
L10 5800
feb 18/21 2022

shelat

2425

Greedy is only good for certain problems

3.5Cs5800

start end

4.75

4 5.25

1 4

2 3.25

3 4

4.5 6

5 6.5

7 8

sy3333

en1612

ma1231

cs4800

cs6051

sy3100

Cs1234

How many non-overlapping courses can you take?

problem statement

find largest subset of activities C={ai} such that

(sorted)

(compatible)

problem statement

find largest subset of activities C={ai} such that

(sorted)

(compatible)

For any two activities the start

time of is after the finish time of .

ai, aj, i < j
aj ai

find largest subset of activities C={ai} such that

(sorted)

(compatible)

problem statement

problem statement
(sorted)

dynamic programming

Lets draw all of the events on a timeline.

dynamic programming

Best2n = Maximum number of non-overlapping activities
possible among the first 2n events.

dynamic programming

dynamic programming

in:
out:

max

greedy solution:

definition:

soltni,j =

goal: soltn0,2n

greedy solution:

claim: the first action to finish in e[i,j] is
always part of some

proof:

claim: the first action to finish in e[i,j] is
always part of some

proof:

claim: the first action to finish in e[i,j] is
always part of some

Consider and let be the first activity to finish in e[i,j].
If , then the claim follows.
If not, let be the activity that finishes first in .
Consider a new solution that replaces with .

This new set is valid because finishes before and thus
does not overlap with any activities. This new solution also has
the same size and is therefore also optimal too.

soltni,j a*
a* ∈ soltni,j

a soltni,j
a a*

soltn*
i,j = soltni,j − {a} ∪ {a*}

a* a

I

Exchange

greedy solution:

algorithm: find first event to finish. add to solution.
remove conflicting events.
continue.

greedy solution:

algorithm: find first event to finish. add to solution.
remove conflicting events.
continue.

greedy solution:

algorithm: find first event to finish. add to solution.
remove conflicting events.
continue.

greedy solution:

algorithm: find first event to finish. add to solution.
remove conflicting events.
continue.

greedy solution:

algorithm: find first event to finish. add to solution.
remove conflicting events.
continue.

greedy solution:

algorithm: find first event to finish. add to solution.
remove conflicting events.
continue.

greedy solution:

algorithm: find first event to finish. add to solution.
remove conflicting events.
continue.

running time
algorithm: find first event to finish. add to solution.

remove conflicting events.
continue.

(sorted)

n time solution because each

at is processed just once
activity

Recap
The main idea in this algorithm was the “exchange argument.”

We were able to identify an item (first to finish) that must be
part of some optimal solution by exchanging this element with
one that we can identify in any optimal solution.

Since its easy to identify the item that is first to finish, our
algorithm is conversely simple, “greedy.”

caching

cache hit
Cache

load r2, addr a

main memory

CPU

store r4, addr b

Umb fast
5cycles

bat TFT
lbgh

b

question:
How to manage the tache

Which items should we evict

when the cache is full

question:

How do we manage a fully-associate cache?

When it is full, which element do we replace?

any emptyslot in
the cache can
hold any
address

problem statement
input:

output:

cache is

K size ofthecache memoryaccesspattern Iida dm

schedule of operations on the cache that
minimizes the number of cache misses

fully associative with line size I

problem statement
input:

output:

cache is

K, the size of the cache
d1, d2, ..., dm memory accesses

schedule for that cache that minimizes # of cache
misses while satisfying requests

fully associative, line size is 1

di Ine address of the memoryaccess
T at operation i

contrast with reality

contrast with reality
In a real situation, we may not know the future
memory access patterns.

Some caches have additional restrictions, like
line-size, associativity, etc.

However, this algorithm can still be used to
compare a real-world algorithm against the
optimum cache miss rate possible.

Belady eviction rule
Replace the element in the cache that

is accessed farthest in thefuture ff

Belady eviction rule

Replace the element in the cache that is accessed
“farthest into the future”

example
a

b

c

cache

a b c d a d e a d b a e c e a

K 3

memory

access

pattern

example
a

b

c

cache a

b

d

a b c d a d e a d b a e c e a

nop n
o
p

Evict c for d.n
o
p

Memory accesses:

Cache operations:
I

T
becauseatthispoint
c is accessedfarthest
in the future

example
a

b

c

cache a

b

d

a

e

d

a b c d a d e a d b a e c e aMemory accesses:

Cache operations: nop Evict (c,d) Evict (b,e)

T
Replace bwith e
because b is accessed
farthest in thefuture

example
a

b

c

cache a

b

d

a

e

d

a

e

b

a b c d a d e a d b a e c e aMemory accesses:

Cache operations: nop Evict (c,d) Evict (b,e) Evict (d,b)

T
Replace d with b

example
cache a

e

b

a b c d a d e a d b a e c e a

a

e

c

a

b

c

a

d

c

a

d

e

a

b

e

a

c

e

a

b

c

a

b

d

a

e

d

Here is an
alternate
optimal set of
cache
operations.

ad bie dib bio
Beladyffschedule
optimal 4 cache

misses

Surprising theorem
The schedule Sff produced by the Belady
eviction rule is optimal it has the

fewest cache misses that are possible

while satisfying thmemoryaccesspattern

iifa di is accessed at operation i

then di must be in the cache by
operation i

Surprising theorem

The schedule produced by the Belady “farthest
in the future” eviction rule is optimal.

Sff

schedule
Schedule for access pattern d1,d2,...,dn:

Reduced schedule:

Notation

list ofinstructions to perform on the cache

e.g Nye or evict b ford evict bid

A schedule in which evict ay only
occurs when y is accessed

schedule
Schedule for access pattern d1,d2,...,dn:

Reduced schedule:

A list of instructions for each access that is either
“NOP” or “evict x for y”

schedule
Schedule for access pattern d1,d2,...,dn:

Reduced schedule:

A list of instructions for each access that is either
“NOP” or “evict x for y”

A schedule in which“evict x for y” instruction only
occurs when y is accessed.

schedule
Schedule for access pattern d1,d2,...,dn:

Reduced schedule:

A list of instructions for each access that is either
“NOP” or “evict x for y”

A schedule in which“evict x for y” instruction only
occurs when y is accessed.

Note: any schedule can be transformed into a reduced schedule with
the same or fewer cache misses.
(Idea: starting at the end, defer “evict…t” until y is read)

Non-Reduced Schedule example

cache a

e

b

a b c d a d e a d b a e c e a

a

e

c

a

b

c

a

b

d

a

e

d

Example of a non-reduced schedule.
At this point, the cache evicts (b,c) when “a”
is being accessed. It is possible to delay
this eviction until “c” is accessed, thereby
leading to a reduced schedule.

cache should beempty
1 at thestart evicatchic This schedule

satisfies the
i memoryT

access pattern

Exchange lemma
Let s be a reduced schedule that agrees with Sff

on the first j operations

Then there exists a schedule s that

agrees with Sff on jet operations
and has the same or fewer cachemissesasS
e g miss 5 I miss s

Exchange lemma
Let be a reduced schedule that agrees with on
the first j accesses.

Then there exists a schedule that agrees with
on the first j+1 accesses and has the same or fewer
misses.

S Sff

S′ Sff

I

What does it mean for 2 schedules to agree?
A schedule is a sequence of cache instructions:
NOP,NOP,NOP,evict(c,d),NOP,NOP,…

cache a

e

b

a b c d a d e a d b a e c e a

a

e

c

a

b

c

a

d

c

a

d

e

a

b

e

a

c

e

a

b

c

a

b

d

a

e

d

For example, these two schedules agree on the first three operations.

length 15clad
Sff

N NN
tenth 15schedule s

e bid

S⇤ S↵

Some optimal
schedule.

reduced

SatherSt
greedy solutionSt agrees The

Exchangelemma
wewant to arguewithSff can be applied to St
that Sff ison show the existence

o f or a schedule s I optimal
operations

that agreeswithSff
on I operation

miss f I miss S

S⇤ S↵

Some optimal
schedule.

S1

Agrees with on
the first access. Can
be constructed by
applying the Lemma
to which agrees
on 0 accesses.

Sff

S*

S⇤ S↵

Some optimal
schedule.

S1

Agrees with on
the first access. Can
be constructed by
applying the Lemma
to which agrees
on 0 accesses.

Sff

S*

S2

Agrees with on
the first two
accesses.

Sff

S⇤ S↵

Some optimal
schedule.

S1

Agrees with on
the first access. Can
be constructed by
applying the Lemma
to which agrees
on 0 accesses.

Sff

S*

S2

Agrees with on
the first two
accesses.

Sff

S3 Sn−1

Agrees with on
the first three
accesses.

Sff

 has the same
number of cache
misses as .

Sff

S*

15operations 15operations
Exchange

Lemme

15 A A A A A

w

Repeatedly applying the
exchange Lemma allows us

missed 7 missed to argue that Sff
is optimal

S⇤ S↵

Some optimal
schedule.

S1

Agrees with on
the first access. Can
be constructed by
applying the Lemma
to which agrees
on 0 accesses.

Sff

S*

S2

Agrees with on
the first two
accesses.

Sff

S3 Sn−1

Agrees with on
the first three
accesses.

Sff

 has the same
number of cache
misses as .

Sff

S*

miss(S*) ≥ miss(S1) ≥ miss(S2) ≥ ⋯ ≥ miss(Sn)

A length
n schedule

p
length n schedule

optimal

d
miss Sff

S⇤ S↵

Some optimal
schedule.

Since is optimal, this means that all of these relations need to be equality.S*

This also means the is therefore optimal.Sff

miss(S*) ≥ miss(S1) ≥ miss(S2) ≥ ⋯ ≥ miss(Sn) = miss(Sff)

S⇤ S↵

Some optimal
schedule.

Since is optimal, this means that all of these relations need to be equality.S*

This also means the is therefore optimal.Sff

Proof of Lemma
Let S be a reduced sched that agrees with Sff on the first j items.
There exists a reduced sched S’ that agrees with Sff on the first j+1
items and has the same or fewer #misses as S.

gerations

Proof At operation j both schedule Sand Sff have the
same cache state because they have both donethe
same cache operations starting from the sameemptystate

Let d be the address accessed at operationjet

Proof of Lemma
Let S be a reduced sched that agrees with Sff on the first j items.
There exists a reduced sched S’ that agrees with Sff on the first j+1
items and has the same or fewer #misses as S.

At time j, both and have the same state.
Let d be the element accessed at time j+1.

S Sff

Proof of lemma
e

S
e
Sff

f f

easy case 1

State of the cache after J operations under the two schedules.

address d is in the cache

S will do a Nop Sff will do a NOP

S and Sff agree on the first
jet operations

Proof of lemma
e

S
e
Sff

f f

easy case 1

State of the cache after J operations under the two schedules.

d is in the cache.

Proof of lemma
e

S
e
Sff

f f

easy case 1

State of the cache after J operations under the two schedules.

d is in the cache.

Both and agree since both do NOPs at j+1.S Sff

Proof of lemma
e

S
e
Sff

f f

easy case 2

State of the cache after J operations under the two schedules.

i

dis not in the cache but both do evictled

Again S and Sff agree on jet operations V

So 51 5 satisfies the Lemma

Proof of lemma
e

S
e
Sff

f f

easy case 2

State of the cache after J operations under the two schedules.

d is not in the cache, but both schedules “evict e for d.”

Proof of lemma
e

S
e
Sff

f f

easy case 2

State of the cache after J operations under the two schedules.

d is not in the cache, but both schedules “evict e for d.”

Both and agree at j+1.S Sff

Proof of lemma

case 3

e
S

e
Sff

f f

dis not in cache
Sdoes evicteed Sff does evict fid
i.e s and Sff disagree on this jet operations
The stateofcache is

Sff
DSI C

Proof of lemma

case 3

e
S

e
Sff

f f

 does evict(d,e), and does evict(f,e)S Sff

Proof of lemma

case 3

e
S

e
Sff

f f

 does evict(d,e), and does evict(f,e)S Sff

d
S

f e
Sff

d

The state of the cache after this operation:

Challenge We need to construct an S that
agrees with Sff on jet but

doesnt incur

any more misses than S

Proof of lemma

case 3

e
S

e
Sff

f f

 does evict(d,e), and does evict(f,e)S Sff

d
S

f e
Sff

d

The state of the cache after this operation:

Challenge: the lemma requires us to find some schedule
that agrees with and has the same or fewer misses as .

S′

Sff S

Ed Ed

Timeline

S’

S

Sff

j tI
not timewhen either e or f areaccessed

j th m

Ido ooo D
T t t t t t

copyfrom copyfrom S at l my
son
operation

t

Timeline

S’

S

Sff

j t

Copy j+1 from . Then copy from S until (the first time that
either or are accessed). Then copy from S until the end.

Sff t
e f

?

Timeline

S’

S

Sff

j t

Copy j+1 from . Then copy from S until (the first time that
either or are accessed). Then copy from S until the end.
Challenge: Argue that S’ has the same misses as S.

Sff t
e f

?

Einar

Proof of lemma
dS eS’f d

Let be the first access that either or are accessed.t e f

What if t=e:

Fe
f

Smust perform an
In eithercaseeviction because its
after this operationcache doesnot contain e
both caches areif it performs evict fie the samethen Sand Sffhave the

same state so I candoaNOP

htf seiiictCh.e In this case s can do evicthit
miss s miss S

Proof of lemma
what if t=e ?

dS eS’f d

Proof of lemma
what if t=f ?

dS eS’f d

This is impossible case

Because Sff always uses the farthest in the
future rule Earlier Sff evicted f for d
So that means the access to f had to be
father in future than e But t is define as

the first access to either e or f

Proof of lemma
what if t is neither e nor f ?

dS eS’f d

What have we shown

S’

S

Sff

Let S be a reduced sched that agrees with Sff on the first j items.
There exists a reduced sched S’ that agrees with Sff on the first j+1
items and has the same or fewer #misses as S.

S⇤ S↵

Let S be a reduced sched that agrees with Sff on the first j items.
There exists a reduced sched S’ that agrees with Sff on the first j+1
items and has the same or fewer #misses as S.

Recap

The greedy algorithm is quite simple.

But the analysis for why the solution works is more
subtle and complicated.

In this case, we had to apply the exchange lemma
multiple times to prove optimality.

