
L10 5800
feb 18/21 2022

shelat

Greedy is only good for certain problems

3.5Cs5800

start end

4.75

4 5.25

1 4

2 3.25

3 4

4.5 6

5 6.5

7 8

sy3333

en1612

ma1231

cs4800

cs6051

sy3100

Cs1234

How many non-overlapping courses can you take?

problem statement

find largest subset of activities C={ai} such that

(sorted)

(compatible)

activities
start times
end timer

for any 2 activities ai aj is

the start time of aj is after
the end time of ai

problem statement

find largest subset of activities C={ai} such that

(sorted)

(compatible)

For any two activities the start

time of is after the finish time of .

ai, aj, i < j
aj ai

find largest subset of activities C={ai} such that

(sorted)

(compatible)

problem statement

endtire
of activity i

t stat time ofactivity j

problem statement
(sorted)

a
az

t.lk
emsmeitneraatreitin

dynamic programming

Lets draw all of the events on a timeline.

111 I
eg Czn

Bestan Max
of compatible activities amongthe first 2n events

dynamic programming

Best2n = Maximum number of non-overlapping activities
possible among the first 2n events.

dynamic programming

ft
activity

Max Bestestnext event we
dont

include an

It Bestsu we includean

It

dynamic programming

in:
out:

max

greedy solution:

definition:

soltni,j =

goal: soltn0,2n

there
are

n
activities

J

start

eat

Events

largestsetofcompatible activities between event ei ej

greedy solution:

claim: the first action to finish in e[i,j] is
always part of some

proof:

claim: the first action to finish in e[i,j] is
always part of some

Exchange argument
considerseoptind

solution socini Let at be the
first activity to finish between eventsLei e

Case If at t socini then the claim is TRUE

cases If at 4solidi then let a be thefirsttofinish in Sochi

Let sounts Socinig a at
Solent is nonoverlapping because at ends beff a
and thus cannot overlapwith any other activity
Moreover Goren I pecan and therefore is also
optimal

proof:

claim: the first action to finish in e[i,j] is
always part of some

Consider and let be the first activity to finish in e[i,j].
If , then the claim follows.
If not, let be the activity that finishes first in .
Consider a new solution that replaces with .

This new set is valid because finishes before and thus
does not overlap with any activities. This new solution also has
the same size and is therefore also optimal too.

soltni,j a*
a* ∈ soltni,j

a soltni,j
a a*

soltn*
i,j = soltni,j − {a} ∪ {a*}

a* a

optimal

greedy solution:

algorithm: find first event to finish. add to solution.
remove conflicting events.
continue.

I x x

x

X

Cf

greedy solution:

algorithm: find first event to finish. add to solution.
remove conflicting events.
continue.

j

so it is part of theoptimal

greedy solution:

algorithm: find first event to finish. add to solution.
remove conflicting events.
continue.

Xx

greedy solution:

algorithm: find first event to finish. add to solution.
remove conflicting events.
continue.

y
firsttofinish

greedy solution:

algorithm: find first event to finish. add to solution.
remove conflicting events.
continue.

greedy solution:

algorithm: find first event to finish. add to solution.
remove conflicting events.
continue.

att ya
another optimal solution

I

greedy solution:

algorithm: find first event to finish. add to solution.
remove conflicting events.
continue.

running time
algorithm: find first event to finish. add to solution.

remove conflicting events.
continue.

(sorted)0
F

n

because we consider each activity

only once either include in solution or remove

Recap
The main idea in this algorithm was the “exchange argument.”

We were able to identify an item (first to finish) that must be
part of some optimal solution by exchanging this element with
one that we can identify in any optimal solution.

Since its easy to identify the item that is first to finish, our
algorithm is conversely simple, “greedy.”

caching

cache hit
Cache

load r2, addr a

main memory

CPU

store r4, addr b

veryfat if theaddress is in cache quick return
smh

I Éing
cycleif theadd's

f f
is not in
cache

itmust
be
retrieved

and
stared

in the cache

question:
How do we manage the cache

optimally

question:

How do we manage a fully-associate cache?

When it is full, which element do we replace?

problem statement
input:

output:

cache is

K cache site dide du memoryaccesspattern

cache schedule that minimizes cache misses

fully associative line size I

problem statement
input:

output:

cache is

K, the size of the cache
d1, d2, ..., dm memory accesses

schedule for that cache that minimizes # of cache
misses while satisfying requests

fully associative, line size is 1

l

contrast with reality

contrast with reality

In a real program, we may not know the future
memory access patterns.

Some caches have additional restrictions, like
line-size, associativity, etc.

We will consider the easier case
described earlier

Belady eviction rule
Replace the cache entry that

is accessed farthest in the future ff

Belady eviction rule

Replace the element in the cache that is accessed
“farthest into the future”

example
a

b

c

cache

a b c d a d e a d b a e c e a

K 3

y
memory access

d d da pattern
p

schedule N N N f c is the ff address
since d is so ff says
no in cache cacheis full

Replace cwith
where do we stare d

d

example
a

b

c

cache a

b

d

a b c d a d e a d b a e c e a

q
wejust replaced c with d

p
wheredo we load e

ft is b so we replace b

example
a

b

c

cache a

b

d

a

e

d

a b c d a d e a d b a e c e a

I
replace d with b

example
a

b

c

cache a

b

d

a

e

d

a

e

b

a b c d a d e a d b a e c e a

Fit
evict
bfor Ff is b so replace

c bwith c

example
cache a

e

b

a b c d a d e a d b a e c e a

a

e

c

a

b

c

a

d

c

a

d

e

a

b

e

a

c

e

a

b

c

a

b

d

a

e

d

if wind
a 3 4 cachemisses

with this
Schedule

this is another optimal 4 miss
schedule that doesnotuse ff

Surprising theorem
Why does ff work

Theory The Belady ff schedule is optimal

in terms of minimising the of
cache misses

Surprising theorem

The schedule produced by the Belady “farthest
in the future” eviction rule is optimal.

Sff

Lets
prove this

schedule
Schedule for access pattern d1,d2,...,dn:

Reduced schedule:

list of instructions either Nop or replaying

A schedule in which the Replace x with y
instruction only occurs when y is accessed

Note Any schedule can be reduced and incur the
same or fewer misses

schedule
Schedule for access pattern d1,d2,...,dn:

Reduced schedule:

A list of instructions for each access that is either
“NOP” or “evict x for y”

schedule
Schedule for access pattern d1,d2,...,dn:

Reduced schedule:

A list of instructions for each access that is either
“NOP” or “evict x for y”

A schedule in which“evict x for y” instruction only
occurs when y is accessed.

schedule
Schedule for access pattern d1,d2,...,dn:

Reduced schedule:

A list of instructions for each access that is either
“NOP” or “evict x for y”

A schedule in which“evict x for y” instruction only
occurs when y is accessed.

Note: any schedule can be transformed into a reduced schedule with
the same or fewer cache misses.
(Idea: starting at the end, defer “evict…t” until y is read)

Justin time eviction

Exchange lemma
Let S be a reduced schedule that agreeswith Sff
on thefirst j memory accesses

There exists a schedule S that agreeswith Sff on jet
accesses and incurs the same ofmisses a 5

or
fewer

Exchange lemma
Let be a reduced schedule that agrees with on
the first j accesses.

Then there exists a schedule that agrees with
on the first j+1 accesses and has the same or fewer
misses.

S Sff

S′ Sff

I
Thismeans that schedule S and
Sff perform the same operations

on the cachefor the first jetaccesses

S⇤ S↵

Some optimal
schedule.

D E S
i

p
O must agreewith Sff on 1 access

and have same fewer cache
misses as St

Miss SH 7 miss Si

S⇤ S↵

Some optimal
schedule.

S1

Agrees with on
the first access.

Sff

miss s 7 miss Sc

S⇤ S↵

Some optimal
schedule.

S1

Agrees with on
the first access.

Sff

S2

Agrees with on
the first two
accesses.

Sff

53 Su I
p
agreeswith Sff on allT

n accesses

miss SH miss Si miss Su I missS3 I MISn
Because St is optimists miss Sn miss Sff

S⇤ S↵

Some optimal
schedule.

S1

Agrees with on
the first access.

Sff

S2

Agrees with on
the first two
accesses.

Sff

S3 Sn−1

Agrees with on
the first three
accesses.

Sff

 has the same
number of cache
misses as .

Sff

S*

Proof of Lemma
Let S be a reduced sched that agrees with Sff on the first j items.
There exists a reduced sched S’ that agrees with Sff on the first j+1
items and has the same or fewer #misses as S.

Proof of Lemma
Let S be a reduced sched that agrees with Sff on the first j items.
There exists a reduced sched S’ that agrees with Sff on the first j+1
items and has the same or fewer #misses as S.

At time j, both and have the same state.
Let d be the element accessed at time j+1.

S Sff

Proof of lemma
e

S
e
Sff

f f

easy case 1

easy case 2

State of the cache after J operations under the two schedules.

Proof of lemma
e

S
e
Sff

f f

easy case 1

easy case 2

State of the cache after J operations under the two schedules.

d is in the cache.

Proof of lemma
e

S
e
Sff

f f

easy case 1

easy case 2

State of the cache after J operations under the two schedules.

d is in the cache.

Both and agree since both do NOPs at j+1.S Sff

Proof of lemma
e

S
e
Sff

f f

easy case 1

easy case 2

State of the cache after J operations under the two schedules.

d is in the cache.

d is not in the cache, but both “evict e for d.”

Both and agree since both do NOPs at j+1.S Sff

Proof of lemma
e

S
e
Sff

f f

easy case 1

easy case 2

State of the cache after J operations under the two schedules.

d is in the cache.

d is not in the cache, but both “evict e for d.”

Both and agree since both do NOPs at j+1.S Sff

Both and agree at j+1.S Sff

Proof of lemma

case 3

e
S

e
Sff

f f

Proof of lemma

case 3

e
S

e
Sff

f f

 evicts “e for d”, and evicts “e for f”S Sff

Timeline

S’

S

Sff

j t

Timeline

S’

S

Sff

j t

Copy j+1 from . Then copy from S until (the first time that
either or are accessed). Then copy from S until the end.

Sff t
e f

?

Proof of lemma
dS eS’f d

Let be the first access that either or are accessed.t e f

What if t=e:

Proof of lemma
what if t=e ?

dS eS’f d

Proof of lemma
what if t=f ?

dS eS’f d

Proof of lemma
what if t is neither e nor f ?

dS eS’f d

What have we shown

S’

S

Sff

Let S be a reduced sched that agrees with Sff on the first j items.
There exists a reduced sched S’ that agrees with Sff on the first j+1
items and has the same or fewer #misses as S.

S⇤ S↵

Let S be a reduced sched that agrees with Sff on the first j items.
There exists a reduced sched S’ that agrees with Sff on the first j+1
items and has the same or fewer #misses as S.

Recap

The greedy algorithm is quite simple.

But the analysis for why the solution works is more
subtle and complicated.

In this case, we had to apply the exchange lemma
multiple times to prove optimality.

