
L1 5800

Jan 18 2022

Algorithms
abhi shelat

let me intro myself

first goal: create an
amazing learning
experience

second goal: share
basic beautiful ideas
from computer science

third goal: help
prepare you for a job
in cs

what is this
course about?

Theme 1
Small problems are easy to solve

Theme 1
Solve big problems by making them into
smaller ones

Small problems are easy to solve

Theme 2
Learning how to convince through
reason is a great mark of
understanding

great pyramid at giza 2500bc
image from wikimedia

�

http://www.cupertino.org/inc/pdf/apple/Renderings.pdf

http://www.cupertino.org/inc/pdf/apple/Renderings.pdf

1

“how much granite/glass do i need?”

algorithm

to compute
�

Written down by Archimedes

Idea: It is OK
to approximate

1

1

red perimeter < �d

1

1

red perimeter < �d < blue perimeter

1

1

1

p
3

But what is

Theme1: reduce
the main problem
to a simpler one

x2 � 3 = 0

265

153
⇡

p
3

1

1

1

1

red perimeter < �d < blue perimeter

1

1

3
10
70

> � > 3
10
71

Using 96-gon,

Archimedes

how to analyze this approach?

https://en.wikipedia.org/wiki/Approximations_of_%CF%80#/media/File:Record_pi_approximations.svg

https://en.wikipedia.org/wiki/Approximations_of_%CF%80#/media/File:Record_pi_approximations.svg

Theme3: new
insights lead to
improved
efficiency

⇡ =
9801p

8

 1X

n=0

(4n)!(1103 + 26390n)

(n!)43964n

!�1

n=0
⇡ =

9801p
8

 1X

n=0

(4n)!(1103 + 26390n)

(n!)43964n

!�1

3.14159273001330576017

n=0
⇡ =

9801p
8

 1X

n=0

(4n)!(1103 + 26390n)

(n!)43964n

!�1

⇡ ⇡0
9801p

8
[1103]�1

n=1
⇡ =

9801p
8

 1X

n=0

(4n)!(1103 + 26390n)

(n!)43964n

!�1

⇡ ⇡1
9801p

8


1103 +

24 · 27493
3964

��1

n=1
⇡ =

9801p
8

 1X

n=0

(4n)!(1103 + 26390n)

(n!)43964n

!�1

3.14159265358979387799890582630

benefits?

good algorithms touch
every aspect of our
lives

image:history of air cargo

good algorithms
defend freedom

what skills do you
need for this course?

precision
creativity

in·ge·nu·i·ty

how to learn
in this class

no cookbook

develop

general problem
solving

skills

understand
known

techniques

work with your

peers

work with your

peers

but do not copy

https://
shelat.khoury
.northeastern
.edu/22s-5800

https://shelat.khoury.northeastern.edu/22s-5800
https://shelat.khoury.northeastern.edu/22s-5800

LATEX

http://www.google.com/search?q=guide+to+latex&ie=utf-8&oe=utf-8&aq=t&rls=org.mozilla:en-US:official&client=firefox-a

http://tobi.oetiker.ch/lshort/lshort.pdf

Overleaf

https://www.overleaf.com/read/qfzhxdnqbbvp

Submitting HW

gradescope

https://gradescope.com

Honor Policy

 I, ______, do hereby certify on my honor that during
this course,

1. I shall write my answers entirely by myself, and
neither share nor request text, code, or drawings.

2. I will not give or derive assistance from any
unauthorized sources or the web.

today midterm
Feb 23

final
Dec

today midterm
Feb 23

final
May 4

div & conq

dynamic

greedy

graphs

Lp,np,randomized

counting

First example of an
algorithmic pattern based
on I1 and I2

stand❶

stand❶
set your “number” to one❷

stand❶
set your “number” to one❷
greet your neighbor (pause if no partner)❸

stand❶
set your “number” to one❷
greet your neighbor (pause if no partner)❸
if you are older, give “number” and sit
if you are younger, add “numbers”❹

stand❶
set your “number” to one❷
greet your neighbor (pause if no partner)❸
if you are older, give “number” and sit
if you are younger, add “numbers”❹

❺ if you are standing & you have a neighbor,
goto 3

❶ ❷ ❸ ❹ ❺
stand set greet sit/add repeat

lets analyze this alg

Our model of computation

Basic op: 1 unit
Set, Greet, add, compare, sit

Simplify: in each round, every standing
person can do 1 op

Lets count # of rounds until we finish

how fast does it work:
❶ ❷ ❸ ❹ ❺
stand set greet sit/add repeat

how fast does it work:

T (n) # rounds to finish in a
room with n people

❶ ❷ ❸ ❹ ❺
stand set greet sit/add repeat

❶ ❷ ❸ ❹ ❺
stand set greet sit/add repeat

Simple case: 1 person

T(1) =

❶ ❷ ❸ ❹ ❺
stand set greet sit/add repeat

Simple case: 2 people

T(2) =

❶ ❷ ❸ ❹ ❺
stand set greet sit/add repeat

T(4) =

❶ ❷ ❸ ❹ ❺
stand set greet sit/add repeat

T(4) =
After step 4

SittingSitting

 ❸❹❺greet sit/add repeatstand set
❶❷

What about these?These steps only
happen once.

I1:Approx is OK

 ❸❹❺greet sit/add repeat

T (n) = 1 + 1 + T (�n/2⇥)

stand set
❶❷
how fast does it work:

 ❸❹❺greet sit/add repeat

how fast does it work:

T (n) = 1 + 1 + T (�n/2⇥)

stand set
❶❷

T (1) = 3

This is a recurrence
T (n) = T (dn/2e) + 2
T (1) = 3

T (2k) = 2 + T (2k�1)
solve a simpler case when n is a power of 2.

T (2k) = 2 + T (2k�1)

T (2k) = 2 + T (2k�1)

= 2 + 2 + T (2k�2)

T (2k) = 2 + T (2k�1)

= 2 + 2 + T (2k�2){ k

= 2 + 2 + · · ·+ 2 + T (20)

T (2k) = 2 + T (2k�1)

= 2 + 2 + T (2k�2){ k

= 2 + 2 + · · ·+ 2 + T (20)

= 2k + T (1)

T (2k) = 2 + T (2k�1)
“intuition here”

Other cases?

T (2k) = 2 + T (2k�1)

= 2 + 2 + T (2k�2)

“intuition here”

Other cases?

T (2k) = 2 + T (2k�1)

= 2 + 2 + T (2k�2)

“intuition here”

{ k

= 2 + 2 + · · ·+ 2 + T (20)

Other cases?

T (2k) = 2 + T (2k�1)

= 2 + 2 + T (2k�2)

“intuition here”

{ k

= 2 + 2 + · · ·+ 2 + T (20)

= 2k + T (1)

Other cases?

Idea1: It is OK
to approximate

Asymptotic notation

This notation represents a setO(g)

Asymptotic notation
Set of functions that are at most
within const of g for large nO(g)

Asymptotic notation

at most within const of g

at least within const of g

within a const of g

 for large n

 for large n

 for large n

O(g)

⌦(g)

⇥(g)

Omega sandwich

f(n)

n

Omega sandwich

f(n)

c2g(n)

n

f(n) = O(g(n))

Omega sandwich

f(n)

c2g(n)

c1g(n)

n

f(n) = O(g(n))

f(n) = �(g(n))

n0

Omega sandwich

f(n)

c2g(n)

c1g(n)

n

f(n) = O(g(n))

f(n) = �(g(n))

n0

f(n) = �(g(n)

T (2k) = 2 + T (2k�1)

= 2 + 2 + T (2k�2)

= O(log(2k))

“intuition here”

{ k

= 2 + 2 + · · ·+ 2 + T (20)

= 2k + T (1)

T (2k) = 2 + T (2k�1)

= 2 + 2 + T (2k�2)

= O(log(2k))

⇥0 < n < m, T (n) � T (m)

T (m) � T (2�log(m)⇥) = 2�log(m)⇥ + 2

“intuition here”

{ k

= 2 + 2 + · · ·+ 2 + T (20)

= 2k + T (1)

T (2k) = 2 + T (2k�1)

= 2 + 2 + T (2k�2)

= O(log(2k))

⇥0 < n < m, T (n) � T (m)

T (m) � T (2�log(m)⇥) = 2�log(m)⇥ + 2

“intuition here”

{ k

= 2 + 2 + · · ·+ 2 + T (20)

= 2k + T (1)

T (m) = �(log(m))

= �(log(m))

How to solve
recurrence
relations

?-✓

http://www.drblank.com/law301.jpg

http://www.drblank.com/law301.jpg

Multiplication

How much work does it take?

7 8 9

4 3 2
★

(n-1)(n+1) ✛

1

1

7 8 9

4 3 2
★ ✫

(n-1)(n+1) ✛

1

1

7 8 9

4 3 2

8

1

★ ✫

(n-1)(n+1) ✛

1

1

7 8 9

4 3 2

8

1

★ ✫✫ ✫

7

1

53

(n-1)(n+1) ✛

1

1

7 8 9

4 3 2

8

1

★ ✫✫ ✫

7

1

53 n n-1✫ ✛

(n-1)(n+1) ✛

1

1

7 8 9

4 3 2

8

1

★ ✫✫ ✫

7

1

53 n n-1✫ ✛

7635 n n-1✫ ✛

(n-1)(n+1) ✛

1

1

7 8 9

4 3 2

8

1

★ ✫✫ ✫

7

1

53 n n-1✫ ✛

7635 n n-1✫ ✛

6517 n n-1✫ ✛

(n-1)(n+1) ✛

1

1

7 8 9

4 3 2

8

1

★ ✫✫ ✫

7

1

53 n n-1✫ ✛

7635 n n-1✫ ✛

6517 n n-1✫ ✛

(n-1)(n+1) ✛

1

1

9871 n n-1✫ ✛

7 8 9

4 3 2

8

1

★ ✫✫ ✫

7

1

53 n n-1✫ ✛

7635 n n-1✫ ✛

6517 n n-1✫ ✛

(n-1)(n+1) ✛

1

1

9871 n n-1✫ ✛

✛✛✛✛

✛✛✛✛

✛✛✛✛

7 8 9

4 3 2

8

1

★ ✫✫ ✫

7

1

53 n n-1✫ ✛

7635 n n-1✫ ✛

6517 n n-1✫ ✛

(n-1)(n+1) ✛

1

1

9871 n n-1✫ ✛

✛✛✛✛

✛✛✛✛

✛✛✛✛

�(n2)

Theme 1

A first attempt…
7 8 9 4 3 21 1★

7 8 9 4 3 21 1★
a b c d

7 8 9 4 3 21 1★
a b c d

ac1002 + (ad + bc)100 + bd

Base case: return b*d if inputs are 1-digit

Mult(ab, cd)
n-digit inputs 7 8 9 4 3 21 1

★
a b c d

ac1002 + (ad + bc)100 + bd

Compute x = Mult(a,c)

Compute y = Mult(a,d)

Compute z = Mult(b,c)

Compute w = Mult(b,d)

Return r = x*1002 + (y+z)100 + w

Base case: return b*d if inputs are 1-digit

Mult(ab, cd)
7 8 9 4 3 21 1

★
a b c d

ac1002 + (ad + bc)100 + bd

T (n) = 4T (n/2) + 3O(n)

calculations:

