70 5800

SSSSSS

Greedy 1s only good for certain problems

sy3333
enl6l2

mal231l
Cs5800
Ccs4800
Ccs6051
sy3100

Cs1234

start

end
3.25

4.75

5.25

6.5

How many non-overlapping courses can you take?

problem statement

(al’ c ey Cln)
(81,82,.,,’871) S*“"-\.‘\/‘ﬁ &‘-I\—\fs‘

(f13f27°"afn) (Sorted) S_r—i < f'L
end times -
find largest subset of activities C={ai} such that

(compatible)

gLy e

g:)7 J(L

poroblem statement

(a1,...,an)
(81,52, --,8n)

(f1, f2,- -5 fn) (sorted) s; < f;

find largest subset of activities C={ai} such that

(compatible)

For any two activities a;, a;, I < J the start

time of a; is after the finish time of a;.

poroblem statement

(a1,...,an)
(81,52, --,8n)

(f1, f2,- -5 fn) (sorted) s; < f;

find largest subset of activities C={ai} such that

(compatible)
ai,a; € C,1 <
fi <55

S1
¢

prob\em statement

CL1 CLn

(81,82, .., Sn)

(flana”’afn) (SORTED) S < fz
f
:

—f2

5

5,

S1 4

aynamic programming
‘1 —r—2 In

Lets draw all of the events on a timeline.

cjlynamcf: programming

€0

Maximum number of non-overlapping activities

Best, = :
2n possible among the first 2n events.

€2n

Qynam|? programming

_(— Yé‘quSV\ Un
BESTf, = May a

cjlynar;mc; programming

F

BESTfn — Mmax

BESTg, + 1
BEST,,

in: an

out: a,

S

€t

[fn

S1

o

greedy solution:

€0 <
DEFINITION:

SOltni,j — faaX

GOAL: SOLTN(25

L——

<
vion~ 0 Uff\ Rp{).\,\r

Sf/& a{ o\o'b Uf\’t‘”—j b&'\'UUQV\

eos 1,5

€2n

greeady solution:

S1 fl

f2

60 621’1
claim: the first action to finish in efi,j] is
always part of some sorLrtn; ;

claim: the first action to finish in €[i,]] is
always part of some sorLrn; ;

Toor CawfoQOK‘ S0 K Of'h’“ﬁk 80\"7/‘)?,\}.

St oF e M Pt ecdun B flek oo ARANP

o
I'F o»* € 8“\,/\)‘(!:” rea Phe cloin \/\o\cl;.
TF & & oty L4 e be Al fiat fofiid o Sa\,w)‘;

Corgider S0y = Sty = %03 U Lo’)
@ \9\,3[: \ S DL/TN;/;J\
@ 9\,‘) s \ra\tl gbb\‘\"/‘l ﬂa/\)O\W&o\()‘ﬂf/\%- B@CAUS{_
eaK < 60\, gv 0“%((ﬂf”j \Ad OKN/Lc/‘ﬂ uﬂ% a/‘y' @‘/f’«/fj‘

claim: the first action to finish in e[i,j] is
always part of some sorLrN; ;

PROOF:

Consider soltn; ; and let @™ be the first activity to finish in ei,j].
If a* € soltn; ;, then the claim follows.

If not, let @ be the activity that finishes first in soltn; ;.

Consider a new solution that replaces a Wlthlﬁj

soltn,-J soltnw {a} L\JJ{cﬁ}

This new set is valid because a’* finishes before a and thus

does not overlap with any activities. This new solution also has
the same size and is therefore also optimal too.

greeay solution:

S1 - fl

f2

%i | \‘ 6p—

€0

€2n

algorithm:; find first event to finish. add to solution.
remove conflicting events.
continue.

greeay solution:

51 \' jﬁ

f2

€0 5 €2n

algorithm:; find first event to finish. add to solution.
remove conflicting events.
continue.

greeay solution:

S1 - fl

f2

€0

€2n

algorithm:; find first event to finish. add to solution.
remove conflicting events.

continue.

greeay solution:

S1 N f&
(R

\ 4

€0 \ €2n

algorithm:; find first event to finish. add to solution.
remove conflicting events.
continue.

greeay solution:

S1 N f&
b

\ 4

€0 \ €2n

algorithm:; find first event to finish. add to solution.
remove conflicting events.
continue.

greeay solution:

0‘¥ S - J1 Ss l"'/u*d;)
/—_/ﬂr A
(A Oy
~— > \
1 \\\;
€0 €2n,

algorithm:; find first event to finish. add to solution.
remove conflicting events.
continue.

greeady solution:

S1 5 fl
| ‘

f2

: [——

A 4

A\ 4

€0

algorithm; find first event to finish. add to solution.
remove conflicting events.

continue.

€2n

running time

algorithm:; find first event to finish. add to solution.
remove conflicting events.
continue.

(f1, f2,.. -, fn) (sorted) s; < f;

Recap

The main idea in this algorithm was the “exchange argument.”

We were able to identify an item (first to finish) that must be
part of some optimal solution by exchanging this element with
one that we can identify in any optimal solution.

Since its easy to identify the item that is first to finish, our
algorithm is conversely simple, “greedy.”

cacning

cache nit

guestion:

guestion:

How do we manage a fully-associate cache?

When it is full, which element do we replace?

oroblem statement

input:

output:

cache is

oroblem statement

input: K, the size of the cache
di, do, ..., dn memory accesses

output: schedule for that cache that minimizes # of cache
misses while satisfying requests

cache is fully associative, line size is 1

contrast with reality

contrast with reality

In a real program, we may not know the future
memory access patterns.

Some caches have additional restrictions, like
line-size, associativity, etc.

Selady eviction rule

Selady eviction rule

Replace the element in the cache that is accessed
“farthest into the future”

example

cache

o (2 Je Iz]

bcdadeadbaecea

example

abcdadeadbaecea

example

cache 0

abcdadeadbaecea

example

cache

abcdadeadbaecea

example

©

()]
00O eEo
()]

00O - GO0
00O - 0O
000 - CO0
)

cache

Surprising theorem

Surprising theorem

The schedule Sff produced by the Belady “farthest
in the future” eviction rule is optimal.

schedule

Schedule for access pattern ds,dz,...,dn:

Reduced schedule:

schedule

Schedule for access pattern ds,dz,...,dn:

A list of instructions for each access that is either
“NOP” or “evict x for y"

Reduced schedule:

schedule

Schedule for access pattern ds,dz,...,dn:

A list of instructions for each access that is either
“NOP” or “evict x for y"

Reduced schedule:

A schedule in which"evict x for y” instruction only
occurs when y is accessed.

schedule

Schedule for access pattern ds,dz,...,dn:

A list of instructions for each access that is either
“NOP” or “evict x for y"

Reduced schedule:

A schedule in which"evict x for y” instruction only
occurs when y is accessed.

Note: any schedule can be transformed into a reduced schedule with

the same or fewer cache misses.
(Idea: starting at the end, defer “evict..t” until y is read)

—xchange lemma

—xchange lemma

Let S be a reduced schedule that agrees with Sffon
the first j accesses.

Then there exists a schedule S’ that agrees with Sff

on the first j+1 accesses and has the same or fewer
misses.

Some optimal
schedule.

S*

Some optimal
schedule.

S* s,
/

Agrees with Sﬁcon
the first access.

Some optimal
schedule.

S* s s,
/

Agrees with Sﬁcon
the first access.

Agrees with Sffon

the first two
accesses.

Some optimal
schedule.

S* s s s
e

Agrees with Sffon
the first access.
Agrees with Sgeon
the first two
accesses.
Agrees with S-on
the first three

accesses.

Sn—l Sff

Sffhas the same
number of cache
misses as S*.

Proor of Lemma

Let S be a reduced sched that agrees with S on the first j items.
There exists a reduced sched S’ that agrees with S« on the first j+1
items and has the same or fewer #misses as S.

2rooT of Lemma

Let S be a reduced sched that agrees with S on the first j items.
There exists a reduced sched S’ that agrees with S« on the first j+1
items and has the same or fewer #misses as S.

At time j, both S and Sffhave the same state.
Let d be the element accessed at time j+1.

Proor Oof lemma

State of the cache after J operations under the two schedules.

o Jely) S)
S Sg

easy case 1

easy case 2

Proor Oof lemma

State of the cache after J operations under the two schedules.

o Jely) S)
S Sg

easy case 1 dis in the cache.

easy case 2

Proor Oof lemma

State of the cache after J operations under the two schedules.

o Jely) S)
S Sg

easy case 1 dis in the cache.
Both S and Sffagree since both do NOPs at j+1.

easy case 2

ProoTl Of lemma

State of the cache after J operations under the two schedules.

[oo | Yo)

S S¢
easy case 1 dis in the cache.

Both .S and Sffagree since both do NOPs at j+1.

easy case 2 d IS not in the cache, but both “evict e for d.

ProoTl Of lemma

State of the cache after J operations under the two schedules.

[T Lv) [Lo)

S S
easy case 1 dis in the cache.

Both .S and Sffagree since both do NOPs at j+1.

easy case 2 d IS not in the cache, but both “evict e for d.

Both .S and Sﬁagree at j+1.

Proor Oof lemma
s —GS

S
case 3

Proor Oof lemma
s —GS

S
case 3 § avyicts “e for d” and Sgrevicts “e for "

Se

Timeline

j t
1 1 I [

1

[))))

Timeline

j t
Se 1 1 I [

S [))))

Copy j+1 from Sff. Then copy from S until 7 (the first time that
either e or f are accessed). Then copy from S until the end.

Proor Oof lemma
s @ s e

Let # be the first access that either e or f are accessed.

What if t=e;

Proor Oof lemma
s @ s e

what if t=e ?

Proor Oof lemma
s @ s e

what if t=f 7

Proor Oof lemma
s @ s e

what if t is neither e nor f ?

VVhat have we shown

Se 1 1 I [

s 1 0 0 [[[

S [))))

Let S be a reduced sched that agrees with Sy on the first j items.
There exists a reduced sched S’ that agrees with Sion the first j+1
items and has the same or fewer #misses as S.

Let S be a reduced sched that agrees with S on the first j items.
There exists a reduced sched S’ that agrees with Sion the first j+1
items and has the same or fewer #misses as S.

S” St

Recap

The greedy algorithm is quite simple.

But the analysis for why the solution works is more
subtle and complicated.

In this case, we had to apply the exchange lemma
multiple times to prove optimality.

Human
L10

CS4800

& Winston-Salem o Durham
o Raleigh

> Charlotte o Fayetteville

4
|

o Columbia

& Winston-Salem o Durham

o Raleigh

‘/ac& > Charlotte o Fayetteville

o Columbia

<> /N
B! B!

MOSCOW — President Vladimir V. Putin’s typically
theatrical order to withdraw the bulk of Russian forces
from Syria, a process that the Defense Ministry said it
lbegan on Tuesday, seemingly caught Washington,
Damascus and everybody in between off guard — just the
way the Russian leader likes it.

By all accounts, Mr. Putin delights at creating surprises,
reinforcing Russia’s newfound image as a sovereign,
global heavyweight and keeping him at the center of
world events

<> /N
B! B!

MOSCOW — President Vladimir V. Putin’s typically
theatrical order to withdraw the bulk of Russian forces
from Syria, a process that the Defense Ministry said it
lbegan on Tuesday, seemingly caught Washington,
Damascus and everybody in between off guard — just the
way the Russian leader likes it.

By all accounts, Mr. Putin delights at creating surprises,
reinforcing Russia’s newfound image as a sovereign,
global heavyweight and keeping him at the center of
world events

ceC fe
e: 235
200
170
87
78
. 47
. 40
24

-~ O0MQ T C O —-

881

C

- O0Q T C O = M

€

C fC
235
200
170
87
78

47
;40

24

881

000
001
010
011
100
101
110
111

o~
o

w wwwwwww

def: cost of an encoding

B(T,{f}) =) fe-te

ceC
ceC [T /.
e. 235 000 3
i: 200 001 3
o: 170 010 3
u.: 87 011 3
p: 78 100 3
g. 47 101 3
b: 40 110 3
f. 24 111 3

881

Nr—uncdk3 30 VW =MD

T A< UMK O30T C

—. 0O X N

character frequency

234803
200613
198938
170392
160491
158281
152570
139238
130172
103307
87211
78077
70504
68007
64165
51527
47011
40351
24110
20103
16012
13825
8439
6926
3729
3075

300

150

75

\Vorse code

International Morse Code
- 1 dash = 3 dots
- The space between parts of the same letter = 1 dot
etters = 3 dots.
The space between words = 7 dots

Ae mm Veeoeomm
Emmeece We mm =
Commeomme X o o mm
Dumeoeo Y o mmm w
Ee 2
Feoeomme

G o ’
Heooe

|l oo

] o mm - -
K o o mm
Lemmoeo

M - —

N mm o

O n v -
P o mm e
o N NN}
R e mme
Seee

T =

Uee mm

COONOUVBWNEE~~

image http://en.wikipedia.org/wiki/Morse_code

\Vorse code

International Morse Code
-1 dash = 3 dots
- The space betwee
™

n parts of the same letter = 1 dot

2
L]
COMNOUVBWNEE~~-

def: prefix-free code

def: prefix-free code

Ve,y € C,x #y = CODE(x) not a prefix of CODE(y)

-~ O 00Q T C O = M

def: prefix code

Vo,y € C,x #y = CODE(x) not a prefix of CODE(y)

235
200
170
87
78

47
;40

24

)

10

110

1110
11110
111110
1111110
11111110

decoding a prefix code

: 235 0]

: 200 10

. 170 110 111111010111110
. 87 1110

. 78 11110

: 47 111110

. 40 1111110

0 24 11111110

-~ O0Q T C O = M

code to pinary tree

: 235 0 @

-~ O0MQ T C O = M

. 200 10 &
. 170 110) @ ¢
. 87 1110 :‘ {Z)

. 78 11110]

. 47 111110 P

. 40 1111110 / @

. 24 11111110 »

111111016111110

orefix code

|

binary tree

Jse tree to encoge

CEC f{: T Fr’

. 235 00 2
i: 200 01 2
;170 10 2
. 87 110 3
. 78 111 3

2
o
>

GIVEN THE

goal

goal

(all frequencies are > Q)

GIVEN THE CHARACTER FREQUENCIES { ? C } C e Cf

PRODUCE A PREFIX CODE | WITH SMALLEST COST

min B(T {f.})

oroperty

FULL.

LEMMA:OPTIMAL TREE MUST BE

divide & conguer”?

—. (D

© <€ O

counter-example

E I o U P G B F

(25 (200)0)((87)78)
E I o U P

U

III
F

I

78

(200 i (

511

I~
| —
po

~_

oowu'to & O k-0

Se) 276 H
L]

L]

165 111 H

))

/V
/V

~

o) (22
(e

—
_/\
—
Q
«
—

40b 24 f

: 87
: 78

: 235 01
: 200 11
: 170 10
0011
0010
47 0000
40 00011
24 00010

881 e: 235 01 47@

i: 200 11 400

o: 170 10 340

u: 87 0011 gzllg
N\ p: 78 0010 188

(200i)(1700) (2359) (i) g: 47 0000 290
b: 40 00011 120

: 24 00010 2378

T
%
c
_/\
/
~
3
™
~
N
«
—_

Y
~
®
©

—

40b 24§

objective

exchange argument

LEMMA:

exchange argument

LEMMA: Let 2,y € C be characters with smallest frequencies f;, fy. There exists an
optimal prefix code 7" for C in which x,y are siblings. That is, the codes for
x,1y have the same length and only differ in the last bit.

S

exchange argumen

LEMMA:Let z,y € C' be characters with smallest frequencies f,, f,. There exists an
optimal prefix code T” for C in which x,y are siblings. That is, the codes for
z,y have the same length and only differ in the last bit.

2
o

exchange argument

LEMMA: Let 2,y € C be characters with smallest frequencies f, fy. There exists an
optimal prefix code 7" for C in which z,y are siblings. That is, the codes for
x,y have the same length and only differ in the last bit.

PROOF:

exchange argumen

LEMMA: Let 2,y € C be characters with smallest frequencies f, fy. There exists an
optimal prefix code 7" for C in which z,y are siblings. That is, the codes for
x,y have the same length and only differ in the last bit.

(:{' \ FIRST STEP

@Q@

exchange argument

LEMMA: Let 2,y € C be characters with smallest frequencies f, fy. There exists an
optimal prefix code 7" for C in which z,y are siblings. That is, the codes for

x,y have the same length and only differ in the last bit.

N AR
- & o
afic = ®

fagfb fmgfa
f:rgfy fygfb

) —
2l

+

.
n

B(T) =) fele+ fole + fala B(T') =) foll+ full, + fall,

B(T) — B(T') > 0

exchange argument

TG
cxlllen & O

[

B(T') — B(T") > 0

/]

IS ALSO OPTIMAL

exchange argumen

LEMMA: Let 2,y € C be characters with smallest frequencies f, fy. There exists an
optimal prefix code 7" for C in which z,y are siblings. That is, the codes for
x,y have the same length and only differ in the last bit.

(T)

@/\- SR
= O
pfie®

optimal sub-structure

A [[[[[[

optimal sub-structure

£ C T T T T T I [
PROBLEM OF SIZE Il

fmﬂOBLEM OF SIZE n-1 I

optimal sub-structure

o ------dﬁ
f -------

ROBLEM OF

LEMMA:

optimal sub-structure

;, DD EDERERENEs

PROBLEM OF SIZE Il

f c/ PROBLEM OF SIZE n-1

LEMM Al The optimal solution for 7' consists of computing an optimal solution for 7"
and replacing the left z with a node having children z,y.

Suppose T is not optimal

Suppose T is not optimal

Suppose 1" is not optimal

B(U) < B(T)

cfb
()

o De

Suppose 1" is not optimal

B(U) < B(T)

thdb

<B(T) FX - FY

dd] r \ But THis tMPLIES THAT B(1”) WAS NOT OPTIMAL.

theretore

g
™,

oo

summary of argument

