
feb 18/21 2022
shelat

Greedy is only good for certain problems

	start	end
sy3333	2	3.25
en1612	1	4
ma1231	3	4
Cs5800	3.5	4.75
cs4800	4	5.25
cs6051	4.5	6
sy3100	5	6.5
Cs1234	7	8

How many non-overlapping courses can you take?

problem statement
$\left(a_{1}, \ldots, a_{n}\right)$
$\left(s_{1}, s_{2}, \ldots, s_{n}\right) \quad$ starting times.
$\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ (sorted) $\quad s_{i}<\underline{f}_{i}$
end times
find largest subset of activities $\mathrm{C}=\{\mathrm{a}\}$ such that
(compatible)
for any $i, j \quad i=j$

$$
S_{j}>f_{i}
$$

problem statement

$$
\begin{aligned}
& \left(a_{1}, \ldots, a_{n}\right) \\
& \left(s_{1}, s_{2}, \ldots, s_{n}\right) \\
& \left(f_{1}, f_{2}, \ldots, f_{n}\right) \text { (sorted) } s_{i}<f_{i}
\end{aligned}
$$

find largest subset of activities $\mathrm{C}=\{\mathrm{a}\}$ such that
(compatible)

For any two activities $a_{i}, a_{j}, i<j$ the start time of a_{j} is after the finish time of a_{i}.

problem statement

$$
\begin{aligned}
& \left(a_{1}, \ldots, a_{n}\right) \\
& \left(s_{1}, s_{2}, \ldots, s_{n}\right) \\
& \left(f_{1}, f_{2}, \ldots, f_{n}\right) \text { (sorted) } s_{i}<f_{i}
\end{aligned}
$$

find largest subset of activities $\mathrm{C}=\{\mathrm{a}\}$ such that (compatible)

$$
\begin{aligned}
& a_{i}, a_{j} \in C, i<j \\
& f_{i} \leq s_{j}
\end{aligned}
$$

problem statement

$\left(a_{1}, \ldots, a_{n}\right)$
$\left(s_{1}, s_{2}, \ldots, s_{n}\right)$
$\left(f_{1}, f_{2}, \ldots, f_{n}\right)(\operatorname{sORTED}) \quad s_{i}<f_{i}$

Lets draw all of the events on a timeline.

$$
\text { Best }_{2 n}=\begin{aligned}
& \text { Maximum number of non-overlapping activities } \\
& \text { possible among the first } 2 n \text { events. }
\end{aligned}
$$

GOAL: SOLTN $_{0,2 n}$
greedy solution:

claim: the first action to finish in e[i,j] is always part of some solus sol $_{i}$
proof:
Consider some opting SOLTNi,j.
Let a^{*} be the first action to finish in $C[i, j]$.
If $a^{*} \in \operatorname{SoC} N_{i, j}$, then the claim holds.
If $a^{*} \& \operatorname{socta} i, j$, let a be the first to finish in South $j_{i j}$
Consider $S_{i, j}=\operatorname{SOLTN}_{i, j}-\{a\} \cup\left\{a^{*}\right\}$
(1) $\left|S_{i, j}\right|=\left|\operatorname{Socta}_{i, j}\right|$
(2) $S_{i, j}$ is valid soltian, nonoverlapping. Because
$e_{a *}<e_{a}$. So a^{*} doe not overlap with any events.
claim: the first action to finish in e[i,j] is always part of some $\operatorname{soltn}_{i, j}$

Consider soltn ${ }_{i, j}$ and let a^{*} be the first activity to finish in e[i,j]. If $a^{*} \in$ soltn $_{i, j}$, then the claim follows.
If not, let a be the activity that finishes first in soltn ${ }_{i, j}$.
Consider a new solution that replaces a with a^{*}.
soltn $_{i, j}^{*}=$ solttn $_{i, j}-\{a\} \cup\left\{a^{*}\right\}$
This new set is valid because a^{*} finishes before a and thus does not overlap with any activities. This new solution also has the same size and is therefore also optimal too.
greedy solution:

algorithm: find first event to finish. add to solution. remove conflicting events. continue.
greedy solution:

algorithm: find first event to finish. add to solution. remove conflicting events. continue.
greedy solution:

algorithm: find first event to finish. add to solution. remove conflicting events. continue.
greedy solution:

algorithm: find first event to finish. add to solution. remove conflicting events. continue.
greedy solution:

algorithm: find first event to finish. add to solution. remove conflicting events. continue.
greedy solution:

algorithm: find first event to finish. add to solution. remove conflicting events. continue.
greedy solution:

algorithm: find first event to finish. add to solution. remove conflicting events. continue.

running time

algorithm: find first event to finish. add to solution. remove conflicting events. continue.

$$
\left(f_{1}, f_{2}, \ldots, f_{n}\right) \quad(\text { sorted }) \quad s_{i}<f_{i}
$$

Recap

The main idea in this algorithm was the "exchange argument."
We were able to identify an item (first to finish) that must be part of some optimal solution by exchanging this element with one that we can identify in any optimal solution.

Since its easy to identify the item that is first to finish, our algorithm is conversely simple, "greedy."

cache hit

Cache

> CPU
> load r2, addr a store $r 4$, addr b
main memory
question:

How do we manage a fully-associate cache?

When it is full, which element do we replace?

problem statement

input:
output:
cache is

problem statement

input: K, the size of the cache
$d_{1}, d_{2}, \ldots, d_{m}$ memory accesses
output: schedule for that cache that minimizes \# of cache misses while satisfying requests
cache is fully associative, line size is 1

contrast with reality

contrast with reality

In a real program, we may not know the future memory access patterns.

Some caches have additional restrictions, like line-size, associativity, etc.

Belady eviction rule

Belady eviction rule

Replace the element in the cache that is accessed "farthest into the future"

example

cache

example

cache

example

cache

example

cache

example

cache

Surprising theorem

Surprising theorem

The schedule $S_{f f}$ produced by the Belady "farthest in the future" eviction rule is optimal.

schedule

Schedule for access pattern $\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{n}$:

Reduced schedule:

schedule

Schedule for access pattern $\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{n}$:

A list of instructions for each access that is either "NOP" or "evict x for y"

Reduced schedule:

Schedule for access pattern $\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{n}$:

A list of instructions for each access that is either "NOP" or "evict x for y"

Reduced schedule:
A schedule in which"evict x for y " instruction only occurs when y is accessed.

Schedule for access pattern $\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{n}$:

A list of instructions for each access that is either "NOP" or "evict x for y"

Reduced schedule:
A schedule in which"evict x for y " instruction only occurs when y is accessed.

Note: any schedule can be transformed into a reduced schedule with the same or fewer cache misses.
(Idea: starting at the end, defer "evict...t" until y is read)

Exchange lemma

Exchange lemma

Let S be a reduced schedule that agrees with $S_{f f}$ on the first jaccesses.

Then there exists a schedule S^{\prime} that agrees with $S_{f f}$ on the first $j+1$ accesses and has the same or fewer misses.

Some optimal

schedule.

Some optimal

schedule.

Agrees with $S_{f f}$ on
the first access.

Some optimal

schedule.

Agrees with $S_{f f}$ on
the first two accesses.

Some optimal

 schedule.

Agrees with $S_{f f}$ on the first two accesses.

$$
s_{n-1} S_{\mathrm{ff}}
$$

$S_{f f}$ has the same number of cache misses as S^{*}.

Agrees with $S_{f f}$ on the first three accesses.

Proof of Lemma

Let S be a reduced sched that agrees with $\mathrm{Sff}_{\mathrm{ff}}$ on the first j items. There exists a reduced sched \mathbf{S}^{\prime} that agrees with Sff on the first j+1 items and has the same or fewer \#misses as S.

Proof of Lemma

Let S be a reduced sched that agrees with $S_{f f}$ on the first j items. There exists a reduced sched \mathbf{S}^{\prime} that agrees with Sff on the first j+1 items and has the same or fewer \#misses as S.

At time j, both S and $S_{f f}$ have the same state.
Let d be the element accessed at time $j+1$.

Proof of lemma

State of the cache after J operations under the two schedules.

easy case 1
easy case 2

Proof of lemma

State of the cache after J operations under the two schedules.

easy case $1 \quad d$ is in the cache.
easy case 2

Proof of lemma

State of the cache after J operations under the two schedules.

easy case $1 \quad d$ is in the cache.
Both S and $S_{f f}$ agree since both do NOPs at $j+1$.
easy case 2

Proof of lemma

State of the cache after J operations under the two schedules.

easy case $1 \quad d$ is in the cache.
Both S and $S_{f f}$ agree since both do NOPs at j $\mathrm{j}+1$.
easy case 2 d is not in the cache, but both "evict e for d."

Proof of lemma

State of the cache after J operations under the two schedules.

easy case $1 \quad d$ is in the cache.
Both S and $S_{f f}$ agree since both do NOPs at j $\mathrm{j}+1$.
easy case $2 d$ is not in the cache, but both "evict e for d."

Both S and $S_{f f}$ agree at j+1.

Proof of lemma

case 3

Proof of lemma

Timeline

S'

S

Copy j+1 from $S_{f f}$ Then copy from S until t (the first time that either e or f are accessed). Then copy from S until the end.

Let t be the first access that either e or f are accessed.
What if $t=e$:

\square
what if $\mathrm{t}=\mathrm{e}$?

S'
e d
what if $t=f$?
what if t is neither e nor f ?

What have we shown

$S_{f f}$ \square

S'

S \square

Let S be a reduced sched that agrees with $S_{f f}$ on the first j items. There exists a reduced sched \mathbf{S}^{\prime} that agrees with Sff on the first j+1 items and has the same or fewer \#misses as S .

Let S be a reduced sched that agrees with $S_{f f}$ on the first j items. There exists a reduced sched \mathbf{S}^{\prime} that agrees with S_{ff} on the first $\mathrm{j}+1$ items and has the same or fewer \#misses as S.

Recap

The greedy algorithm is quite simple.
But the analysis for why the solution works is more subtle and complicated.

In this case, we had to apply the exchange lemma multiple times to prove optimality.

> L10

MOSCOW - President Vladimir V. Putin's typically theatrical order to withdraw the bulk of Russian forces from Syria, a process that the Defense Ministry said it began on Tuesday, seemingly caught Washington, Damascus and everybody in between off guard - just the way the Russian leader likes it.

By all accounts, Mr. Putin delights at creating surprises, reinforcing Russia's newfound image as a sovereign, global heavyweight and keeping him at the center of world events.

MOSCOW - President Vladimir V. Putin's typically theatrical order to withdraw the bulk of Russian forces from Syria, a process that the Defense Ministry said it began on Tuesday, seemingly caught Washington, Damascus and everybody in between off guard - just the way the Russian leader likes it.

By all accounts, Mr. Putin delights at creating surprises, reinforcing Russia's newfound image as a sovereign, global heavyweight and keeping him at the center of world events.

$$
\begin{array}{ccc}
c \in C & f_{c} & T \\
\mathrm{e}: & 235 & \\
\mathrm{i}: & 200 \\
\mathrm{o}: & 170 \\
\mathrm{u}: & 87 \\
\mathrm{p}: & 78 \\
\mathrm{~g}: & 47 \\
\mathrm{~b}: & 40 \\
\mathrm{f}: & 24
\end{array}
$$

$$
881
$$

$c \in C \quad f_{c}$	T	ℓ_{c}
$\mathrm{e}:$	235	000
$\mathrm{i}:$	200	001
$\mathrm{o}:$	170	010
$\mathrm{u}:$	87	011
$\mathrm{p}:$	78	100
$\mathrm{~g}:$	47	101
$\mathrm{~b}:$	40	110
$\mathrm{f}:$	24	111

881

def: cost of an encoding

$$
B\left(T,\left\{f_{c}\right\}\right)=\sum_{c \in C} f_{c} \cdot \ell_{c}
$$

$c \in C$	f_{c}	T
$\mathrm{e}: 235$	000	ℓ_{c}
$\mathrm{i}: 200$	001	3
$\mathrm{o}:$	170	010
$\mathrm{u}: 87$	011	3
$\mathrm{p}: 78$	100	3
$\mathrm{~g}:$	47	101
$\mathrm{~b}: ~ 40$	110	3
$\mathrm{f}: 24$	111	3

881

character frequency

Morse code

International Morse Code

The space between parts of the same letter $=1$ dot
The space between letters $=3$ dots
The space between words $=7$ dots.

```
A\bulletE.. 
B=\bullet... W* 
D=**
E * . - - 
G** =
G-a
|
J•E - = 
```



```
L\bullet!.! 2**!上!
M= - 3
3*\bullet! =
N=
O= - 5 \bullet. * 
P\bullet=-\bullet 6 =. - . 
```



```
R\bullet\bullet. 
S\bullet\bullet\bullet. 9 = = = - !
T
```


Morse code

International Morse Code

The space between parts of the same letter $=1$ dot
The space between letters $=3$ dots.
The space between words $=7$ dots

```
A\bulletE. W W\bullet\bullet. W
C-1
O.
E
F** - *
G* =
G-*
l**
J-L = - 
K_\bullet!
L- - -
M-*
N=
N=
O-= -
P- = - 
```



```
U * - =
```

def: prefix-free code

def: prefix-free code

$\forall x, y \in C, x \neq y \Longrightarrow \operatorname{CODE}(x)$ not a prefix of $\operatorname{CODE}(y)$

def: prefix code

$\forall x, y \in C, x \neq y \Longrightarrow \operatorname{CODE}(x)$ not a prefix of $\operatorname{CODE}(y)$

```
e: 235
    0
i: 200
    1 0
o: 170
    110
u: 87
    1110
p: 78
    11110
g: 47
    111110
b:40
    1111110
f: 24
    1 1 1 1 1 1 1 0
```


decoding a prefix code

$\mathrm{e}:$	235	0
i: 200	10	
o:	170	110
u: 87	1110	
p: 78	1111110	
g: 47	111110	
b: 40	1111110	
f: 24	11111110	

code to binary tree

e: 235	0
i: 200	10
o: 170	110
u: 87	1110
p: 78	11110
g: 47	111110
b: 40	1111110
f: 24	11111110

111111010111110

prefix code

binary tree
use tree to encode

goal

GIVEN THE

(all frequencies are >0)

GIVEN THE CHARACTER FREQUENCIES

$$
\left\{f_{c}\right\}_{c \in C}
$$

PRODUCE A PREFIX CODE T WITH SMALLEST COST

$$
\min _{T} B\left(T,\left\{f_{c}\right\}\right)
$$

divide \& conquer?

counter-example

$$
\begin{array}{ll}
\mathrm{e}: & 32 \\
\mathrm{i}: & 25 \\
\mathrm{o}: & 20 \\
\mathrm{u}: & 18 \\
\mathrm{p}: & 5
\end{array}
$$

objective

exchange argument

LEMMA:

exchange argument

LEMMA: Let $x, y \in C$ be characters with smallest frequencies f_{x}, f_{y}. There exists an optimal prefix code $T^{\prime \prime}$ for C in which x, y are siblings. That is, the codes for x, y have the same length and only differ in the last bit.

exchange argument

LEMMA: Let $x, y \in C$ be characters with smallest frequencies f_{x}, f_{y}. There exists an optimal prefix code $T^{\prime \prime}$ for C in which x, y are siblings. That is, the codes for x, y have the same length and only differ in the last bit.

exchange argument

LEMMA: Let $x, y \in C$ be characters with smallest frequencies f_{x}, f_{y}. There exists an optimal prefix code $T^{\prime \prime}$ for C in which x, y are siblings. That is, the codes for x, y have the same length and only differ in the last bit.

PROOF:

exchange argument

LEMMA: Let $x, y \in C$ be characters with smallest frequencies f_{x}, f_{y}. There exists an optimal prefix code $T^{\prime \prime}$ for C in which x, y are siblings. That is, the codes for x, y have the same length and only differ in the last bit.

exchange argument

LEMMA: Let $x, y \in C$ be characters with smallest frequencies f_{x}, f_{y}. There exists an optimal prefix code $T^{\prime \prime}$ for C in which x, y are siblings. That is, the codes for x, y have the same length and only differ in the last bit.

$$
\begin{array}{ll}
f_{a} \leq f_{b} & f_{x} \leq f_{a} \\
f_{x} \leq f_{y} & f_{y} \leq f_{b}
\end{array}
$$

$$
\begin{aligned}
& B(T)=\sum_{c} f_{c} \ell_{c}+f_{x} \ell_{x}+f_{a} \ell_{a} \quad B\left(T^{\prime}\right)=\sum_{c} f_{c} \ell_{c}^{\prime}+f_{x} \ell_{x}^{\prime}+f_{a} \ell_{a}^{\prime} \\
& B(T)-B\left(T^{\prime}\right) \geq 0
\end{aligned}
$$

exchange argument

$$
B\left(T^{\prime}\right)-B\left(T^{\prime \prime}\right) \geq 0
$$

$$
B(T)-B\left(T^{\prime}\right) \geq 0 \quad B\left(T^{\prime}\right)-B\left(T^{\prime \prime}\right) \geq 0
$$

I/ IS Also optimal

exchange argument

LEMMA: Let $x, y \in C$ be characters with smallest frequencies f_{x}, f_{y}. There exists an optimal prefix code $T^{\prime \prime}$ for C in which x, y are siblings. That is, the codes for x, y have the same length and only differ in the last bit.

optimal sub-structure

optimal sub-structure

optimal sub-structure

Lemma:

optimal sub-structure

LEMMA: The optimal solution for T consists of computing an optimal solution for T^{\prime} and replacing the left z with a node having children x, y.

$B\left(T^{\prime}\right)$

$B(T)$

$$
B\left(T^{\prime}\right)=B(T)-f_{x}-f_{y}
$$

Suppose T is not optimal

Suppose T is not optimal

$$
B(U)<B(T)
$$

Suppose T is not optimal

$$
B(U)<B(T)
$$

Suppose T is not optimal

$$
\begin{aligned}
B(U) & <B(T) \\
B\left(U^{\prime}\right) & =B(U)-f_{x}-f_{y} \\
& <\mathrm{B}(\mathrm{~T})-\mathrm{FX}-\mathrm{FY}
\end{aligned}
$$

But this implies that $\mathrm{B}\left(\mathrm{T}^{\prime}\right)$ was not optimal.
therefore

summary of argument

