
feb 18/21 2022
shelat

Greedy is only good for certain problems

	start	end
sy3333	$\frac{2}{4}$	3.25
en1612	1	4
ma1231	3	4
Cs5800	3.5	4.75
$\operatorname{cs4800}$	4	5.25
$\operatorname{cs6} 651$	4.5	6
sy3100	5	6.5
$\operatorname{Cs1234}$	7	8

How many non-overlapping courses can you take?

problem statement
$\left(a_{1}, \ldots, a_{n}\right)$ activities
$\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ stat times
$\left(f_{1}, f_{2}, \ldots, f_{n}\right) \stackrel{\text { end tined }}{\text { (sorted) }} \stackrel{s_{i}<f_{i}}{ }$
find largest subset of activities $\mathrm{C}=\{\mathrm{a}\}$ such that
(compatible) -
For any 2 activities $a_{i}, a_{j} \quad i=j$
the start tine of a_{j} is after the end time of a_{i}.
problem statement

$$
\begin{aligned}
& \left(a_{1}, \ldots, a_{n}\right) \\
& \left(s_{1}, s_{2}, \ldots, s_{n}\right) \\
& \left(f_{1}, f_{2}, \ldots, f_{n}\right) \text { (sorted) } s_{i}<f_{i}
\end{aligned}
$$

find largest subset of activities $\mathrm{C}=\{\mathrm{a}\}$ such that
(compatible)

For any two activities $a_{i}, a_{j}, i<j$ the start time of a_{j} is after the finish time of a_{i}.
problem statement

$$
\begin{aligned}
& \left(a_{1}, \ldots, a_{n}\right) \\
& \left(s_{1}, s_{2}, \ldots, s_{n}\right) \\
& \left(f_{1}, f_{2}, \ldots, f_{n}\right) \quad \text { (sorted) } \quad s_{i}<f_{i}
\end{aligned}
$$

find largest subset of activities $C=\left\{a_{i}\right\}$ such that
(compatible)

$$
\begin{aligned}
& a_{i}, a_{j} \in C, i<j \\
& f_{i} \leq s_{j}
\end{aligned}
$$

end tire \quad stat time of activity j.
of activity i
 $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$
$\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ (SORTED) $s_{i}<f_{i}$

Q events are either stat or eur times.

Best $_{2 n}=M_{a x}$ \# of compatible activities amon y the firer $2 n$ events.
Lets draw all of the events on a timeline.

$$
\text { Best }_{2 n}=\frac{\text { Maximum number of non-overlapping activities }}{\text { possible among the first } 2 n \text { events. }}
$$

$\operatorname{soltn}_{i, j}=$ largest set af compatible activities betwen event e_{i}, e_{j}.

GOAL: SOLTN $_{0,2 n}$
greedy solution:

claim: the first action to finish in e[i,j] is (Exchange argument) always part of some solis i, j
broz: Consider some opting solution Solini,j. Let a^{*} be the first activity to finish between events $\left[e_{i}, e_{j}\right]$.
case 1: If $a^{*} \in \operatorname{Socic} N_{i j}$, then the chain is TRUE.
Case 2: If $a^{*} \notin \operatorname{solis} i_{i j j}$, then let a be the first to finish in Socini,j.

SOLTNHi,j is NON-overlapping because a^{*} ends before a, and thus carnot overlap with any other activity. Moreover $\left.\left|\operatorname{soc} \mathrm{N}^{*}\right||=| \operatorname{SOLTN}\right)$ and there fare is also opting.
claim: the first action to finish in e[i,j] is always part of some $\operatorname{soltn}_{i, j}$

PROOF:
optinal

Consider soltn ${ }_{i, j}$ and let a^{*} be the first activity to finish in e[i,j].
\rightarrow If $a^{*} \in \operatorname{soltn}_{i, j}$, then the claim follows.
If not, let a be the activity that finishes first in soltn ${ }_{i, j}$.
Consider a new solution that replaces a with a^{*}.
$\operatorname{soltn}_{i, j}^{*}=\operatorname{soltn}_{i, j}-\{a\} \cup\left\{a^{*}\right\}$
This new set is valid because a^{*} finishes before a and thus does not overlap with any activities. This new solution also has the same size and is therefore also optimal too.
greedy solution:

algorithm: find first event to finish. add to solution. remove conflicting events. continue.
greedy solution:

algorithm: find first event to finish. add to solution. remove conflicting events. continue.
greedy solution:

algorithm: find first event to finish. add to solution. remove conflicting events. continue.
greedy solution:

algorithm: find first event to finish. add to solution. remove conflicting events. continue.
greedy solution:

algorithm: find first event to finish. add to solution. remove conflicting events. continue.
another optimal solution

algorithm: find first event to finish. add to solution. remove conflicting events. continue.
greedy solution:

algorithm: find first event to finish. add to solution. remove conflicting events. continue.
running time
algorithm: find first event to finish. add to solution. remove conflicting events. continue.
$\left.\left(f_{1}\right) f_{2} \otimes \ldots, f_{n}\right)$ (sorted) $s_{i}<f_{i}$
$\theta(n)$
because we consider each activity only once (either include in solution, or remove).

Recap

The main idea in this algorithm was the "exchange argument."
We were able to identify an item (first to finish) that must be part of some optimal solution by exchanging this element with one that we can identify in any optimal solution.

Since its easy to identify the item that is first to finish, our algorithm is conversely simple, "greedy."

question:
Now do we manage the cache??
(Optimally)

How do we manage a fully-associate cache?
When it is full, which element do we replace?
problem statement
input: K cache size, $d_{1} d_{2}, . . d_{n}$: memiry access pattern output: cache schedule that minimizes cache misses. cache is fully associative, line size I.

problem statement

input: $\quad K$, the size of the cache
Ld $d_{1}, d_{2}, \ldots, d_{m}$ memory accesses
output: schedule for that cache that minimizes \# of cache misses while satisfying requests
cache is fully associative, line size is 1

contrast with reality

contrast with reality

In a real program, we may not know the future memory access patterns.

- Some caches have additional restrictions, like line-size, associativity, etc.

We will consider the easier case described carlin.

Belady eviction rule
Replace the cache entry that is accessed "farthest in the futva" $(f f)$

Belady eviction rule

Replace the element in the cache that is accessed "farthest into the future"

$$
k=3
$$

cache

scheldt NNN

since is

Nor in cache, l cache is full, where do we stare d??

So ff says $d^{\prime \prime}$

we just replaced c with d.

where do we laded e??
ff is b, so we replace b.

ab c da de ad ba ec e a T
replace d with b.

 schedule that does not use ff.

Surprising theorem
Why does ff work 3?
Theorem: The Beady ff schedule is optiand ir terms of minimising the \#ot cache misses.

Surprising theorem

The schedule $S_{f f}$ produced by the Belady "farthest in the future" eviction rule is optimal.
schedule
Schedule for access pattern $\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{n}$:
list of instructions, either "Nob" or "replace x with y "

Reduced schedule:
A schedule in which the "Replace x with y " instruction only occurs when y is accessed.

Note: Any schedule can be reduced and incur the same or fewer misses.

schedule

Schedule for access pattern $\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{n}$:

A list of instructions for each access that is either "NOP" or "evict x for y"

Reduced schedule:

Schedule for access pattern $\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{n}$:

A list of instructions for each access that is either "NOP" or "evict x for y"

Reduced schedule:
A schedule in which"evict x for y " instruction only occurs when y is accessed.

schedule

Schedule for access pattern $\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{n}$:

A list of instructions for each access that is either "NOP" or "evict x for y"

Reduced schedule: (Just in time eviction)
A schedule in which"evict x for y " instruction only occurs when y is accessed.

Note: any schedule can be transformed into a reduced schedule with the same or fewer cache misses.
(Idea: starting at the end, defer "evict...t" until y is read)

Exchange lemma

- Let S be a reduced schedule thad agrees with $S_{f f}$ on the first is memory accesses.

There exists a schedule S^{\prime} that agrees with $S_{f f}$ on $j t$ accesses and incurs the same \# of misses a S. or
fewer

Exchange lemma

loper Let S be a reduced schedule that agrees with $S_{f f}$ on the first j accesses.

Then there exists a schedule S^{\prime} that agrees with $S_{f f}$ on the first $j+1$ accesses and has the same or fewer misses.

$$
\begin{aligned}
& \text { This means that schedule } S^{\prime} \text { and } \\
& S_{\text {ff }} \text { perform the same opentions } \\
& \text { on the cache for the first jul aceeres. }
\end{aligned}
$$

Some optimal schedule.

η
0
must agree with $S_{f f}$ on I access and have same ffew'r cache misses as S^{*}.

$$
\operatorname{Miss}\left(S^{*}\right) \geqslant \operatorname{miss}\left(S_{1}\right)
$$

Some optimal

schedule.

(1) Agrees with $S_{f f}$ on
the first access.
(2) miss $(S) \geqslant \operatorname{miss}\left(S_{1}\right)$

Some optimal schedule.

$$
\frac{s_{n}}{j}=\underline{S_{\mathrm{ff}}}
$$

agrees with $S_{\text {ff }}$ on all
Agrees with $S_{f f}$ on
n accesses.
the first two
accesses.

$$
\left(\underset{R}{\operatorname{miss}\left(S^{*}\right)} \geqslant \underset{\operatorname{miss}\left(S_{1}\right) \geqslant \operatorname{miss}\left(S_{2}\right) \geqslant \operatorname{miss}\left(S_{3}\right) \ldots}{\operatorname{miss}\left(S_{n}\right)}\right.
$$

Because S^{*} is optimal miss $\left(S^{*}\right)=\operatorname{miss}\left(S_{n}\right)=\operatorname{miss}\left(S_{f f}\right)$

Some optimal

 schedule.

Agrees with $S_{f f}$ on the first two accesses.

$$
s_{n-1} S_{\mathrm{ff}}
$$

$S_{f f}$ has the same number of cache misses as S^{*}.

Agrees with $S_{f f}$ on the first three accesses.

Proof of Lemma

Let S be a reduced sched that agrees with $\mathrm{Sff}_{\mathrm{ff}}$ on the first j items. There exists a reduced sched \mathbf{S}^{\prime} that agrees with Sff on the first j+1 items and has the same or fewer \#misses as S.

Proof of Lemma

Let S be a reduced sched that agrees with $S_{f f}$ on the first j items. There exists a reduced sched \mathbf{S}^{\prime} that agrees with Sff on the first j+1 items and has the same or fewer \#misses as S.

At time j, both S and $S_{f f}$ have the same state.
Let d be the element accessed at time $j+1$.

Proof of lemma

State of the cache after J operations under the two schedules.

easy case 1
easy case 2

Proof of lemma

State of the cache after J operations under the two schedules.

easy case $1 \quad d$ is in the cache.
easy case 2

Proof of lemma

State of the cache after J operations under the two schedules.

easy case $1 \quad d$ is in the cache.
Both S and $S_{f f}$ agree since both do NOPs at $j+1$.
easy case 2

Proof of lemma

State of the cache after J operations under the two schedules.

easy case $1 \quad d$ is in the cache.
Both S and $S_{f f}$ agree since both do NOPs at j $\mathrm{j}+1$.
easy case 2 d is not in the cache, but both "evict e for d."

Proof of lemma

State of the cache after J operations under the two schedules.

easy case $1 \quad d$ is in the cache.
Both S and $S_{f f}$ agree since both do NOPs at j $\mathrm{j}+1$.
easy case $2 d$ is not in the cache, but both "evict e for d."

Both S and $S_{f f}$ agree at j+1.

Proof of lemma

case 3

Proof of lemma

Timeline

S'

S

Copy j+1 from $S_{f f}$ Then copy from S until t (the first time that either e or f are accessed). Then copy from S until the end.

Let t be the first access that either e or f are accessed.
What if $t=e$:

S'
e d
what if $\mathrm{t}=\mathrm{e}$?

S'
e d
what if $\mathrm{t}=\mathrm{f}$?
what if t is neither e nor f ?

What have we shown

$S_{f f}$ \square

S'

S \square

Let S be a reduced sched that agrees with $S_{f f}$ on the first j items. There exists a reduced sched \mathbf{S}^{\prime} that agrees with Sff on the first j+1 items and has the same or fewer \#misses as S .

Let S be a reduced sched that agrees with $S_{f f}$ on the first j items. There exists a reduced sched \mathbf{S}^{\prime} that agrees with S_{ff} on the first $\mathrm{j}+1$ items and has the same or fewer \#misses as S.

Recap

The greedy algorithm is quite simple.
But the analysis for why the solution works is more subtle and complicated.

In this case, we had to apply the exchange lemma multiple times to prove optimality.

