
abhi shelat
Jan 182022
let me intro myself
first goal: create an amazing learning
experience
second goal: share basic beautiful ideas
from computer science
third goal: help prepare you for a job in Cs

$$
\begin{aligned}
& \text { What is this } \\
& \text { course about? }
\end{aligned}
$$

Small problems are easy to solve

Theme 1

Small problems are easy to solve

Solve big problems by making them into smaller ones

Learning how to convince through reason is a great mark of understanding

great pyramid at giza 2500bc

$$
\pi
$$

http://www.cupertino.org/inc/pdf/apple/Renderings.pdf

"how much granite/glass do i need?"

Written down by Archimedes

to approximate

red perimeter $<\pi d$

red perimeter $<\pi d<$ blue perimeter

$$
\theta
$$

But what is

Theme1: reduce

 the main problemto a simpler one

265

$$
\overline{153}
$$

$$
\approx \sqrt{3}
$$

how to analyze this approach?

Record approximations of pi

Theme3: new insights lead to
 improved
 efficiency

$$
\pi=\frac{9801}{\sqrt{8}}\left(\sum_{n=0}^{\infty} \frac{(4 n)!(1103+26390 n)}{(n!)^{4} 396^{4 n}}\right)^{-1}
$$

$$
\pi=\frac{9801}{\sqrt{8}}\left(\sum_{n=0}^{\infty} \frac{(4 n)!(1103+26390 n)}{(n!)^{4} 396^{4 n}}\right)^{-1}
$$

$$
\pi=\frac{9801}{\sqrt{8}}\left(\sum_{n=0}^{\infty} \frac{(4 n)!(1103+26390 n)}{(n!)^{4} 396^{4 n}}\right)^{-1}
$$

$$
n=0
$$

$$
\pi \approx_{0} \frac{9801}{\sqrt{8}}[1103]^{-1}
$$

3.14159273001330576017

$$
\pi=\frac{9801}{\sqrt{8}}\left(\sum_{n=0}^{\infty} \frac{(4 n)!(1103+26390 n)}{(n!)^{4} 396^{4 n}}\right)^{-1}
$$

$$
\pi=\frac{9801}{\sqrt{8}}\left(\sum_{n=0}^{\infty} \frac{(4 n)!(1103+26390 n)}{(n!)^{4} 396^{4 n}}\right)^{-1}
$$

$$
n=1
$$

$$
\pi \approx_{1} \frac{9801}{\sqrt{8}}\left[1103+\frac{24 \cdot 27493}{396^{4}}\right]^{-1}
$$

$$
3.14159265358979387799890582630
$$

benefits?

good algorithms touch

 every aspect of our lives
Fed x.

amazon

at\&t

good algorithms
 defend freedom

what skills do you need for this course?

in•ge•nu•i•ty

$$
\begin{aligned}
& \text { how to learn } \\
& \text { in this class }
\end{aligned}
$$

no cookbook

develop
general problem
solving
skills

$$
\begin{aligned}
& \text { understand } \\
& \text { known } \\
& \text { techniques }
\end{aligned}
$$

$$
\begin{aligned}
& \text { work with your } \\
& \text { peers }
\end{aligned}
$$

work with your peers

but do not copy

$$
\frac{\text { https:// }}{\text { shelat.khoury }}
$$

. northeastern
. edu / 22s-5800

INTRODUCTION TO

ALGORITHMS

Availability

\square This Month
1-2 months
2-3 months
Show More

All Topics
Computer
Science
Data Science41
Life Sciences 13

You searched for algorithms. 118 matches

Algorithms, Part I
Princeton University

Approximation Algorithms Part I

École normale supérieure

Google

guide to latex

Web	${ }^{[P D F]}$ The Not So Short Introduction to LaTeX - Tobi Oetiker - Oetiker+ ...
	tobi.oetiker.ch/lshort/lshort.pdf
Images	a LATEX installation is available, ready to use. Information on how to access the local
Videos	LATEX installation should be provided in the Local Guide [5]. If you.
News	LaTeX - Wikibooks, open books for an open world
	en.wikibooks.org/wiki/LaTeX - Cached
Shopping	This is a guide to the LaTeX markup language. It is intended to form a useful resource for everybody from new users who wish to learn, to old hands who need a ...
More	LaTeX/Mathematics - LaTeX/Document Struc/ure - LaTeX/Text Formatting - Links \square
Show search tools	$\mathrm{ftp}: / / \mathrm{ftp} . \mathrm{ams}$. org/pub/tex/doc/amsmath/s Short Math Guide for LATEX. Michael Dornees. American Mathematical Society. Version 1.09 (2002-03-22), currently available at.

Guide to LaTeX (4th Edition): Helmut Kopka, Patrick W. Daly ...
www.amazon.com/Guide-LaTeX-Edition-Helmut.../0321173856-Cached
Guide to LaTeX (4th Edition) [Helmut Kopka, Patrick W. Daly] on Amazon.com. * FREE* super saver shipping on qualifying offers. Published Nov 25, 2003 by ...
[PDF] A Beginner's Guide to LATEX - Princeton University
www.cs.princeton.edu/courses/archive/spr10/cos433/Latex/latex-guide.pdf - Cached Similar
A Beginner's Guide to LATEX. David Xiao dxiao@cs.princeton.edu. September 12, 2005.1 Introduction. LATEX is the standard mathematical typesetting ...

LaTeX documentation

The Not So Short Introduction to $\mathrm{LAT}_{\mathrm{E}} \mathrm{X} 2 \varepsilon$

Or (AT_{E}X2\varepsilon\)in157minutesIdeflyourname\{\}\%---noneedtochangeanythinginthissection\defhomework\{1\}\%0forsolution,1forproblem-setonlyIdeflduedatééfrijan29,2016at5p\}\deflduelocation\{viaVhref\{https://church.cs.virginia.edu/16s-4102/\{submissionsite\}\}\defhnumber\{0\}\deflprof\{abhishelat\}\deflcourse\{\href\{https://www.cs.virginia.edu/~shelat/16s-4102\}cs4102-algorithms-s'16\}\}Idocumentclasss[11pt]\{article\}\%-$\%\%=================$noneedtoeditanyofthisstuff|$\%\%\%====$standardinstallationsoflatexincludeallofthefilesthatarereferencedinthissection.However,$\%\%\%====$ifyouarehavingcompileproblems,considercommentingsomeofthesecommandsout\usepackage[colorlinks,urlcolor=blue]\{hyperref\}lusepackage[osff]\{mathpazo\}lusepackage\{amsmath,amsfonts,graphicx\}\usepackagéatexsym\}lusepackage[top=1in,bottom=1.4in,left=1.5in,right=1.5in,centering]\{geometry\}lusepackagécolor\}Idefinecolor\{mdb\}\{rgb,\{0.3,0.02,0.02\}Idefinecolor\{cit$\{$rgb$\}0.05,0.2,0.45\}$Imarkboth\{yourname\}ไyourname\}\%\%\%$\qquad$$\%\%\%============$shouldbenoneedtoeditanythinginthissection\newcommand\{\ged$\{\$$Box\$\}\newcommand\{lalg\}\{1]Kmathsf\{\#1\}\}\newcommand\{\handout\}(H\hnumber-\arabic\{page\}\}\%\noindent\%bbegin\{center\}\%lvbox\{\%\hboxto\columnwidth\{\sc\{Tcourse\}---abhishelat\hfill\}\%lvspace$-2mm\}$\hboxto\columnwidth\{\scdue\MakeLowercase\{duedate\}\duelocation\hfill!\{Hugelcolor\{mdb\}HMhnumber.lyourname\}\}\%\}land\{nontor\}undefined

Google
 texshop

All Videos Images News Shopping More \mathbf{V} Search tools

About 189,000 results (0.37 seconds)

TeXShop

pages.uoregon.edu/koch/texshop/ v University of Oregon *
TeXShop (v 3.59) Release 01/01/2016. (Mountain Lion or Higher Strongly
Recommended). (for Lion, Mountain Lion, Mavericks, Yosemite, El Capitan) ...

Obtaining TeXShop

Obtaining TeXShop. If you just want to upgrade to the latest ...

Installing
Direct Download: TeXShop 3 for Lion
| Lion Source | TeXShop 2 ...

More results from uoregon.edu »

${ }_{4}{ }^{-3}$ Introduction

－Page headers and footers
－What is Vextsffiancyhdr？
－Simple use of Vextsfffancyhdr\}
－A simple example
－An example of two－sided pinting
－Redefining Vtexttifplain）style
－The default layout
（－）The scoop on Vatex／s marks
－Dictionary style headers
－Fancy layouts
－Two book examples
－Special page layout for float pages
－Those blank pages
－Wextsf\｛ $\{\mathrm{N}\}$ of vexts $\{\mathrm{M}\}$ style page numbers
${ }^{-}$Chapter or section related page numbers
When to change the headers and footers？
－Headers and footers induced by the text
70 Package for extra marks in Vlate
－A movie
－Thumbindexes
${ }^{-}$－Float placement
（4）Mulipage Floats
${ }^{-}$Contact information

Go to	
	Insert Label
	Insert Reference
	Insert Reference to Page

es you the \Cmd\｛firstleftmark\} and \Cmd\{lastrightmark) at complement the standard \latex／marks．
he point that marks are the correct way to do this，let me ＇solution＇＇that will not work footnote（Actually there is ay but it requires two \latex／passes：you can put \Crod（label） before and after the text and compare the \Cmd\｛pageref\}s.\}: Properties．．
\extramarks \｛\} (Continued on next page···)

\Cmolndex\｛extramarks\}
Note that the \backslash Cmod extramarks comand must be close to the text，i．e no empty lines（paragraph boundaries）should intervene．Otherwise the page may be broken at that boundary and the extramarks would come on the wrong page．

There are two new marks that can be used in the page layout with this package：If commands of the form
｜verb｜\extramarks\｛｜\＄m＿1\＄\verb｜\}\{|\$m_2\$\verb|\}| are given
）CrodIndex（firstxmark\}
\CmiIndex（lastxmark）
\Cmd\｛firstxmark\} gives you the first \$m 1 § value and
\Crod\｛lastxmark\} gives you the last $\$ m _2 \overline{\$}$ value
of the current page．
\CrodIndex\｛firstleftmark\}
\backslash CrodIndex（lastrightmark\}
Go to ］
begin（verbatim）
\1head（Continued）

星fancyhdr，tex
留 Objects 言 Files
（i）Underfull hbox（badness 5077）in paragraph at lines 1088－－1095
／cmr10／be／cmtt10／\thechapter－\arabic \｛page\} /cmalo/but you can give this def-i-
ni－tion your－self af－ter the
［16］［17］［18］［19］［20］［21］［22］［23］［24］
No file fancyhdr．ind．
［25］（fancyhdr．aux）
（！LaTeX Warning：Label（s）may have changed．Rerun to get cross－references right．
\square

Overleaf

$\leftarrow \rightarrow \mathrm{C}$
©

```
Source Rich Text \Omega
% %-------- Student instruction: change this by adding your neu id into
    the {}
    \def\yourname{}
    %----------------------------------------------
    %% ================= no need to edit any of this stuff
    % --- no need to change anything in this section
    \def\homework{1} % 0 for solution, 1 for problem-set only
    \def\duedate{wed jan 26, 2022 at 11.59p}
    \def\duelocation{via
    \href{https://gradescope.com/courses/331917}{gradescope}}
    \def\hnumber{0}
    \def\prof{abhi shelat}
    2 \def\course{\href{https://shelat.khoury.neu.edu/22s-5800}{cs5800
    algorithms s'22}}
    13
    \documentclass[11pt]{article}
    %%% ==== standard installations of latex include all of the files that
    are referenced in this section. However,
    %%% ==== if you are having compile problems, consider commenting some of
    these commands out
    \usepackage[colorlinks,urlcolor=blue]{hyperref}
    \usepackage[osf]{mathpazo}
    \usepackage{amsmath,amsfonts,graphicx}
    \usepackage{latexsym}
    \usepackage[top=1in, bottom=1.4in,left=1.5in,right=1.5in, centering]{geome
    try}
    \usepackage{color}
    \definecolor{mdb}}{rgb){0.3,0.02,0.02
    \definecolor{cit}{rgb}{0.05,0.2,0.45}
    \markboth{\yourname}{\yourname}
    %%%%======================================================================
    7
    28
    29
    %% ============ should be no need to edit anything in this section
```

You may collaborate with other students on the homework but you must submit your own individually written solution, identify your collaborators, and acknowlyour own individually written solution, iden
edge any external sources that you consult.
edge any external sources that you consult.
Please write each answer on a separate page and use exactly 3 pages for your
submission. You can do this using the
 command betw See the hw1-template.tex template file provide command between your answers. assignment.
problem 1 Passage
Typeset your favorite passage from a book.

Submitting HW

gradescope

Honor Policy

I, ___, do hereby certify on my honor that during this course,

1. I shall write my answers entirely by myself, and neither share nor request text, code, or drawings.
2. I will not give or derive assistance from any unauthorized sources or the web.

counting

First example of an algorithmic pattern based on I1 and I2
(1) stand
(1) stand
(2) setyour rumber" to one
(1) stand
(2) set your "number" to one
(3) greet your neighbor (pause if no partner)
(1) stand
(2) set your "number" to one
(3) greet your neighbor (pause if no partner)
(4.) if you are older, give "number" and sit if you are younger, add "numbers"
(3) greet your neighbor (pause if no partner)

4
if you are older, give "number" and sit if you are younger, add "numbers"

5if you are standing \& you have a neighbor, goto 3

$$
\begin{aligned}
& \text { (1) 2 } 3 \text { 4 } 5 \\
& \text { stand set greet sit/add repeat } \\
& \text { lets analyze this alg }
\end{aligned}
$$

Our model of computation

Basic op: 1 unit
 Set, Greet, add, compare, sit

Simplify: in each round, every standing person can do 1 op

Lets count \# of rounds until we finish

stand

set

greet

sit/add repeat
 stand

set

greet

sit/add repeat

how fast does it work:

$T(n)$
\# rounds to finish in a room with n people

stand

set

greet

sit/add repeat

Simple case: 1 person

$$
T(1)=
$$

stand

set

greet

Simple case: 2 people

$$
T(2)=
$$

$T(4)=$
 stand

set

greet sit/add repeat

After step 4
$T(4)=$

345

What about these?

I1:Approx is OK

These steps only happen once.
(3) (4) 5
how fast does it work:

$$
T(n)=1+1+T(\lceil n / 2\rceil)
$$

how fast does it work:

$$
\begin{aligned}
& T(n)=1+1+T(\lceil n / 2\rceil) \\
& T(1)=3
\end{aligned}
$$

This is a recurrence

$$
\begin{aligned}
T(n) & =T(\lceil n / 2\rceil)+2 \\
T(1) & =3
\end{aligned}
$$

solve a simpler case when n is a power of 2 .
$T\left(2^{k}\right)=2+T\left(2^{k-1}\right)$

$$
T\left(2^{k}\right)=2+T\left(2^{k-1}\right)
$$

$$
\begin{aligned}
T\left(2^{k}\right) & =2+T\left(2^{k-1}\right) \\
& =2+2+T\left(2^{k-2}\right)
\end{aligned}
$$

$$
\begin{aligned}
T\left(2^{k}\right) & =2+T\left(2^{k-1}\right) \\
& =2+2+T\left(2^{k-2}\right) \\
& =\overbrace{2+2+\cdots+2}^{k}+T\left(2^{0}\right)
\end{aligned}
$$

$$
\begin{aligned}
T\left(2^{k}\right) & =2+T\left(2^{k-1}\right) \\
& =2+2+T\left(2^{k-2}\right) \\
& =\overbrace{2+2+\cdots+2}^{k}+T\left(2^{0}\right) \\
& =2 k+T(1)
\end{aligned}
$$

$$
T\left(2^{k}\right)=2+T\left(2^{k-1}\right)
$$

Other cases?

$$
\begin{aligned}
T\left(2^{k}\right) & =2+T\left(2^{k-1}\right) \\
& =2+2+T\left(2^{k-2}\right)
\end{aligned}
$$

Other cases?

$$
\begin{aligned}
T\left(2^{k}\right) & =2+T\left(2^{k-1}\right) \\
& =2+2+T\left(2^{k-2}\right) \\
& =\overbrace{2+2+\cdots+2}^{k}+T\left(2^{0}\right)
\end{aligned}
$$

Other cases?

$$
\begin{aligned}
T\left(2^{k}\right) & =2+T\left(2^{k-1}\right) \\
& =2+2+T\left(2^{k-2}\right) \\
& =\overbrace{2+2+\cdots+2}^{k}+T\left(2^{0}\right) \\
& =2 k+T(1)
\end{aligned}
$$

Other cases?

Idea1: It is OK

 to approximate
Asymptotic notation

$O(g)$

This notation represents a set

Asymptotic notation

$O(g)$

Set of functions that are at most within const of g for large n

Asymptotic notation

$O(g)$at most within const of g for large n
$\Omega(g)$
at least within const of g for large n
within a const of g
for large n

Omega sandwich

Omega sandwich

Omega sandwich

Omega sandwich

$$
\begin{aligned}
T\left(2^{k}\right) & =2+T\left(2^{k-1}\right) \\
& =2+2+T\left(2^{k-2}\right) \\
& =\overbrace{2+2+\cdots+2}^{k}+T\left(2^{0}\right) \\
& =2 k+T(1)=O\left(\log \left(2^{k}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
T\left(2^{k}\right) & =2+T\left(2^{k-1}\right) \\
& =2+2+T\left(2^{k-2}\right) \\
& =\overbrace{2+2+\cdots+2}^{k}+T\left(2^{0}\right) \\
& =2 k+T(1)=O\left(\log \left(2^{k}\right)\right) \\
\forall 0<n & <m, T(n) \leq T(m) \\
T(m) & \leq T\left(2^{\lceil\log (m)\rceil}\right)=2\lceil\log (m)\rceil+2
\end{aligned}
$$

$$
\begin{aligned}
T\left(2^{k}\right) & =2+T\left(2^{k-1}\right) \\
& =2+2+T\left(2^{k-2}\right) \\
& =\overbrace{2+2+\cdots+2}^{k}+T\left(2^{0}\right) \\
& =2 k+T(1)=O\left(\log \left(2^{k}\right)\right) \\
\forall 0<n & <m, T(n) \leq T(m) \\
T(m) & \leq T\left(2^{\lceil\log (m)\rceil}\right)=2\lceil\log (m)\rceil+2 \\
T(m) & =\Omega(\log (m)) \\
& =\Theta(\log (m))
\end{aligned}
$$

How to solve

recurrence
relations

Multiplication

How much work does it take?

$(n-1)(n+1)+$

A first attempt...

$a c 100^{2}+(a d+b c) 100+b d$

n-digit inputs
 Mult(ab, cd)

Base case: return b*d if inputs are 1-digit

Mult(ab, cd)

Base case: return b*d if inputs are 1-digit
Compute $\mathrm{x}=\mathrm{Mult}(\mathrm{a}, \mathrm{c})$
Compute $y=\operatorname{Mult}(a, d)$
Compute z = Mult(b,c)
Compute $\mathrm{w}=\operatorname{Mult}(\mathrm{b}, \mathrm{d})$
Return $r=x^{*} 100^{2}+(y+z) 100+w$

$T(n)=4 T(n / 2)+3 O(n)$

calculations:

\qquad

