222222222

SSSSSS

Greedy 1s only good for certain problems

cacning

cache nit

guestion:

guestion:

How do we manage a fully-associate cache?

When it is full, which element do we replace?

oroblem statement

input:

output:

cache is

oroblem statement

input: K, the size of the cache
di, do, ..., dn memory accesses

output: schedule for that cache that minimizes # of cache
misses while satisfying requests

cache is fully associative, line size is 1

contrast with reality

contrast with reality

In a real situation, we may not know the future
memory access patterns.

Some caches have additional restrictions, like
line-size, associativity, etc.

However, this algorithm can still be used to
compare a real-world algorithm against the
optimum cache miss rate possible.

Selady eviction rule

Selady eviction rule

Replace the element in the cache that is accessed
“farthest into the future”

example

cache

o (2 Je Iz]

bcdadeadbaecea

example

Cache operations: nop Evict ¢ for d.

n
0
p

p
cache

Memoryaccesses: a b cdadeadbaecea

example

Cache operations: nop Buict(cd) Evict (be)

cache a

Memoryaccesses: a b cdadeadbaecea

example

Cache operations: nop Bvict(cd) Evict(be) Evict(db)

cache

Memoryaccesses: a b cdadeadbaecea

example

cache

Here is an
alternate
optimal set of
cache
operations.

Surprising theorem

Surprising theorem

The schedule Sff produced by the Belady “farthest
in the future” eviction rule is optimal.

schedule

Schedule for access pattern ds,dz,...,dn:

Reduced schedule:

schedule

Schedule for access pattern ds,dz,...,dn:

A list of instructions for each access that is either
“NOP” or “evict x for y"

Reduced schedule:

schedule

Schedule for access pattern ds,dz,...,dn:

A list of instructions for each access that is either
“NOP” or “evict x for y"

Reduced schedule:

A schedule in which"evict x for y” instruction only
occurs when y is accessed.

schedule

Schedule for access pattern ds,dz,...,dn:

A list of instructions for each access that is either
“NOP” or “evict x for y"

Reduced schedule:

A schedule in which"evict x for y” instruction only
occurs when y is accessed.

Note: any schedule can be transformed into a reduced schedule with

the same or fewer cache misses.
(Idea: starting at the end, defer “evict..t” until y is read)

Non-Reduced Schedule example

cache a a a

abcdadeadgaecea

|

Example of a non-reduced schedule.

At this point, the cache evicts (b,c) when “a”
IS being accessed. It is possible to delay
this eviction until “c” is accessed, thereby
leading to a reduced schedule.

—xchange lemma

—xchange lemma

Let S be a reduced schedule that agrees with Sffon
the first j accesses.

Then there exists a schedule S’ that agrees with Sff

on the first j+1 accesses and has the same or fewer
misses.

What does 1t mean for 2 schedules to agree?

A schedule Is a sequence of cache instructions:
NOPNOPNOPevict(c,d),NOPNOP....

cache a a a

abcdadeadbaecea

For example, these two schedules agree on the first three operations.

Some optimal
schedule.

S*

Some optimal
schedule.

S* s,
/

Agrees with Sffon

the first access. Can
be constructed by
applying the Lemma
to S which agrees
on 0 accesses.

Some optimal
schedule.

S* s, s,
/

Agrees with Sffon

the first access. Can
be constructed by
applying the Lemma
to S which agrees
on 0 accesses.

Agrees with Sffon

the first two
accesses.

Some optimal
schedule.

S* s s s
e

Agrees with Sffon

the first access. Can
be constructed by
applying the Lemma

) Agrees with Sz-on
to S which agrees S it
the first two
on 0 accesses.
accesses.
Agrees with S-on
the first three

accesses.

Sn—l Sff

Sffhas the same
number of cache
misses as S*.

Some optimal
schedule.

S* 51 52 93 Sn—1 Sff
/ Syrhas the same

Agrees with S-on number of cache
the first access. Can misses as S*.
be constructed by
applying the Lemma

) Agrees with Sz-on
to S which agrees S i
the first two
on 0 accesses.
accesses.
Agrees with S-on
the first three
accesses.

miss(S*) > miss(S;) > miss(S,) > -+ > miss(S,)

Some optimal
schedule.

5™ St

Since S* is optimal, this means that all of these relations need to be equality.

This also means the Sffis therefore optimal.

Some optimal
schedule.

5™ St

miss(S*) > miss(S,) > miss(S,) > -+ > miss(S,) = miSS(Sff)

Since S* is optimal, this means that all of these relations need to be equality.

This also means the Sffis therefore optimal.

Proor of Lemma

Let S be a reduced sched that agrees with S on the first j items.
There exists a reduced sched S’ that agrees with S« on the first j+1
items and has the same or fewer #misses as S.

2rooT of Lemma

Let S be a reduced sched that agrees with S on the first j items.
There exists a reduced sched S’ that agrees with S« on the first j+1
items and has the same or fewer #misses as S.

At time j, both S and Sffhave the same state.
Let d be the element accessed at time j+1.

Proor Oof lemma

State of the cache after J operations under the two schedules.

o Jely) S)
S Sg

easy case 1

Proor Oof lemma

State of the cache after J operations under the two schedules.

o Jely) S)
S Sg

easy case 1 dis in the cache.

Proor Oof lemma

State of the cache after J operations under the two schedules.

o Jely) S)
S Sg

easy case 1 dis in the cache.

Both .S and Sﬁcagree since both do NOPs at j+1.

Proor Oof lemma

State of the cache after J operations under the two schedules.

o Jely) S)
S Sg

easy case 2

Proor Oof lemma

State of the cache after J operations under the two schedules.

o Jely) S)
S Sg

easy case 2 d IS not in the cache, but both schedules “evict e for d.”

Proor Oof lemma

State of the cache after J operations under the two schedules.

o Jely) S)
S Sg

easy case 2 d IS not in the cache, but both schedules “evict e for d.”

Both S and Sﬁcagree at j+1.

Proor Oof lemma
s —GS

S
case 3

Proor Oof lemma
s —GS

S
°a%e 3§ does evict(d,e), and Sy does evict(fe)

Proor Oof lemma
s —GS

S
°a%e 3§ does evict(d,e), and Sy does evict(fe)

The state of the cache after this operation:

SO0 S)
ff

S

ProoTl Of lemma
| e f { Je f

case 3§ does evict(d,e), and Sy does evict(fe)

The state of the cache after this operation:

(00 | 00,

S Sk

Challenge: the lemma requires us to find some schedule S’
that agrees with Sffand has the same or fewer misses as JS.

Se

Timeline

j t
1 1 I [

1

[))))

Timeline

j t
Se 1 1 I [

S [))))

Copy j+1 from Sff. Then copy from S until 7 (the first time that
either e or fare involved). Then copy from S until the end.

Timeline

j t
Se 1 1 I [

S [))))

Copy j+1 from Sff. Then copy from S until 7 (the first time that

either e or f are involved). Then copy from S until the end.
Challenge: Argue that S’ has the same misses as S.

Proor Oof lemma
s @ s e

Let ¢ be the first access that either e or f are involved.
What if t is “access e”:

Proor Oof lemma
s @ s e

What if t = access e:

_S.a S needs to evict some element to load e.
If it evicts(fe), then S’ can do a NOP.

S
If it evicts(h,e) & S’ can evict(h,f)
. () Jaly] 7/ —G.

and maintain equality of the cache.

Proor Oof lemma
s @ s e

what if t=access f ?

Proor Oof lemma
s @ s e

what if t=access f ?

This case is impossible because f is accessed
“farthest in the future”

Proor Oof lemma
s @ s e

what if t is evict(f,x) ?

Proor Oof lemma
s @ s e

what if t is evict(f,x) ?

Then S’ can evict(e,x) and have the same cache state.

S

S’
S ¢ 69 o e

VVhat have we shown

Se 1 1 I [

s 1 0 0 [[[

S [))))

Let S be a reduced sched that agrees with Sy on the first j items.
There exists a reduced sched S’ that agrees with Sion the first j+1
items and has the same or fewer #misses as S.

Let S be a reduced sched that agrees with S on the first j items.
There exists a reduced sched S’ that agrees with Sion the first j+1
items and has the same or fewer #misses as S.

S” St

Recap

The greedy algorithm is quite simple.

But the analysis for why the solution works is more
subtle and complicated.

In this case, we had to apply the exchange lemma
multiple times to prove optimality.

Human
Coding

Sapmoe poese

& Winston-Salem o Durham
o Raleigh

> Charlotte o Fayetteville

4
|

o Columbia

& Winston-Salem o Durham

o Raleigh

/ac& &5 Charlotte & Fayettevsi's

o Columbia

(/ N\ (4 N\
] [

@OSCOW — President Vladimir V. Putin’s typically
eatrical order to withdraw the bulk of Russian forces
from Sga, a process that the Defense Ministry said it
lbegan on Tuesday, seemingly caught Washington,
Damascus and everybody in between off guard — just the
way the Russian leader likes it. S

By all accounts, Mr. Putin delights at creating surprises,
reinforcing Russia’s newfound image as a sovereign,
global heavyweight and keeping him at the center of
world events

corT o€ Sed\&“d/m s/\/\uSM)e,

S shaad he

<> 7N optivized_
)¢ b4

MOSCOW — President Vladimir V. Putin’s typically
theatrical order to withdraw the bulk of Russian forces
from Syria, a process that the Defense Ministry said it
lbegan on Tuesday, seemingly caught Washington,
Damascus and everybody in between off guard — just the
way the Russian leader likes it.

By all accounts, Mr. Putin delights at creating surprises,
reinforcing Russia’s newfound image as a sovereign,
global heavyweight and keeping him at the center of
world events

Characters in the msg

ceC fe T
Ne: 235
i: 200
. 170
. 87
. 78
. 47
. 40
: 24

GUO‘Q'OCO—'

881

/,

C _c'ﬂf—

ceC fc ,:T
PS: 235 0 000

i: 200 001
o: 170 010
u: 87 011
p: 78 100
g. 47 101
b: 40 110

f: 24 3 111

881

o~

o

w wwwwwww

def: cost of an encoding

(’EC’ fe

—hCTG”Q'OCO—'-I(D

: 235
: 200
. 170
. 87
. 78
. 47
. 40
: 24

881.2

—H’ timey ‘L{)/)@% M Ahe

B(T,{f}) ch

T
000
001
010
011
100
101
110
111

CE‘?C(_ (Q/ (mj'}\/\ {F ‘H\Q
CV\(oJ)M/ 07C
C .

W wWiwiw iwiw w &

Z.643

-

-
—. 0O X N

1

Nr—uncdk3 30 VW =MD

T A< UMK O30T C

character freguency

234803
200613
198938
170392
160491
158281
152570
139238
130172
103307
87211
78077
70504
68007
64165
51527
47011
40351
24110
20103
16012
13825
8439
6926
3729
3075

300

50

75

S\/‘ o\(A\ cod ¥

/'7

) [o:/\o%./ Codit

\Vorse code

International Morse Code

o o=

dash = 3 dots

he space between parts of the same letter = 1 dot
he space between letters = 3 dots.

The space between words = 7 dots.

Ao mmm V e o o mm

Esmeeoe

C omm o s o
Dosmeoe

E e

F oo mme

G o
Heoeoe

| @@

] o num mmm =
K o
Lemmeo

M - —

N o o

O s == -
P o s sam o
Q mmm mmm o "
R e mm o
Seee

T =
e o mmm

W e s s
X mmm e o mmm
Y mmm o mmm mmm
Z mm e e

e NN o mum o mmm
, EENN NN e © N
7 oo mum mmm e o
/ e ® mmm e
(@ e mu - ® mum
© NN .
® o Em
® o o mmm mmm
® e o o mm
oo oo
- e e oo
7magﬁ : /ﬁkwdb ordwi ki/Morse_code
E mum mum mmm o o
O mmm mam = = e
O mmn —a - -

\Vorse code

International Morse Code

-1 dash = 3 dots

- The space between parts of the same letter = 1 dot
The space between letters = 3 dots.
The space between words = 7 dots.
< * = V e o o mm
Emmeoce W e s s
C omm o s o X mmm o o mmm QO == @ =mm
Dosmeoe Y mmm o mmm mmm
E e Z mm e e
F oo mmme . ® EEE ° EEm * ZAr 24
G o , EENN ENNN O © IEN mam
Heeoeoe 7 oo mum mmm e o
| / w—m e o mmm e — e —
J O () O N S S mum b-(/(—// (
K mmm o 1 & mee s - ——
cLeoemmeoe 2 ® o mmm mmm
T — — 3 oo o mm
N = o 41 oo e o mm PR
O s == - S5 eeeee (-)— \
P o s s o C mmmeoeoeoe _
s mem o men 7 mummmm e oo /A[E
R e mmm o E mmm mmm mmm o o — I (—
S, w O mmn wan - - t///\) ‘
@ O man o —an = - —
* == - «

def: prefix-free code

anrew% x
?0(‘ ouzr e o\/\afad_é MR \()W C/

CX?(DQVQSé) S /\lﬂ A Eregtx OE CopﬁCj),

def: prefix-free code

Ve,y € C,x #y = CODE(x) not a prefix of CODE(y)

P
— __/

-~ O 00Q T C O = M

def: prefix code

Ve,y € C,x #y = CODE(x) not a prefix of CODE(y)

235 0

200 10

170 110

87 1110

78 11110
;47 111110
: 40 1111110

24 11111110

Example of a prefix free code

decoding a prefix code

. 235 0

. 200 10

170 110 111111010111110
. 87 1110 _

. 78 11110 £ I @

. 47 111110

. 40 1111110

. 24 11111110

-~ O0Q T C O = M

Prefix code to binary tref

e: 235 0] — f —
i: 200 i0 _ > 1)
0: 170|110 _ -

u: 87 1110 : -

p: 78 11110 | (o)

g: 47 111110

b: 40 1111110

f: 24 1111110

111111010111110

orefix code

|

binary tree

The prefix-free code and the binary tree are different
representations of the same object.

use tree to encode

00
01
10
110
111

goal

GIVEN THE clarecher ff%ow“s % fc % ce C

Pro (XAJCQ [N Eraﬁb« %fee C,O&QT %&f C W
)8\/\g QWAQ,@S—‘— Q053f

Y\Ai/\ @CTI %jc 3§ >

goal

(all frequencies are > Q)

GIVEN THE CHARACTER FREQUENCIES
Q { f C } ceC

PRODUCE A PREFIX CODE T WITH SMALLEST COST

min B(T, {£.})

poroperty

D LEMMA:OPTIMAL TREE MUST BE FULL.

Cé Eol\e mems A Vedes e e \/\M

(ﬁ &) 0 hildtn o 2 hilden

property

D LEMMA:OPTIMAL TREE MUST BE FULL.

;‘é A full tree has nodes with either 0 or 2 children.

o}
s

L]

s~

oroperty

D LEMMA:OPTIMAL TREE MUST BE FULL.

A full tree has nodes with either 0 or 2 children.
b ——Consider a node with only 1 child.

]

05 s"’]

\ c/\/\‘-\rk- OLfO\DQ

qﬁ\@

oroperty

D LEMMA:OPTIMAL TREE MUST BE FULL.
d A full tree has nodes with either 0 or 2 children.
™

@b Consider a node with only 1 child.

The length of the code for this child can be reduced
by replacing the parent with the child.

Thus, the cost of the code can be reduced or remain
equal if the parent is replaced by the child

divide & conquer Tug of War®

Consider a “Tug of War” strategy in which we
balance the weights of the teams and recurse.

1 32 z
;25 z

. 20 9
: 18 7 ’—k
5 3

belier code cop) 200 « (8- = qy

© © O =M

0
st 2024(§.2 =9, “

T C O =M

counter-example

w N W NN
(@)]
O}

counter-example

e: 32 2: 64
i: 25 2: 50
o: 20 2: 40
u: 18 3: 54
p: 5 3: 15

223

By switching {u,o}, the cost of the code can be reduced.
It can be reduced further with an optimal code.

Hufrman construction

(s Jz0 Jlme)& J(22) o7)
E I o U P G B F

E I o U

r

(25 (200)0)((87)78)
E I o U P

EHEED - EhED
E I (0] U P

276

-53 m&

881

‘16 fu\'ﬁt\/\&/ Co(ﬂﬁ_

Hh oMo e O H 0

: 87
: 78
: 47
: 40
: 24

: 235 01

: 200 11

: 170 10
0011
0010
0000
00011
00010

881

HhOoWQ'me O H 0

: 235
: 200
: 170
: 87
: 78
: 47
: 40
: 24

01

11

10
0011
0010
0000
00011
00010

470
400
340
348
312
188
200
120

2378

objective

objective

The goal Is to prove that the procedure outlined produced
an optimal code. Taking a greedy step to make the problem
one size smaller is optimal.

exchange argument

LEMMA!: i@/\ X‘J \orz X\e o\/\or(,c‘hZ/S <N C c,JD(\A «W\{
S \/\M&\eg“\ j‘/eobuez\cttg_

T\/lem 2T an O(ﬁzmﬂ PN#KFW&D @ T
o ey X and j a §Eb\57j

exchange argument

LEMMA: Let xz,y € C be characters with smallest frequencies f., f,. There exists an
optimal prefix code T” for C in which z,y are siblings. That is, the codes for
x,y have the same length and only differ in the last bit.

exchange argument

LEMMA: Let xz,y € C be characters with smallest frequencies f., f,. There exists an
optimal prefix code T” for C in which z,y are siblings. That is, the codes for
x,y have the same length and only differ in the last bit.

\- =1
& O
= D

|dea: take an arbitrary optimal tree T for a prefix code and modify it
into another optimal tree in which x,y are sibling children at the
lowest level of the tree.

° o ‘HI"\DQ
0(/)81"‘ Als f

exchange argument

LEMMA: Let z,y € C be characters with smallest frequencies f,, f,. There exists an
optimal prefix code T” for C' in which z,y are siblings. That is, the codes for
x,1y have the same length and only differ in the last bit.

PROOF: jwj(T b o Oto‘}'t'WLv\,@ e
f =y o s Mg > Tt B (e holgy

1\{ V\°_k; \C’&— A V \/)2 ’W\Q St b\x\/\é/ VIoa(e;
Wil K \O\/(ojﬂﬁ" &CP\/\/\F Thex 2 mousT A F
e cave T ts fO\\'

exchange argument

LEMMA: Let z,y € C be characters with smallest frequencies f,, f,. There exists an
optimal prefix code T” for C' in which z,y are siblings. That is, the codes for
x,1y have the same length and only differ in the last bit.

PROOF:

Let 7 be an optimal code. If x, y are siblings in 7,
then the lemma holds.

Otherwise, since 7 is full, let a, b be the sibling
nodes with the largest depth. (o: why do a., b exist?)

exchange argument

LEMMA: Let z,y € C be characters with smallest frequencies f;, f,. There exists an
optimal prefix code T” for C' in which z,y are siblings. That is, the codes for
x,y have the same length and only differ in the last bit.

EXAMPLE OF SUCH A TREE ~ \) M/\ofﬁ ¢y o‘f 3 2% ru\r\J/ Wl Cn 5%7/ M

§e < Jor fj < JC\} blawg < y e K
L'“““/“(ﬁ’ J(fez/mcﬂgg

=
\) A 00F]be §rer, we wkl Swep

e @-V‘& [Cw\(ﬁ 5%/\0\.0 'H/\Lj‘r’ —H‘C
tree el s\l by °f+WJL

exchange argument

LEMMA: Let 2,y € C be characters with smallest frequencies f;, f,. There exists an
optimal prefix code T" for C' in which z,y are siblings. That is, the codes for
x,y have the same length and only differ in the last bit.

EXAMPLE OF SUCH A TREE

Suppose wlog that f,. < fa,fy </

() The first step is to exchange x with a to
) construct a new tree 77

exchange argument

LEMMA: Let z,y € C be characters with smallest frequencies f,, f,. There exists an
optimal prefix code T” for C' in which z,y are siblings. That is, the codes for

x,y have the same length and only differ in the last bit.

(T) Z
\ -)

- a < Jb z < Ja
[AN R S S

)

B(10)=2+« e fo k. B(T)= £+ JCX'[,,J fFoly

exchange argument

Let z,y € C' be characters with smallest frequencies f;, f,. There exists an
optimal prefix code T” for C' in which z,y are siblings. That is, the codes for
x,y have the same length and only differ in the last bit.

A~
\ T’
V\. FIRST STEP \@)

%
- fo<h fe<fa E{
N \

& o fo < fy fy < 1o)

LEMMA:

B(l=Z+f.-¢.+f,-C, BTI)=Z+f.-C,+f,:

This tree is optimal.

\

(1")

= @\
& ®
B =Z+f.-¢.+f, ¢, BTY=Z+f.-€,+f, ¢,
%“JE’C&* ~ b

B = B = F« (L L) + 0o fon 0)
= 50— L -0) _, S0 ~BLT) =

= Q:{ - §q> (Lo - Qm\ / l couse &) s Qfmmq
<0 <0 .:) 6Q/(‘> < QP-_:/\,G\Q

This tree is optimal.

e (o w
& &\
& ®

BT)=Z+f. -, +f,- £, B(T)=Z+f.-£,+f,- ¢,
B(T)=B(T) = f&.+fL,—fL—fL,

=fx(fx - fa) _fa(fx _ fa)

— (fx _fa)(fx — l/ﬂa) Both terms must be < O because
LZJal SC

X — a

But since B(T) is optimal, the product must be 0.

B(T) = fube + fule + fala BT') =Y foll+ foll + full,
B(T) — B(T) = 0

wis pueny Hooh T s afso on

OEJ(Z«\/\%Q\ C/O&Q :

exchange argument
= D o =
cxlllen & O

o

We can apply the same argument to y, b.
B(T) — B(T") =0
=) /[“ b5 elso OF&:W@

IS ALSO OPTIMAL

exchange argument

LEMMA: Let z,y € C be characters with smallest frequencies f,, f,. There exists an
optimal prefix code T” for C' in which z,y are siblings. That is, the codes for
x,1y have the same length and only differ in the last bit.

e "@@
@4}3

optimal sub-structure
£ oo s

optimal sub-structure
fe --------

PROBLEM OF SIZE N Z
(f ¢/ PROBLEM OF SIZE n—-1

LEMMA: T\VUL O?\‘mi Pr(j‘fx Jfﬁ,g OOoQQ T JCN ? j;%
C,O/\gﬁ*S 0“& C,DM(JVV\& Khe Og'\‘:/vuf)(cady 7%/

Tfod ek Pen rgeym o wm g, 2

optimal sub-structure
£ o a0a e 5 (7 ar (ae a4

PROBLEM OF SIZE N

S we wolwm m w &

¢/ PROBLEM OF S1ze n-1

Lemma: The optimal solution 7' for f,. consists of computing an
optimal solution 7" for f_and replacing the node for z
with an internal node having children x, y.

Let 7" be an optimal solution for f . of size n-1.

» »

/> (/)(\)(/)

/\
@

9

Our lemma suggests constructing T by replacing z with {xy} leaves.

OE\—:.—J fuf EJCCB

b Lets analyze B(T) b
/ -
\ / [\
@aa COOOE O
B(T") B(T)

5CT) = 8CT) — £, 0, « Fellan) + ()

:\ECTopé:L'Q%’? %Cx‘qf>f
Yyl Ke T«

- @C/\QJVJCXJ\JI‘B/

b Lets analyze B(T) 7)

/\
)

)

Y

) (
T)

B(T) = B(T) - f,£,+ (£, + D(f, + 1)
=B(T) +f,+/,

il

/)(\N /)(\)>>

Rearranging, we get

B(I") = B(T) — fa — [y

Suppose T is not optimal

What does that mean?

T\/\ﬁ/E Q,XIS{T QA me D‘h/t(/ cs)aeﬂ (/Q- s

E(U) = %L/L> o n X 01/‘1/7 At ﬁ_é(ﬁfzfj
b)’ﬂt CKOL‘M;Z ZOM\C\.

Suppose T 1s not optimal

What does that mean?

There exists another tree U such that B(U) < B(T) .

Moreover, by the exchange lemma, there exists a U’ such that x,y are siblings.

Suppose T is not optimal

d b BU) < BI) = 8O« fu gy
d Blw) = -
» iy <

gu* '\"/‘Q/l we CDchQ.
= wrchroct on vew Vel U’ svch ot

B(Ut') < BT)

This con "]/m(’.ro{-; the amwgin fhdf 7’
LSS ‘mL s nmod| \/' 1, the Supprs oo w T
<(5 V\J\ Q* M«Q\ (W ﬁ_ \,Q Jcﬂ\Se

Suppose T is not optimal

C{ B(U) < = B(T") + 1, +/,
=1 b o »

\
Ly

&

Suppose T is not optimal

!
C{ U) < B(T) = B(T) + [, +/,

d b db This implies

& } B(U) —f, = f, < B(T)

P,

Uppose 7' 1s not optimal
B(U) < B(T) = B(T) + f, +/,

Qa

d t{ db This implies
=) (3 o)« BW) - f,—f, < B(T")
BWU') < B(T'
((1)

o 2 o.

Suppose T is not optimal
d B(U) < B(T) = B(T) + f, +/,

d b d)b This implies
)

u{ } B(U) —f,— f, < B(T")
B(U") < B(T")
C{ Which means that T' was not optimal!

% 7 This is a contradiction, which means that our
d 2 ¢ O supposition (T not optimal) must be wrong.

