
L10 5800
feb 18/21 2022

shelat

Greedy is only good for certain problems

3.5Cs5800

start end

4.75

4 5.25

1 4

2 3.25

3 4

4.5 6

5 6.5

7 8

sy3333

en1612

ma1231

cs4800

cs6051

sy3100

Cs1234

How many non-overlapping courses can you take?

problem statement

find largest subset of activities C={ai} such that

(sorted)

(compatible)

startingtimes

endtimes

for any i j is j

Sj fi

problem statement

find largest subset of activities C={ai} such that

(sorted)

(compatible)

For any two activities the start
time of is after the finish time of .

ai, aj, i < j
aj ai

find largest subset of activities C={ai} such that

(sorted)

(compatible)

problem statement

problem statement
(sorted)

I 1
I
f fu

fu

dynamic programming

Lets draw all of the events on a timeline.

Hilli

fu

dynamic programming

Best2n = Maximum number of non-overlapping activities
possible among the first 2n events.

p

dynamic programming

I 1

Max
It Bests

Best
eggT

t

dynamic programming

in:
out:

max

greedy solution:

definition:

soltni,j =

goal: soltn0,2n

max
setofantigensbetween events i j

greedy solution:

claim: the first action to finish in e[i,j] is
always part of some

proof:

claim: the first action to finish in e[i,j] is
always part of some

Consider some optimal Solin i j

Let at be the first action to finish in Cti

If ate Soni j then the claim holds

If at 4 soctni let a be thefirsttofinish in Soun

Consider Sig Soleri s U a

Isis Sochi

Sig is validsolution nowoverlapping Because

eat I Ca So at does not overlapwithany event

proof:

claim: the first action to finish in e[i,j] is
always part of some

Consider and let be the first activity to finish in e[i,j].
If , then the claim follows.
If not, let be the activity that finishes first in .
Consider a new solution that replaces with .

This new set is valid because finishes before and thus
does not overlap with any activities. This new solution also has
the same size and is therefore also optimal too.

soltni,j a*
a* ∈ soltni,j

a soltni,j
a a*

soltn*
i,j = soltni,j − {a} ∪ {a*}

a* a
set

greedy solution:

algorithm: find first event to finish. add to solution.
remove conflicting events.
continue.

7

74 Gpa

greedy solution:

algorithm: find first event to finish. add to solution.
remove conflicting events.
continue.

greedy solution:

algorithm: find first event to finish. add to solution.
remove conflicting events.
continue.

greedy solution:

algorithm: find first event to finish. add to solution.
remove conflicting events.
continue.

greedy solution:

algorithm: find first event to finish. add to solution.
remove conflicting events.
continue.

greedy solution:

algorithm: find first event to finish. add to solution.
remove conflicting events.
continue.

t

greedy solution:

algorithm: find first event to finish. add to solution.
remove conflicting events.
continue.

running time
algorithm: find first event to finish. add to solution.

remove conflicting events.
continue.

(sorted)

Recap
The main idea in this algorithm was the “exchange argument.”

We were able to identify an item (first to finish) that must be
part of some optimal solution by exchanging this element with
one that we can identify in any optimal solution.

Since its easy to identify the item that is first to finish, our
algorithm is conversely simple, “greedy.”

caching

cache hit
Cache

load r2, addr a

main memory

CPU

store r4, addr b

question:

question:

How do we manage a fully-associate cache?

When it is full, which element do we replace?

problem statement
input:

output:

cache is

problem statement
input:

output:

cache is

K, the size of the cache
d1, d2, ..., dm memory accesses

schedule for that cache that minimizes # of cache
misses while satisfying requests

fully associative, line size is 1

contrast with reality

contrast with reality

In a real program, we may not know the future
memory access patterns.

Some caches have additional restrictions, like
line-size, associativity, etc.

Belady eviction rule

Belady eviction rule

Replace the element in the cache that is accessed
“farthest into the future”

example
a

b

c

cache

a b c d a d e a d b a e c e a

example
a

b

c

cache a

b

d

a b c d a d e a d b a e c e a

example
a

b

c

cache a

b

d

a

e

d

a b c d a d e a d b a e c e a

example
a

b

c

cache a

b

d

a

e

d

a

e

b

a b c d a d e a d b a e c e a

example
cache a

e

b

a b c d a d e a d b a e c e a

a

e

c

a

b

c

a

d

c

a

d

e

a

b

e

a

c

e

a

b

c

a

b

d

a

e

d

Surprising theorem

Surprising theorem

The schedule produced by the Belady “farthest
in the future” eviction rule is optimal.

Sff

schedule
Schedule for access pattern d1,d2,...,dn:

Reduced schedule:

schedule
Schedule for access pattern d1,d2,...,dn:

Reduced schedule:

A list of instructions for each access that is either
“NOP” or “evict x for y”

schedule
Schedule for access pattern d1,d2,...,dn:

Reduced schedule:

A list of instructions for each access that is either
“NOP” or “evict x for y”

A schedule in which“evict x for y” instruction only
occurs when y is accessed.

schedule
Schedule for access pattern d1,d2,...,dn:

Reduced schedule:

A list of instructions for each access that is either
“NOP” or “evict x for y”

A schedule in which“evict x for y” instruction only
occurs when y is accessed.

Note: any schedule can be transformed into a reduced schedule with
the same or fewer cache misses.
(Idea: starting at the end, defer “evict…t” until y is read)

Exchange lemma

Exchange lemma
Let be a reduced schedule that agrees with on
the first j accesses.

Then there exists a schedule that agrees with
on the first j+1 accesses and has the same or fewer
misses.

S Sff

S′ Sff

S⇤ S↵

Some optimal
schedule.

S⇤ S↵

Some optimal
schedule.

S1

Agrees with on
the first access.

Sff

S⇤ S↵

Some optimal
schedule.

S1

Agrees with on
the first access.

Sff

S2

Agrees with on
the first two
accesses.

Sff

S⇤ S↵

Some optimal
schedule.

S1

Agrees with on
the first access.

Sff

S2

Agrees with on
the first two
accesses.

Sff

S3 Sn−1

Agrees with on
the first three
accesses.

Sff

 has the same
number of cache
misses as .

Sff

S*

Proof of Lemma
Let S be a reduced sched that agrees with Sff on the first j items.
There exists a reduced sched S’ that agrees with Sff on the first j+1
items and has the same or fewer #misses as S.

Proof of Lemma
Let S be a reduced sched that agrees with Sff on the first j items.
There exists a reduced sched S’ that agrees with Sff on the first j+1
items and has the same or fewer #misses as S.

At time j, both and have the same state.
Let d be the element accessed at time j+1.

S Sff

Proof of lemma
e

S
e
Sff

f f

easy case 1

easy case 2

State of the cache after J operations under the two schedules.

Proof of lemma
e

S
e
Sff

f f

easy case 1

easy case 2

State of the cache after J operations under the two schedules.

d is in the cache.

Proof of lemma
e

S
e
Sff

f f

easy case 1

easy case 2

State of the cache after J operations under the two schedules.

d is in the cache.

Both and agree since both do NOPs at j+1.S Sff

Proof of lemma
e

S
e
Sff

f f

easy case 1

easy case 2

State of the cache after J operations under the two schedules.

d is in the cache.

d is not in the cache, but both “evict e for d.”

Both and agree since both do NOPs at j+1.S Sff

Proof of lemma
e

S
e
Sff

f f

easy case 1

easy case 2

State of the cache after J operations under the two schedules.

d is in the cache.

d is not in the cache, but both “evict e for d.”

Both and agree since both do NOPs at j+1.S Sff

Both and agree at j+1.S Sff

Proof of lemma

case 3

e
S

e
Sff

f f

Proof of lemma

case 3

e
S

e
Sff

f f

 evicts “e for d”, and evicts “e for f”S Sff

Timeline

S’

S

Sff
j t

Timeline

S’

S

Sff
j t

Copy j+1 from . Then copy from S until (the first time that
either or are accessed). Then copy from S until the end.

Sff t
e f

?

Proof of lemma
dS eS’f d

Let be the first access that either or are accessed.t e f

What if t=e:

Proof of lemma
what if t=e ?

dS eS’f d

Proof of lemma
what if t=f ?

dS eS’f d

Proof of lemma
what if t is neither e nor f ?

dS eS’f d

What have we shown

S’

S

Sff

Let S be a reduced sched that agrees with Sff on the first j items.
There exists a reduced sched S’ that agrees with Sff on the first j+1
items and has the same or fewer #misses as S.

S⇤ S↵

Let S be a reduced sched that agrees with Sff on the first j items.
There exists a reduced sched S’ that agrees with Sff on the first j+1
items and has the same or fewer #misses as S.

Recap

The greedy algorithm is quite simple.

But the analysis for why the solution works is more
subtle and complicated.

In this case, we had to apply the exchange lemma
multiple times to prove optimality.

Huffman
L10
CS4800

image: wikimedia

Alice Bob

mm

Alice Bob

mm

m

MOSCOW — President Vladimir V. Putin’s typically
theatrical order to withdraw the bulk of Russian forces
from Syria, a process that the Defense Ministry said it
began on Tuesday, seemingly caught Washington,
Damascus and everybody in between off guard — just the
way the Russian leader likes it.

By all accounts, Mr. Putin delights at creating surprises,
reinforcing Russia’s newfound image as a sovereign,
global heavyweight and keeping him at the center of
world events.

 m

MOSCOW — President Vladimir V. Putin’s typically
theatrical order to withdraw the bulk of Russian forces
from Syria, a process that the Defense Ministry said it
began on Tuesday, seemingly caught Washington,
Damascus and everybody in between off guard — just the
way the Russian leader likes it.

By all accounts, Mr. Putin delights at creating surprises,
reinforcing Russia’s newfound image as a sovereign,
global heavyweight and keeping him at the center of
world events.

e: 235
i: 200
o: 170
u: 87
p: 78
g: 47
b: 40
f: 24

881

e: 235 000
i: 200 001
o: 170 010
u: 87 011
p: 78 100
g: 47 101
b: 40 110
f: 24 111

881

3
3
3
3
3
3
3
3

B(T, {fc}) =
X

c2C

fc · `c

def: cost of an encoding

881

e: 235 000
i: 200 001
o: 170 010
u: 87 011
p: 78 100
g: 47 101
b: 40 110
f: 24 111

3
3
3
3
3
3
3
3

character frequency

0

75

150

225

300

e i a o r n t s l c u p m d h y g b f v k w z x q j

e: 234803
i: 200613
a: 198938
o: 170392
r: 160491
n: 158281
t: 152570
s: 139238
l: 130172
c: 103307
u: 87211
p: 78077
m: 70504
d: 68007
h: 64165
y: 51527
g: 47011
b: 40351
f: 24110
v: 20103
k: 16012
w: 13825
z: 8439
x: 6926
q: 3729
j: 3075

Morse code

image http://en.wikipedia.org/wiki/Morse_code

Morse code

def: prefix-free code

def: prefix-free code

def: prefix code

e: 235 0
i: 200 10
o: 170 110
u: 87 1110
p: 78 11110
g: 47 111110
b: 40 1111110
f: 24 11111110

decoding a prefix code
e: 235 0
i: 200 10
o: 170 110
u: 87 1110
p: 78 11110
g: 47 111110
b: 40 1111110
f: 24 11111110

111111010111110

code to binary tree
e: 235 0
i: 200 10
o: 170 110
u: 87 1110
p: 78 11110
g: 47 111110
b: 40 1111110
f: 24 11111110

111111010111110

prefix code

binary tree

ie o u p

use tree to encode
e: 235 00
i: 200 01
o: 170 10
u: 87 110
p: 78 111

2
2
2
3
3

goal
given the

{fc}c�C

min
T

B(T, {fc})

goal
given the character frequencies

produce a prefix code T with smallest cost

(all frequencies are > 0)

property

x

y

a b

lemma:optimal tree must be full.

divide & conquer?

counter-example

e: 32
i: 25
o: 20
u: 18
p: 5

2440477887170200235
e i o u p g b f

7887170200235
e i o u p g

2440
b f

64

7887170200235
e i o u p g

2440
b f

64

111

7887170200235
e i o u p

47
g

2440
b f

64

1117887170200235
e i o u p

47
g

2440
b f

64

235
e

200
i

170
o

87
u

78
p

111

g

b f

235
e

200
i

170
o

87
u

78
p

111

g

b f

165

e i o

g

b f

u p

276

87 u 78 p

165

47 g

40 b 24 f

64

111

235 e

370

170 o200 i

881

511

276

87 u 78 p

165

47 g

40 b 24 f

64

111

235 e

370

170 o200 i

881

511

e: 235 01
i: 200 11
o: 170 10
u: 87 0011
p: 78 0010
g: 47 0000
b: 40 00011
f: 24 00010

276

87 u 78 p

165

47 g

40 b 24 f

64

111

235 e

370

170 o200 i

881

511

e: 235 01
i: 200 11
o: 170 10
u: 87 0011
p: 78 0010
g: 47 0000
b: 40 00011
f: 24 00010

470
400
340
348
312
188
200
120
2378

objective

exchange argument
lemma:

x

y

a b

exchange argument

T

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma:

x

y

a b

a

b

x y

T ��

exchange argument

T

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma:

exchange argument

proof:

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma:

x

y

a b

exchange argument

T

first step

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma:

x

y

a b

a

y

x b

exchange argument

T T �

fa � fb

fx � fy

fx � fa

fy � fb

first step

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma:

x

y

a b

T

a

y

x b

T �

B(T �) =
�

c

fc⇤
�
c + fx⇤�

x + fa⇤�
aB(T) =

�

c

fc⇤c + fx⇤x + fa⇤a

B(T)�B(T �) ⇥ 0

fx � fa
x

y

a b

T

a

y

x b

T �

exchange argument

a

y

x b

a

b

x y

B(T �)�B(T ��) ⇥ 0

T � T ��

x

y

a b

T

a

y

x b

T �

a

b

x y

T ��

B(T)�B(T �) ⇥ 0

x

y

a b

T

a

y

x b

T �

a

b

x y

T ��

B(T �)�B(T ��) ⇥ 0

T ��
is also optimal

x

y

a b

a

b

x y

exchange argument

T T �

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma:

fc

optimal sub-structure
fx fy

fzfc�

optimal sub-structure
fx fy

problem of size n

problem of size n-1

fc

optimal sub-structure
fx fy

problem of size n

fzfc� problem of size n-1

fc

Lemma:

optimal sub-structure
fx fy

problem of size n

fzfc� problem of size n-1

fc

Lemma:

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

z

T �

z

x y

z

B(T �) B(T)

T � T

x y

z

B(T �) B(T)

T � T

B(T �) = B(T)� fx � fy

Suppose is not optimal T

yx

U
B(U) < B(T)

Suppose is not optimal T

Suppose is not optimal T

B(U) < B(T)

yx

U

z

U �

Suppose is not optimal

B(U) < B(T)

B(U �) = B(U)� fx � fy
yx

U

z

U �

But this implies that B(T’) was not optimal.

< B(t) - fx - fy

T

therefore

z

T �

x y

summary of argument

