive
• Especially if a strong function (SHA512, bcrypt) is used

Speeding Up Brute-Force Cracking

• Brute force attacks are slow because hashing is CPU intensive
• Especially if a strong function (SHA512, bcrypt) is used

• Idea: why not pre-compute and store all hashes?
• You would only need to pay the CPU cost once…
• … for a given salt

• Given a hash function H, a target hash h, and password space P, goal is to
recover such that 𝑝 ∈ 𝑃 𝐻(𝑝) = h

Speeding Up Brute-Force Cracking

• Brute force attacks are slow because hashing is CPU intensive
• Especially if a strong function (SHA512, bcrypt) is used

• Idea: why not pre-compute and store all hashes?
• You would only need to pay the CPU cost once…
• … for a given salt

• Given a hash function H, a target hash h, and password space P, goal is to
recover such that 𝑝 ∈ 𝑃 𝐻(𝑝) = h
• Problem: naïve approach requires Θ(|P|n) bits, where n is the space of

the output of H

Hash Chains
• Hash chains enable time-space efficient reversal of hash functions
• Key idea: pre-compute chains of passwords of length k…
• … but only store the start and end of each chain
• Larger k ! fewer chains to store, more CPU cost to rebuild chains
• Small k ! more chains to store, less CPU cost to rebuild chains

Hash Chains
• Hash chains enable time-space efficient reversal of hash functions
• Key idea: pre-compute chains of passwords of length k…
• … but only store the start and end of each chain
• Larger k ! fewer chains to store, more CPU cost to rebuild chains
• Small k ! more chains to store, less CPU cost to rebuild chains

• Building chains require H, as well as a reduction R : H ↦ P
• Begin by selecting some initial set of password 𝑃′ ⊂ 𝑃
• For each ’, apply for k iterations𝑝′ ∈ 𝑃 𝐻(𝑝′) = h′ , 𝑅(h′) = 𝑝′ ′

• Only store and 𝑝′ 𝑝′
𝑘

Hash Chains
• Hash chains enable time-space efficient reversal of hash functions
• Key idea: pre-compute chains of passwords of length k…
• … but only store the start and end of each chain
• Larger k ! fewer chains to store, more CPU cost to rebuild chains
• Small k ! more chains to store, less CPU cost to rebuild chains

• Building chains require H, as well as a reduction R : H ↦ P
• Begin by selecting some initial set of password 𝑃′ ⊂ 𝑃
• For each ’, apply for k iterations𝑝′ ∈ 𝑃 𝐻(𝑝′) = h′ , 𝑅(h′) = 𝑝′ ′

• Only store and 𝑝′ 𝑝′
𝑘

• To recover hash h, apply R and H until the end of a chain is found
• Rebuild the chain using and 𝑝′ 𝑝′

𝑘

• H(p) = h may be within the chain

Uncompressed Hash Chain Example

p' H(p’) = h’ R(h’) = p” H(p”) = h”

abcde \\WPNP_ vlsfqp _QOZLR

passw VZDGEF gfnxsk ZLGEKV

12345 SM-QK\9 sawtzg RHKP_D

K = 3

Uncompressed Hash Chain Example

p' H(p’) = h’ R(h’) = p” H(p”) = h”

abcde \\WPNP_ vlsfqp _QOZLR

passw VZDGEF gfnxsk ZLGEKV

12345 SM-QK\9 sawtzg RHKP_D

K = 3

Only these two columns
get stored on disk

Hash Chain Example
p' p*
abcde cjldar

passw zvxscs

12345 wjizbn

secrt eivlqcp H(p) = h R(h) = p’ H(p’) = h’ R(h’) = p”

sawtzg RHKP_D gvmdwm BYE4LB wjizbn

K = 3

Hash Chain Example
p' p*
abcde cjldar

passw zvxscs

12345 wjizbn

secrt eivlqcp H(p) = h R(h) = p’ H(p’) = h’ R(h’) = p”

sawtzg RHKP_D gvmdwm BYE4LB wjizbn

Hash to recover

K = 3

Hash Chain Example
p' p*
abcde cjldar

passw zvxscs

12345 wjizbn

secrt eivlqcp H(p) = h R(h) = p’ H(p’) = h’ R(h’) = p”

sawtzg RHKP_D gvmdwm BYE4LB wjizbn

Hash to recoverDesired password

K = 3

Hash Chain Example
p' p*
abcde cjldar

passw zvxscs

12345 wjizbn

secrt eivlqcp H(p) = h R(h) = p’ H(p’) = h’ R(h’) = p”

sawtzg RHKP_D gvmdwm BYE4LB wjizbn

Hash to recoverDesired password

K = 3

Hash Chain Example
p' p*
abcde cjldar

passw zvxscs

12345 wjizbn

secrt eivlqcp H(p) = h R(h) = p’ H(p’) = h’ R(h’) = p”

sawtzg RHKP_D gvmdwm BYE4LB wjizbn

Hash to recoverDesired password

K = 3

p' H(p’) = h’ R(h’) = p” H(p”) = h”

12345 SM-QK\9 sawtzg RHKP_D

Hash Chain Example
p' p*
abcde cjldar

passw zvxscs

12345 wjizbn

secrt eivlqcp H(p) = h R(h) = p’ H(p’) = h’ R(h’) = p”

sawtzg RHKP_D gvmdwm BYE4LB wjizbn

Hash to recoverDesired password

K = 3

p' H(p’) = h’ R(h’) = p” H(p”) = h”

12345 SM-QK\9 sawtzg RHKP_D

Hash Chain Example
p' p*
abcde cjldar

passw zvxscs

12345 wjizbn

secrt eivlqcp H(p) = h R(h) = p’ H(p’) = h’ R(h’) = p”

sawtzg RHKP_D gvmdwm BYE4LB wjizbn

Hash to recoverDesired password

K = 3

p' H(p’) = h’ R(h’) = p” H(p”) = h”

12345 SM-QK\9 sawtzg RHKP_D

• Size of the table is dramatically
reduced…
• … but some computation is necessary

once a match is found

Problems with Hash Chains

• Hash chains are prone to collisions
• Collisions occur when H(p’) = H(p”) or R(h’) = R(h”) (the latter is more likely)
• Causes the chains to merge or overlap

• Problems caused by collisions
• Wasted space in the file, since the chains cover the same password space
• False positives: a chain may not include the password even if the end matches

• Proper choice of R() is critical
• Goal is to cover likely password space, not entire password space
• R cannot be collision resistant (like H) since it has to map into likely plaintexts
• Difficult to select R under this criterion

Rainbow Tables

• Rainbow tables improve on hash chains by reducing the likelihood
of collisions
• Key idea: instead of using a single reduction R, use a family of

reductions {R1, R2, … , Rk}
• Usage of H is the same as for hash chains
• A collisions can only occur between two chains if it happens at the same position (e.g. Ri in

both chains)

Final Thoughts on Rainbow Tables

• Caveats
• Tables must be built for each hash function and character set
• Salting and key stretching defeat rainbow tables

• Rainbow tables are effective in some cases, e.g. MD5 and NTLM
• Precomputed tables can be bought or downloaded for free

