
L10 5800
feb 18/21 2022

shelat

 



Greedy is only good for certain problems 
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How many non-overlapping courses can you take?
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dynamic programming

Lets draw all of the events on a timeline.

Hilli

fu



dynamic programming

Best2n = Maximum number of non-overlapping activities 
possible among the first 2n events.

p
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dynamic programming
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out:
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greedy solution:

definition:

soltni,j =

goal: soltn0,2n

max
setofantigensbetween events i j



greedy solution:
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always part of some 
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proof:

claim: the first action to finish in e[i,j] is  
always part of some 

Consider  and let  be the first activity to finish in e[i,j]. 
If , then the claim follows. 
If not, let  be the activity that finishes first in .  
Consider a new solution that replaces  with . 

 
This new set is valid because  finishes before  and thus 
does not overlap with any activities. This new solution also has 
the same size and is therefore also optimal too.

soltni,j a*
a* ∈ soltni,j

a soltni,j
a a*

soltn*
i,j = soltni,j − {a} ∪ {a*}

a* a
set



 

greedy solution:

algorithm: find first event to finish. add to solution. 
remove conflicting events. 
continue. 
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greedy solution:

algorithm: find first event to finish. add to solution. 
remove conflicting events. 
continue. 
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greedy solution:

algorithm: find first event to finish. add to solution. 
remove conflicting events. 
continue. 



running time
algorithm: find first event to finish. add to solution. 

remove conflicting events. 
continue. 

(sorted)



Recap
The main idea in this algorithm was the “exchange argument.” 

We were able to identify an item (first to finish) that must be 
part of some optimal solution by exchanging this element with 
one that we can identify in any optimal solution. 

Since its easy to identify the item that is first to finish, our 
algorithm is conversely simple, “greedy.”



caching



cache hit
Cache

load r2, addr a

main memory

CPU

store r4, addr b



question:



question:

How do we manage a fully-associate cache? 

When it is full, which element do we replace?



problem statement
input:

output:

cache is 



problem statement
input:

output:

cache is 

K, the size of the cache
d1, d2, ..., dm  memory accesses

schedule for that cache that minimizes # of cache 
misses while satisfying requests

fully associative, line size is 1



contrast with reality



contrast with reality

In a real program, we may not know the future 
memory access patterns. 

Some caches have additional restrictions, like 
line-size, associativity, etc.



Belady eviction rule



Belady eviction rule

Replace the element in the cache that is accessed 
“farthest into the future”
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Surprising theorem



Surprising theorem

The schedule  produced by the Belady “farthest 
in the future” eviction rule is optimal.

Sff
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schedule
Schedule for access pattern d1,d2,...,dn:

Reduced schedule:

A list of instructions for each access that is either 
“NOP” or “evict x for y”

A schedule in which“evict x for y” instruction only 
occurs when y is accessed.

Note: any schedule can be transformed into a reduced schedule with 
the same or fewer cache misses.  
(Idea: starting at the end, defer “evict…t” until y is read)



Exchange lemma



Exchange lemma
Let  be a reduced schedule that agrees with  on 
the first j accesses. 

Then there exists a schedule  that agrees with  
on the first j+1 accesses and has the same or fewer 
misses.

S Sff

S′ Sff
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S⇤ S↵

Some optimal 
schedule.

S1

Agrees with  on 
the first access.

Sff

S2

Agrees with  on 
the first two 
accesses.

Sff

S3 Sn−1

Agrees with  on 
the first three 
accesses.

Sff

 has the same 
number of cache 
misses as .

Sff

S*



Proof of Lemma
Let S be a reduced sched that agrees with Sff on the first j items. 
There exists a reduced sched S’ that agrees with Sff on the first j+1 
items and has the same or fewer #misses as S.



Proof of Lemma
Let S be a reduced sched that agrees with Sff on the first j items. 
There exists a reduced sched S’ that agrees with Sff on the first j+1 
items and has the same or fewer #misses as S.

At time j, both  and  have the same state. 
Let d be the element accessed at time j+1.

S Sff
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easy case 1

easy case 2

State of the cache after J operations under the two schedules.

d is in the cache.

d is not in the cache, but both “evict e for d.”

Both  and  agree since both do NOPs at j+1.S Sff
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Proof of lemma

case 3

e
S

e
Sff

f f

 evicts “e for d”, and  evicts “e for f”S Sff
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Timeline

S’

S

Sff
j t

Copy j+1 from . Then copy from S until  (the first time that 
either  or  are accessed). Then copy from S until the end.

Sff t
e f

?
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Let  be the first access that either  or  are accessed.t e f

What if t=e:



Proof of lemma
what if t=e ?

dS eS’f d



Proof of lemma
what if t=f ?

dS eS’f d



Proof of lemma
what if t is neither e nor f ?

dS eS’f d



What have we shown

S’

S

Sff

Let S be a reduced sched that agrees with Sff on the first j items. 
There exists a reduced sched S’ that agrees with Sff on the first j+1 
items and has the same or fewer #misses as S.



S⇤ S↵

Let S be a reduced sched that agrees with Sff on the first j items. 
There exists a reduced sched S’ that agrees with Sff on the first j+1 
items and has the same or fewer #misses as S.



Recap

The greedy algorithm is quite simple. 

But the analysis for why the solution works is more 
subtle and complicated. 

In this case, we had to apply the exchange lemma 
multiple times to prove optimality.
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MOSCOW — President Vladimir V. Putin’s typically 
theatrical order to withdraw the bulk of Russian forces 
from Syria, a process that the Defense Ministry said it 
began on Tuesday, seemingly caught Washington, 
Damascus and everybody in between off guard — just the 
way the Russian leader likes it. 

By all accounts, Mr. Putin delights at creating surprises, 
reinforcing Russia’s newfound image as a sovereign, 
global heavyweight and keeping him at the center of 
world events.
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e: 235    000 
i: 200    001 
o: 170    010 
u: 87     011 
p: 78     100 
g: 47     101 
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f: 24     111
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B(T, {fc}) =
X

c2C

fc · `c

def: cost of an encoding
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character frequency
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e: 234803 
i: 200613 
a: 198938 
o: 170392 
r: 160491 
n: 158281 
t: 152570 
s: 139238 
l: 130172 
c: 103307 
u: 87211 
p: 78077 
m: 70504 
d: 68007 
h: 64165 
y: 51527 
g: 47011 
b: 40351 
f: 24110 
v: 20103 
k: 16012 
w: 13825 
z: 8439 
x: 6926 
q: 3729 
j: 3075



Morse code

image http://en.wikipedia.org/wiki/Morse_code
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def: prefix-free code



def: prefix code

e: 235    0 
i: 200    10 
o: 170    110 
u: 87     1110 
p: 78     11110 
g: 47     111110 
b: 40     1111110 
f: 24     11111110



decoding a prefix code
e: 235    0 
i: 200    10 
o: 170    110 
u: 87     1110 
p: 78     11110 
g: 47     111110 
b: 40     1111110 
f: 24     11111110

111111010111110



code to binary tree
e: 235    0 
i: 200    10 
o: 170    110 
u: 87     1110 
p: 78     11110 
g: 47     111110 
b: 40     1111110 
f: 24     11111110

111111010111110



prefix code

binary tree

 



ie o u p

use tree to encode 
e: 235    00 
i: 200    01 
o: 170    10 
u: 87     110 
p: 78     111 

2
2
2
3
3



goal
given the



{fc}c�C

min
T

B(T, {fc})

goal
given the character frequencies

produce a prefix code T with smallest cost

(all frequencies are > 0)



property

x

y

a b

lemma:optimal tree must be full.



divide & conquer?



counter-example

e: 32    
i: 25    
o: 20     
u: 18     
p: 5  
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exchange argument
lemma:



x

y

a b

exchange argument

T

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma: 
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exchange argument

proof:

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
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4 zleft ⇤ x ⇤ ExtractMin(Q)
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exchange argument

T

first step

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
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fa � fb

fx � fy

fx � fa

fy � fb

first step
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HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs
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optimal sub-structure
fx fy

problem of size n

fzfc� problem of size n-1
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Lemma:

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1
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Suppose     is not optimal 

B(U) < B(T )

B(U �) = B(U)� fx � fy
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But this implies that B(T’) was not optimal.

< B(t) - fx - fy

T



therefore
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x y



summary of argument


