Algorithms

abhi shelat Jan 18 2022

let me intro myself

first goal: create an amazing learning experience

second goal: share basic beautiful ideas from computer science

third goal: help prepare you for a job in cs

what is this course about?

Theme 1

Small problems are easy to solve

Theme 1

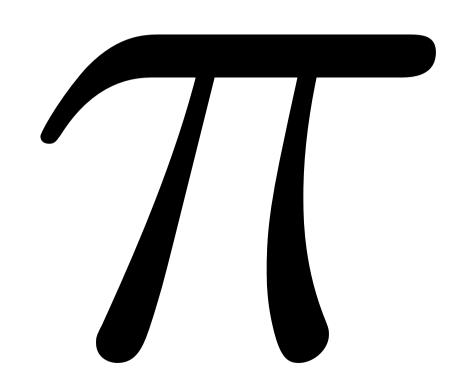
Small problems are easy to solve

Solve big problems by making them into smaller ones

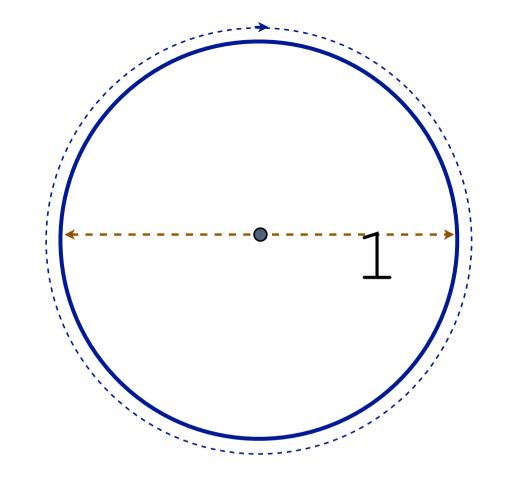
Theme 2

Learning how to convince through reason is a great mark of understanding

great pyramid at giza 2500bc

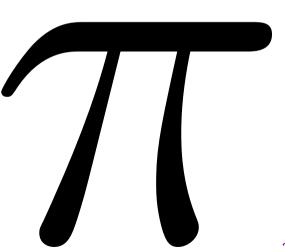


http://www.cupertino.org/inc/pdf/apple/Renderings.pdf



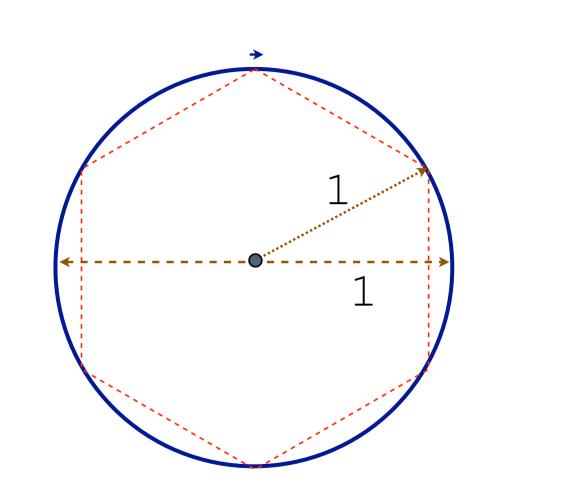
"how much granite/glass do i need?"

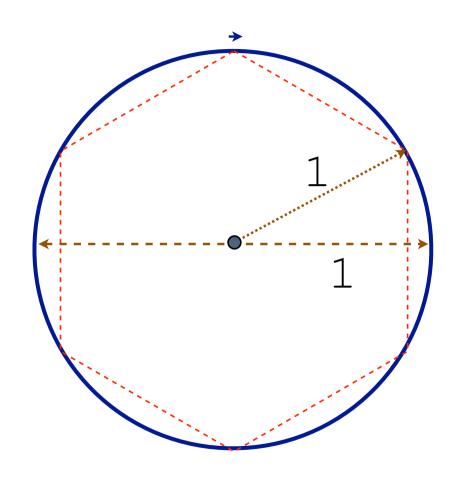
algorithm to compute



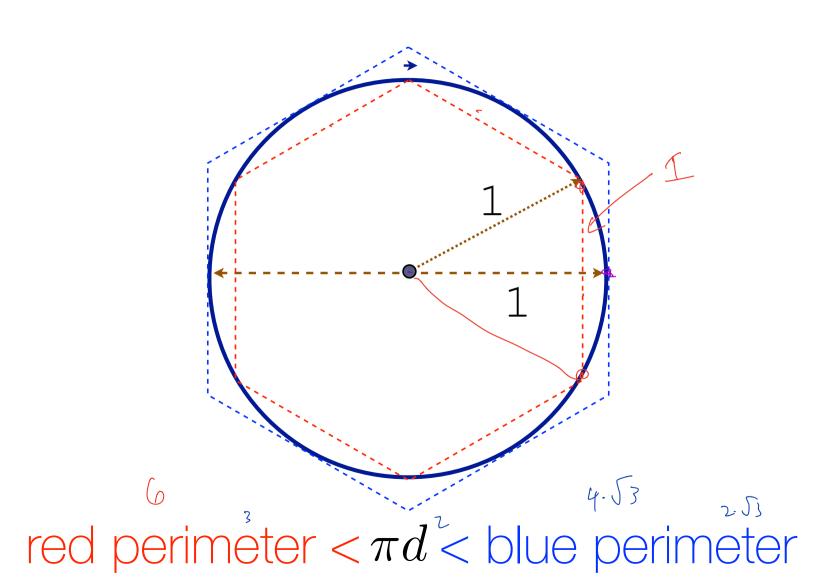
Written down by Archimedes

Idea: It is OK to approximate





 $\text{red perimeter} < \pi d$



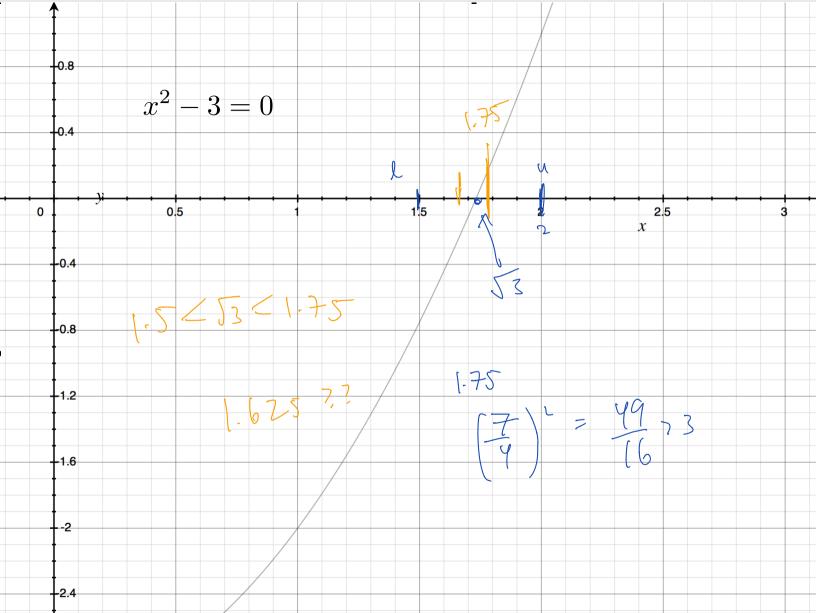
$$\tan(30) = \frac{1}{\sqrt{3}}$$

$$y = \frac{1}{\sqrt{3}}$$

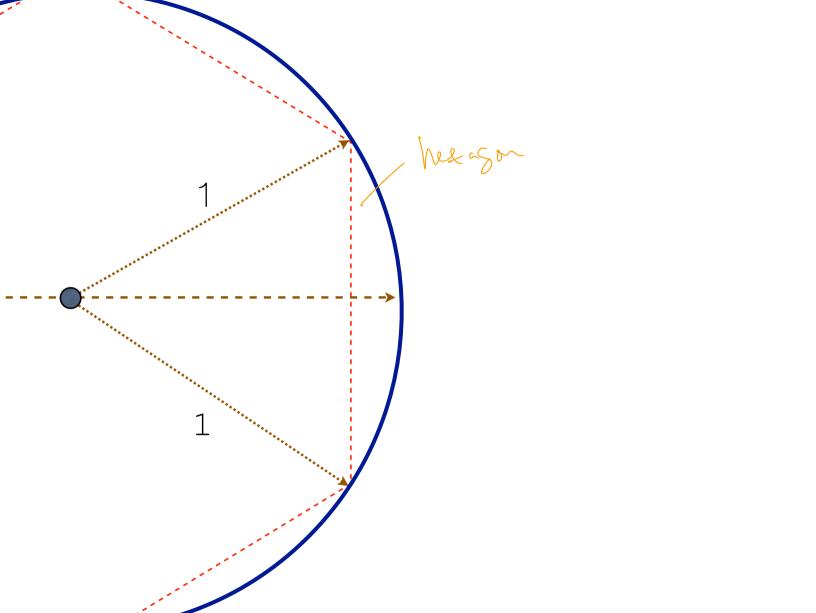
$$\text{entre blue perimeter} = \frac{12}{\sqrt{3}} = \frac{4.\sqrt{3}}{\sqrt{3}}$$

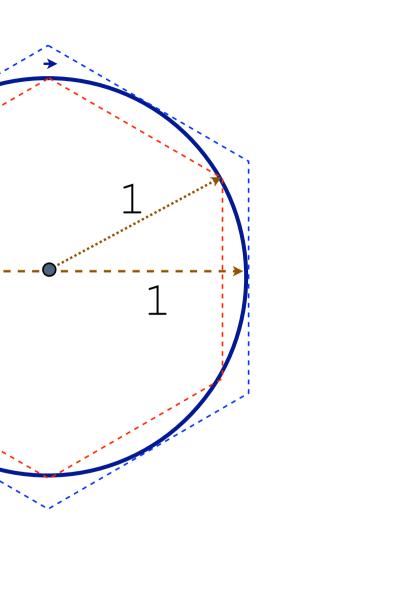
But what is 3

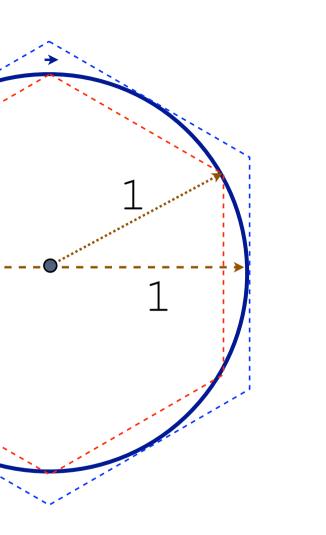
Theme1: reduce the main problem to a simpler one



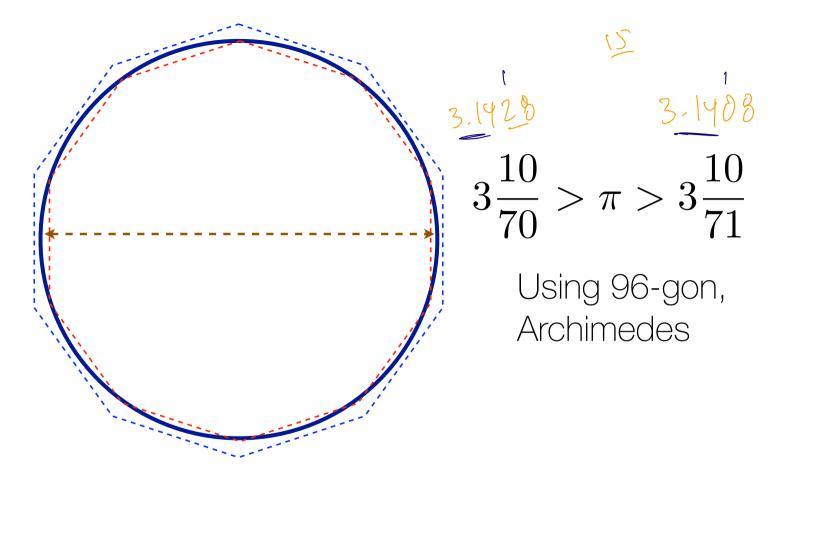
$\frac{265}{153} \approx \sqrt{3}$







red perimeter $<\pi d<$ blue perimeter

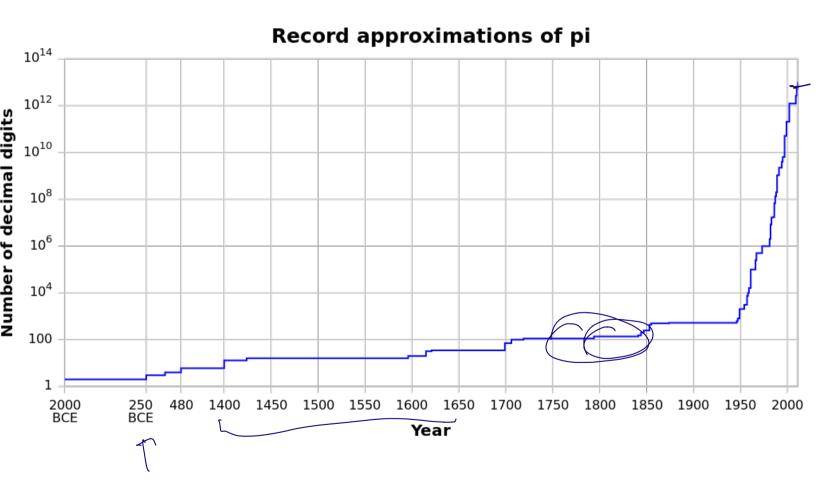


how to analyze this approach?

efficiency analysis.

accuracy versus work

tradeoff



Theme3: new insights lead to improved efficiency

$\pi = \frac{9801}{\sqrt{8}} \left(\sum_{n=0}^{\infty} \frac{(4n)!(1103 + 26390n)}{(n!)^4 396^{4n}} \right)^{-1}$

$$\pi = \frac{9801}{\sqrt{8}} \left(\sum_{n=0}^{\infty} \frac{(4n)!(1103 + 26390n)}{(n!)^4 396^{4n}} \right)^{-1}$$

$$\bigcap = \bigcirc$$

$$(0!) ((03))$$

$$T = \frac{9801}{18} \cdot \left(\frac{1}{103}\right)$$

01.396°

$$\pi = \frac{9801}{\sqrt{8}} \left(\sum_{n=0}^{\infty} \frac{(4n)!(1103 + 26390n)}{(n!)^4 396^{4n}} \right)^{-1}$$

$$n=0$$

$$\pi \approx_0 \frac{9801}{\sqrt{8}} [1103]^{-1}$$

$$\pi = \frac{9801}{\sqrt{8}} \left(\sum_{n=0}^{\infty} \frac{(4n)!(1103 + 26390n)}{(n!)^4 396^{4n}} \right)^{-1}$$

 $\pi = \frac{9801}{\sqrt{8}} \left(\sum_{n=0}^{\infty} \frac{(4n)!(1103 + 26390n)}{(n!)^4 396^{4n}} \right)^{-1}$

$$n=1$$

$$\pi \approx_1 \frac{9801}{\sqrt{8}} \left[1103 + \frac{24 \cdot 27493}{3964} \right]^{-1}$$

3.14159265358979387799890582630

benefits?

much faster convergence for the amount of work. good algorithms touch every aspect of our lives

Google

good algorithms defend freedom

need for this course?

what skills do you

-precision

-creativity

in·ge·nu·i·ty

how to learn in this class

no cookbook

develop general problem solving skills

understand known techniques

work with your peers

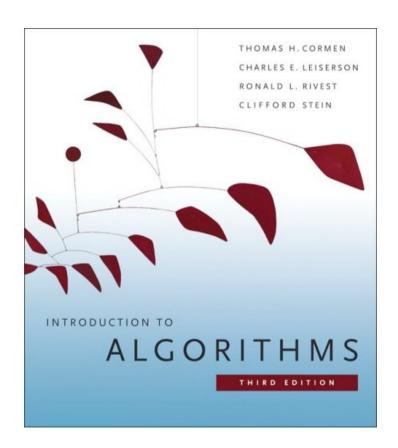
work with your peers

but do not copy

https:// shelat.khoury .northeastern \cdot edu/22s-5800

INTRODUCTION TO

ALGORITHMS



coursera

 $\stackrel{\longleftarrow}{\equiv}$ Catalog

algorithms

Q

Instituti

Availability

This Month

53

- 1-2 months
 2-3 months
- Show More

All Topics

- Computer 54
 Science
- Data Science 41
- Life Sciences 13

You searched for algorithms. 118 matches

Algorithms, Part I

Princeton University

Approximation Algorithms Part I

École normale supérieure

guide to latex

Q

Search

About 41,900,000 results

Web

[PDF] The Not So Short Introduction to LaTeX - Tobi Oetiker - Oetiker+ ...

tobi.oetiker.ch/lshort/lshort.pdf

a LATEX installation is available, ready to use. Information on how to access the local LATEX installation should be provided in the Local **Guide** [5]. If you.

Images Videos News

More

LaTeX - Wikibooks, open books for an open world

en.wikibooks.org/wiki/LaTeX - Cached
Shopping
This is a guide to the LaTeX markup.

This is a **guide** to the **LaTeX** markup language. It is intended to form a useful resource for everybody from new users who wish to learn, to old hands who need a ...

LaTeX/Mathematics - LaTeX/Document Structure - LaTeX/Text Formatting - Links

Show search tools

[PDF] Short Math Guide for LaTeX - FTP Directory Listing - American ...

ftp://ftp.ams.org/pub/tex/doc/amsmath/short-math-guide.pdf

Short Math **Guide** for **LATEX**. Michael Downes. American Mathematical Society. Version 1.09 (2002-03-22), currently available at.

Guide to LaTeX (4th Edition): Helmut Kopka, Patrick W. Daly ...

www.amazon.com/Guide-LaTeX-Edition-Helmut.../0321173856 - Cached

Guide to LaTeX (4th Edition) [Helmut Kopka, Patrick W. Daly] on Amazon.com. * FREE* super saver shipping on qualifying offers. Published Nov 25, 2003 by ...

[PDF] A Beginner's Guide to LATEX - Princeton University

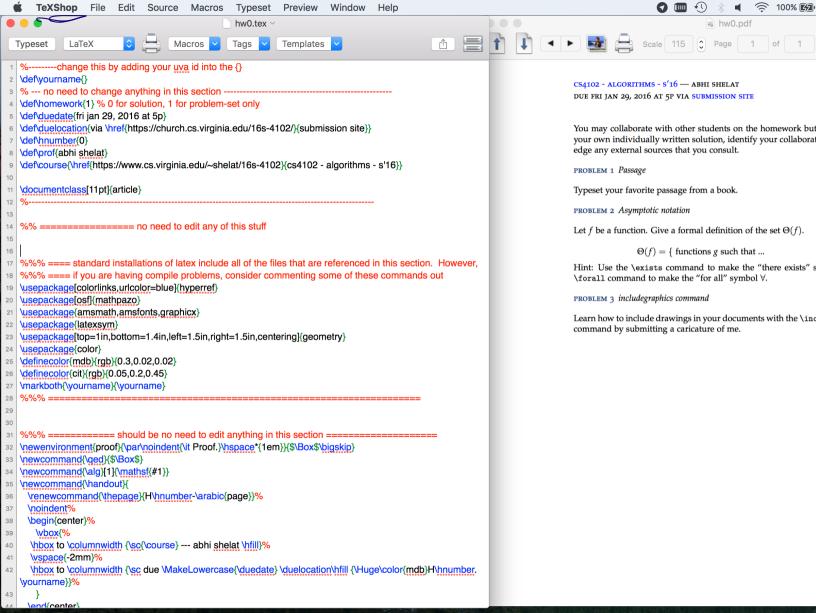
www.cs.princeton.edu/courses/archive/spr10/cos433/Latex/latex-guide.pdf - Cached - Similar

A Beginner's **Guide to LATEX**. David Xiao dxiao@cs.princeton.edu. September 12, 2005. 1 Introduction. LATEX is the standard mathematical typesetting ...

LaTeX documentation

The Not So Short Introduction to LATEX 2ε

Or $ET_EX 2\varepsilon$ in 157 minutes



texshop

All Videos Images News Shopping More ▼ Search tools

About 189,000 results (0.37 seconds)

TeXShop

pages.uoregon.edu/koch/texshop/ ▼ University of Oregon ▼ TeXShop (v 3.59) Release 01/01/2016. (Mountain Lion or Higher Strongly Recommended). (for Lion, Mountain Lion, Mavericks, Yosemite, El Capitan) ...

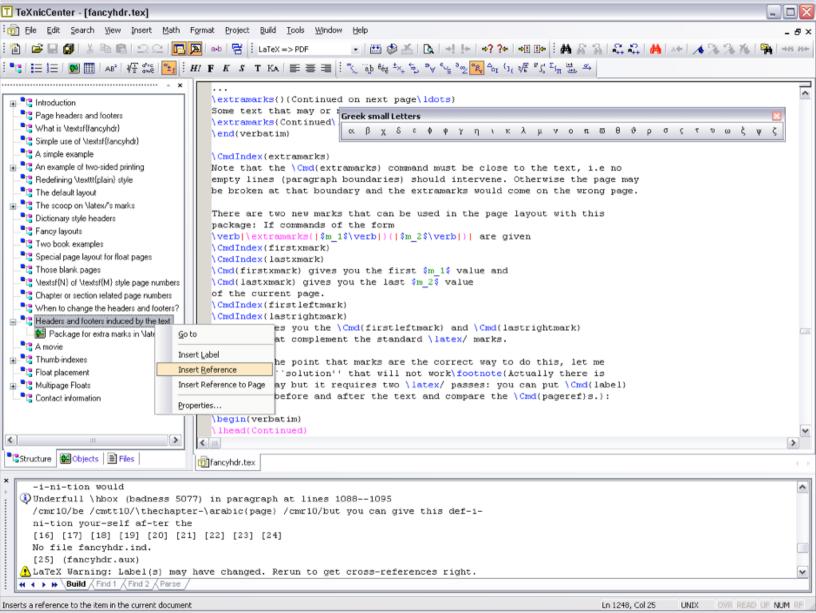
Obtaining TeXShop

Obtaining TeXShop. If you just want to upgrade to the latest ...

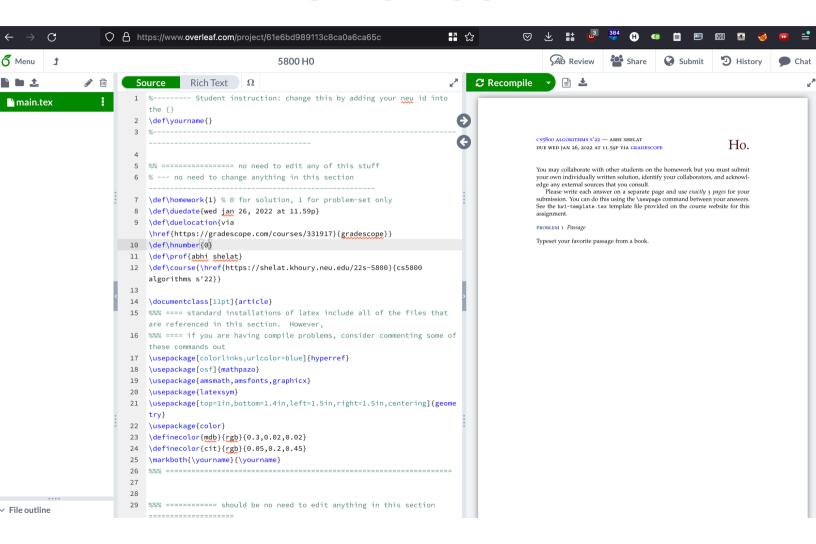
More results from uoregon.edu »

Installing

Direct Download: TeXShop 3 for Lion | Lion Source | TeXShop 2 ...



Overleaf

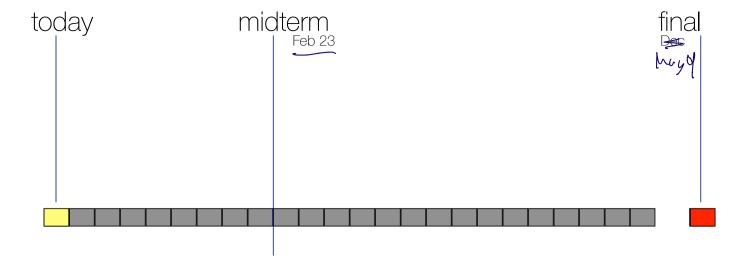


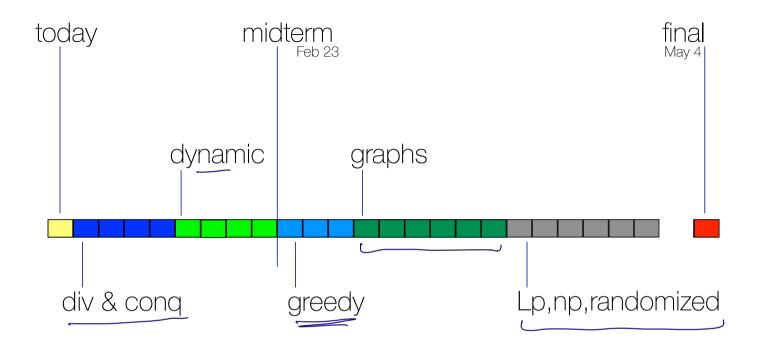
Submitting HW

gradescope

Honor Policy

- I, _____, do hereby certify on my honor that during this course,
- 1. I shall write my answers entirely by myself, and neither share nor request text, code, or drawings.
- 2. I will not give or derive assistance from any unauthorized sources or the web.





counting

First example of an algorithmic pattern based on I1 and I2

1 stand

- 1 stand
- set your "number" to one

- 1 stand
- set your "number" to one
- greet your neighbor (pause if no partner)

- 1 stand
- set your "number" to one
- greet your neighbor (pause if no partner)
- if you are older, give "number" and sit if you are younger, add "numbers"

- 1 stand
- 2 set your "number" to one
- greet your neighbor (pause if no partner)
- if you are older, give "number" and sit if you are younger, add "numbers"
- if you are standing & you have a neighbor, goto 3

lets analyze this alg

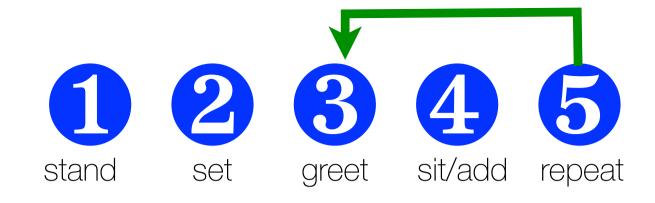
Our model of computation

Basic op: 1 unit

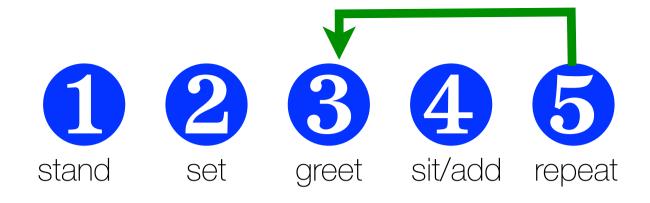
Set, Greet, add, compare, sit

Simplify: in each round, every standing person can do 1 op

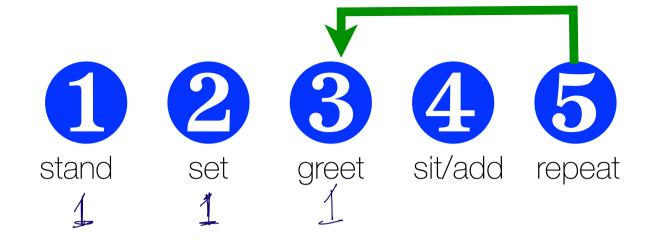
Lets count # of rounds until we finish



how fast does it work:

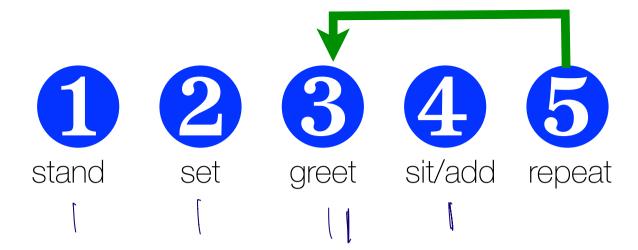


how fast does it work:



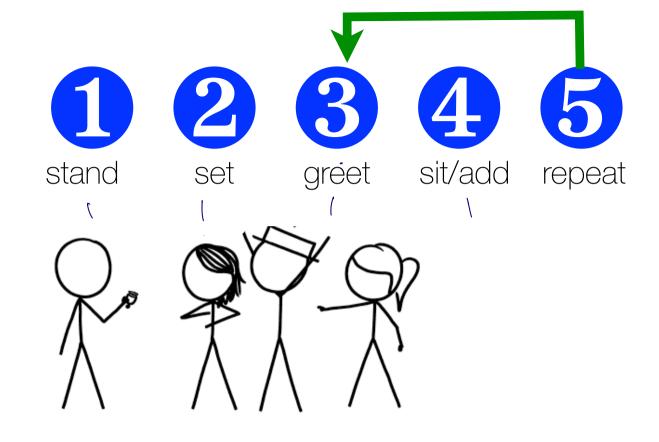
Simple case: 1 person

$$T(1) = 3$$

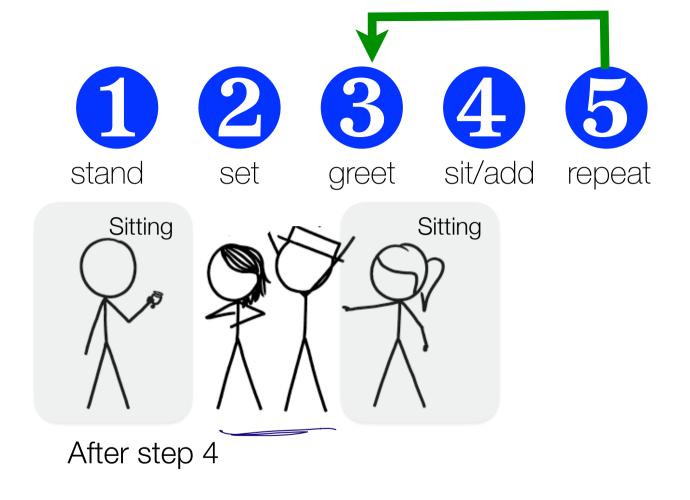


Simple case: 2 people

$$T(2) = 5$$



$$T(4) = 4 + 12$$



T(4) =

These steps only happen once.

What about these?

11:Approx is OK

how fast does it work:

$$T(n) = 1 + 1 + T(\lceil n/2 \rceil)$$

how fast does it work:

$$T(n) = 1 + 1 + T(\lceil n/2 \rceil)$$

$$T(1) = 3$$

This is a recurrence

$$T(n) = T(\lceil n/2 \rceil) + 2$$
$$T(1) = 3$$

solve a simpler case when n is a power of 2.

 $T(2^k) = 2 + T(2^{k-1})$

$T(2^k) = 2 + T(2^{k-1})$

$$T(2^k) = 2 + T(2^{k-1})$$

= $2 + 2 + T(2^{k-2})$

$$T(2^{k}) = 2 + T(2^{k-1})$$

$$= 2 + 2 + T(2^{k-2})$$

$$= 2 + 2 + \cdots + 2 + T(2^{0})$$

$$T(2^{k}) = 2 + T(2^{k-1})$$

$$= 2 + 2 + T(2^{k-2})$$

$$= 2 + 2 + \cdots + 2 + T(2^{0})$$

= 2k + T(1)

Other cases?

 $T(2^k) = 2 + T(2^{k-1})$

$T(2^k) = 2 + T(2^{k-1})$ "Intuition here" = $2 + 2 + T(2^{k-2})$

Other cases?

$$T(2^{k}) = 2 + T(2^{k-1})$$
$$= 2 + 2 + T(2^{k-2})$$

$$= \underbrace{2 + 2 + \dots + 2}_{k} + T(2^{0})$$

Other cases?

$$T(2^{k}) = 2 + T(2^{k-1})$$
$$= 2 + 2 + T(2^{k-2})$$

$$= \underbrace{2 + 2 + \dots + 2}_{k} + T(2^{0})$$
$$= 2k + T(1)$$

Other cases?

Idea1: It is OK to approximate

Asymptotic notation

This notation represents a set

Asymptotic notation

O(g)

Set of functions that are at most within const of g for large n

Asymptotic notation

at most within const of g

for large n

$$\Omega(g)$$

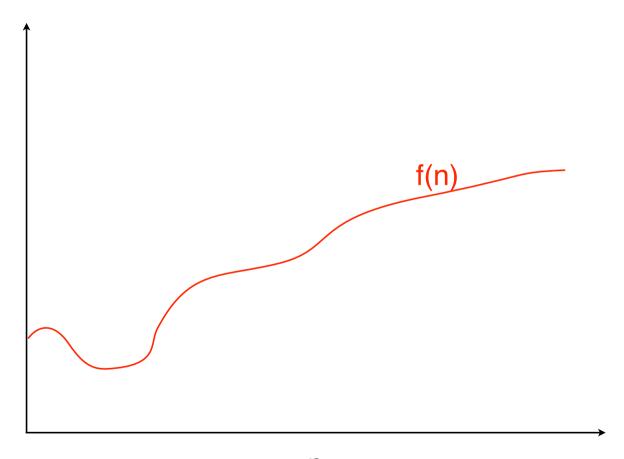
at least within const of g fo

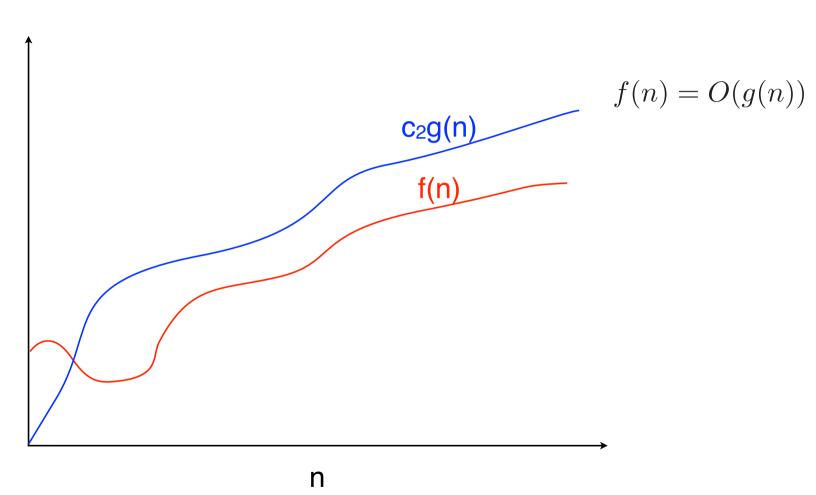
for large n

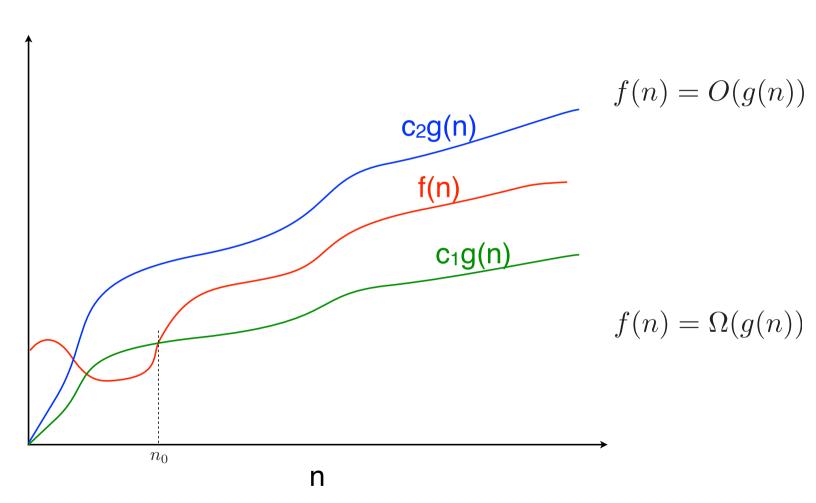
$$\Theta(g)$$

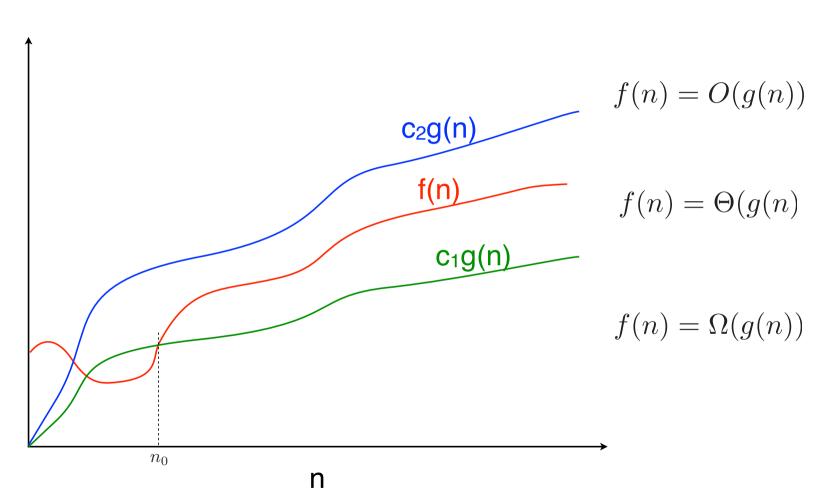
within a const of g

for large n









$$T(2^k) = 2 + T(2^{k-1})$$

$$= 2 + 2 + T(2^{k-2})$$

$$= \underbrace{2 + 2 + \dots + 2}_{k} + T(2^{0})$$
$$= 2k + T(1) = O(\log(2^{k}))$$

$$T(2^k) = 2 + T(2^{k-1})$$

$$= 2 + 2 + T(2^{k-2})$$

$$= \underbrace{2 + 2 + \dots + 2}_{k} + T(2^{0})$$

$$= 2k + T(1) = O(\log(2^k))$$

$$\forall 0 < n < m, T(n) \leq T(m)$$

$$T(m) \le T(2^{\lceil \log(m) \rceil}) = 2\lceil \log(m) \rceil + 2$$

$$T(2^k) = 2 + T(2^{k-1})$$

$$= 2 + 2 + T(2^{k-2})$$

$$= 2 + 2 + \dots + 2 + T(2^{0})$$

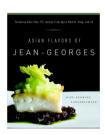
$$= 2k + T(1) = O(\log(2^{k}))$$

$$\forall 0 < n < m, T(n) \leq T(m)$$

$$T(m) \le T(2^{\lceil \log(m) \rceil}) = 2\lceil \log(m) \rceil + 2$$

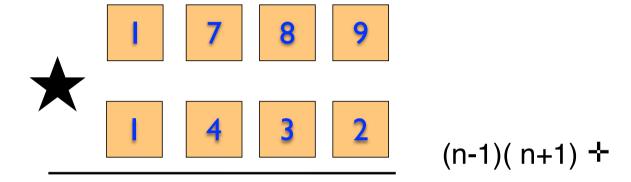
$$T(m) = \Omega(\log(m))$$
$$= \Theta(\log(m))$$

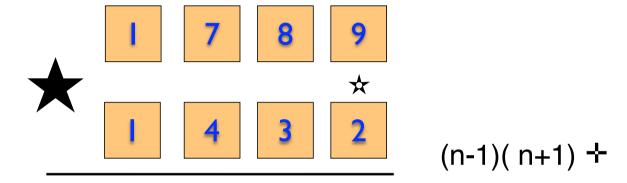
How to solve recurrence relations

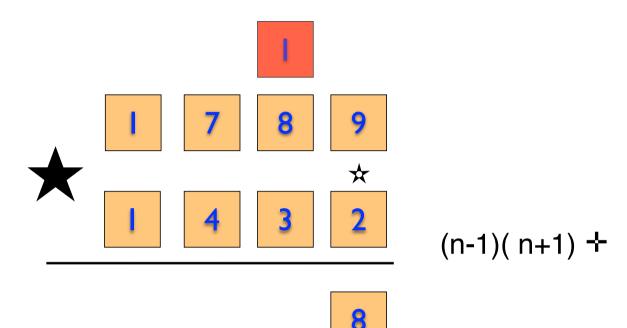


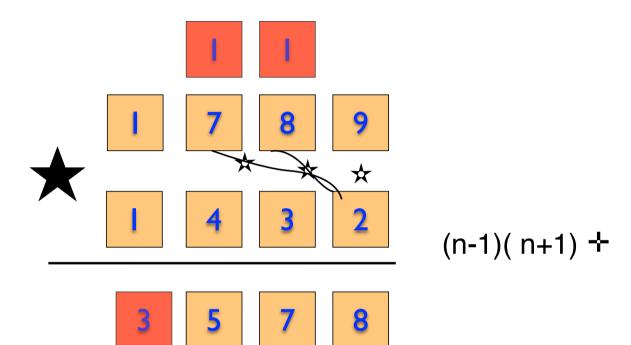
Multiplication

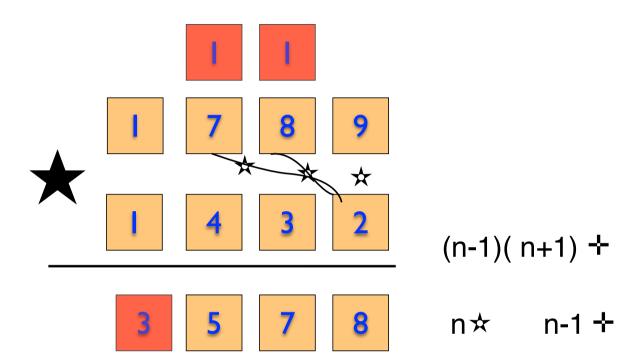
How much work does it take?

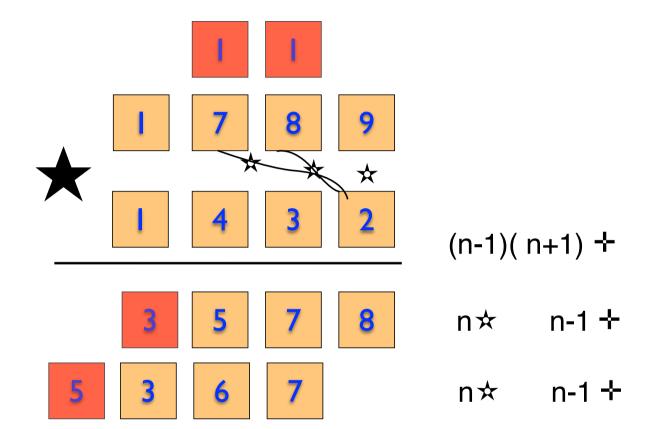


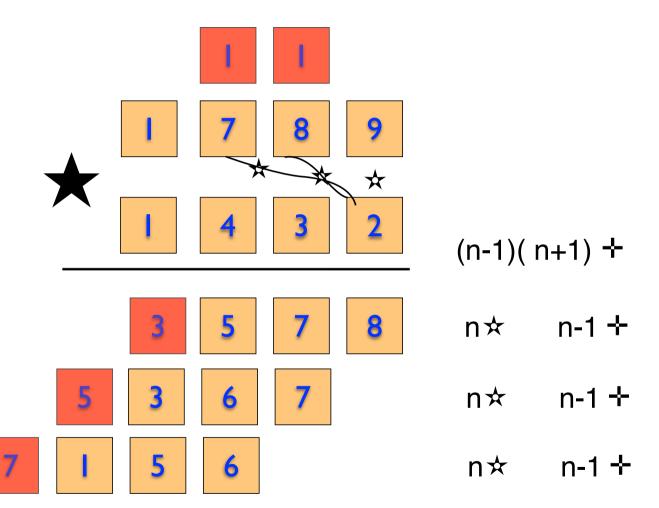


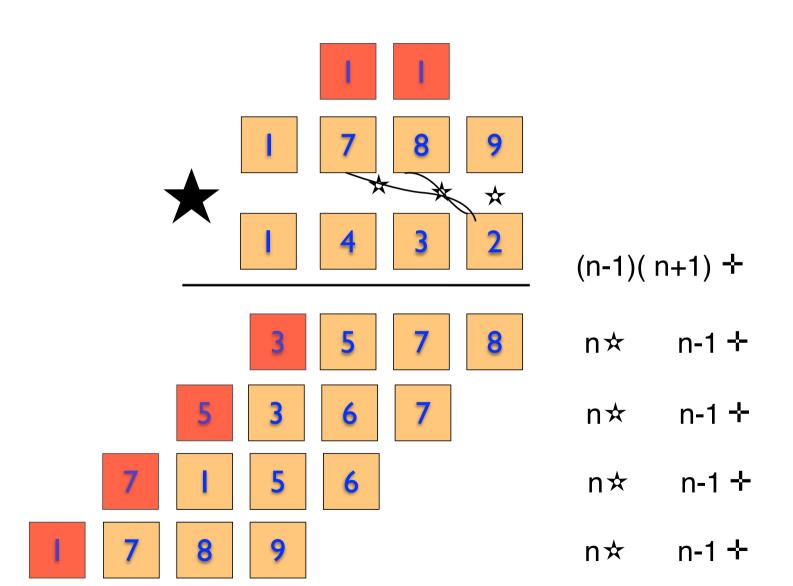


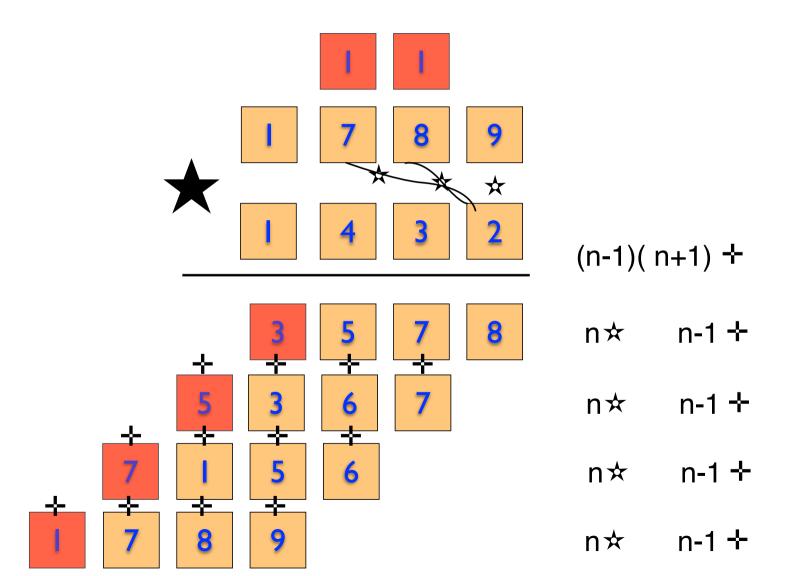


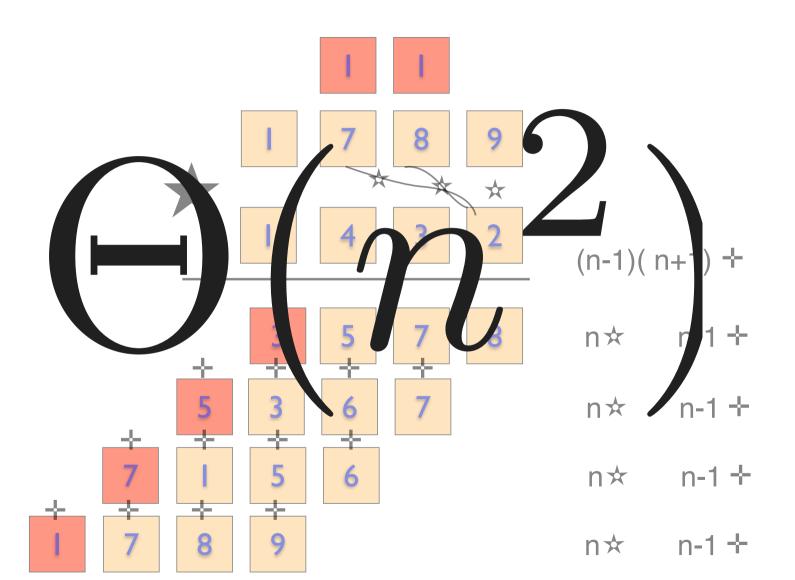






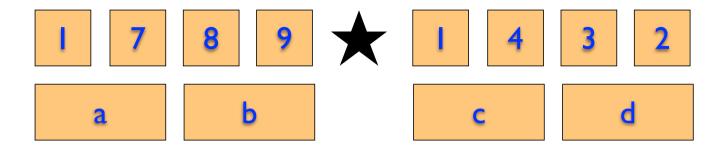


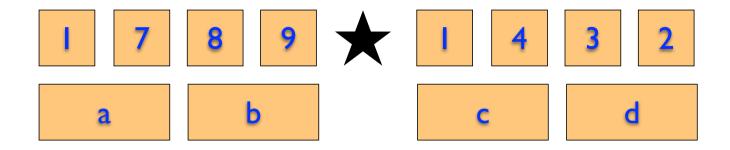




Theme 1

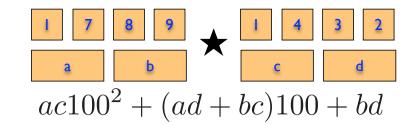
A first attempt...





$$ac100^2 + (ad + bc)100 + bd$$

Mult(ab, cd)



Base case: return b*d if inputs are 1-digit

Mult(ab, cd)

$$a = b$$
 $a = ac 100^2 + (ad + bc)100 + bd$

Base case: return b*d if inputs are 1-digit

Compute x = Mult(a,c)

Compute y = Mult(a,d)

Compute z = Mult(b,c)

Compute w = Mult(b,d)

Return $r = x^*100^2 + (y+z)100 + w$

T(n) = 4T(n/2) + 3O(n)

