
shelat

Greedy is only good for certain problems

cache hit

Cache

> CPU
> load r2, addr a store $r 4$, addr b
main memory
question:

How do we manage a fully-associate cache?

When it is full, which element do we replace?

problem statement

input:
output:
cache is

problem statement

input: K, the size of the cache
$d_{1}, d_{2}, \ldots, d_{m}$ memory accesses
output: schedule for that cache that minimizes \# of cache misses while satisfying requests
cache is fully associative, line size is 1

contrast with reality

contrast with reality

In a real situation, we may not know the future memory access patterns.

Some caches have additional restrictions, like line-size, associativity, etc.

However, this algorithm can still be used to compare a real-world algorithm against the optimum cache miss rate possible.

Belady eviction rule

Belady eviction rule

Replace the element in the cache that is accessed "farthest into the future"

example

cache

example

Cache operations: nop n n Evict c ford

Memory accesses: $a b c d a d e a d b a d e$ d

Cache operations: nop Evict (c,d) Evict (b,e)
cache

Memory accesses: abcdade a d b a e cea

example

Here is an alternate optimal set of cache operations.

Surprising theorem

Surprising theorem

The schedule $S_{f f}$ produced by the Belady "farthest in the future" eviction rule is optimal.

schedule

Schedule for access pattern $\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{n}$:

Reduced schedule:

schedule

Schedule for access pattern $\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{n}$:

A list of instructions for each access that is either "NOP" or "evict x for y"

Reduced schedule:

Schedule for access pattern $\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{n}$:

A list of instructions for each access that is either "NOP" or "evict x for y"

Reduced schedule:
A schedule in which"evict x for y " instruction only occurs when y is accessed.

Schedule for access pattern $\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{n}$:

A list of instructions for each access that is either "NOP" or "evict x for y"

Reduced schedule:
A schedule in which"evict x for y " instruction only occurs when y is accessed.

Note: any schedule can be transformed into a reduced schedule with the same or fewer cache misses.
(Idea: starting at the end, defer "evict...t" until y is read)

Non-Reduced Schedule example

Example of a non-reduced schedule. At this point, the cache evicts (b, c) when " a " is being accessed. It is possible to delay this eviction until " c " is accessed, thereby leading to a reduced schedule.

Exchange lemma

Exchange lemma

Let S be a reduced schedule that agrees with $S_{f f}$ on the first jaccesses.

Then there exists a schedule S^{\prime} that agrees with $S_{f f}$ on the first $j+1$ accesses and has the same or fewer misses.

What does it mean for 2 schedules to agree?

A schedule is a sequence of cache instructions: NOP,NOP,NOP,evict(c,d),NOP,NOP,...

For example, these two schedules agree on the first three operations.

Some optimal

schedule.

Some optimal

 schedule.

Agrees with $S_{f f}$ on the first access. Can be constructed by applying the Lemma to S^{*} which agrees on 0 accesses.

Some optimal

 schedule.Agrees with $S_{f f}$ on the first access. Can be constructed by applying the Lemma to S^{*} which agrees on 0 accesses.

Some optimal

 schedule.

Agrees with $S_{f f}$ on the first access. Can be constructed by applying the Lemma to S^{*} which agrees on 0 accesses.

$$
s_{n-1} S_{\mathrm{ff}}
$$

$S_{f f}$ has the same number of cache misses as S^{*}.

Agrees with $S_{f f}$ on the first three accesses.

Some optimal schedule.

Agrees with $S_{f f}$ on the first access. Can be constructed by applying the Lemma to S^{*} which agrees on 0 accesses.

$$
s_{n-1} S_{\mathrm{ff}}
$$

$S_{f f}$ has the same number of cache misses as S^{*}.

Agrees with $S_{f f}$ on the first three accesses.

$$
\operatorname{miss}\left(S^{*}\right) \geq \operatorname{miss}\left(S_{1}\right) \geq \operatorname{miss}\left(S_{2}\right) \geq \cdots \geq \operatorname{miss}\left(S_{n}\right)
$$

$S_{f f}$

Since S^{*} is optimal, this means that all of these relations need to be equality.

This also means the $S_{f f}$ is therefore optimal.

Some optimal schedule.

$\operatorname{miss}\left(S^{*}\right) \geq \operatorname{miss}\left(S_{1}\right) \geq \operatorname{miss}\left(S_{2}\right) \geq \cdots \geq \operatorname{miss}\left(S_{n}\right)=\operatorname{miss}\left(S_{f f}\right)$
Since S^{*} is optimal, this means that all of these relations need to be equality.

This also means the $S_{f f}$ is therefore optimal.

Proof of Lemma

Let S be a reduced sched that agrees with $\mathrm{Sff}_{\mathrm{ff}}$ on the first j items. There exists a reduced sched \mathbf{S}^{\prime} that agrees with Sff on the first j+1 items and has the same or fewer \#misses as S.

Proof of Lemma

Let S be a reduced sched that agrees with $S_{f f}$ on the first j items. There exists a reduced sched \mathbf{S}^{\prime} that agrees with Sff on the first j+1 items and has the same or fewer \#misses as S.

At time j, both S and $S_{f f}$ have the same state.
Let d be the element accessed at time $j+1$.

Proof of lemma

State of the cache after J operations under the two schedules.

easy case 1

Proof of lemma

State of the cache after J operations under the two schedules.

easy case $1 \quad \mathrm{~d}$ is in the cache.

Proof of lemma

State of the cache after J operations under the two schedules.

easy case $1 \quad d$ is in the cache.

Both S and $S_{f f}$ agree since both do NOPs at $j+1$.

Proof of lemma

State of the cache after J operations under the two schedules.

easy case 2

State of the cache after J operations under the two schedules.

easy case 2 d is not in the cache, but both schedules "evict e for d."

Proof of lemma

State of the cache after J operations under the two schedules.

easy case 2 d is not in the cache, but both schedules "evict e for d."

Both S and $S_{f f}$ agree at j+1.

Proof of lemma

case 3

Proof of lemma

Proof of lemma

case $3 \quad S$ does evict(d,e), and $S_{f f}$ does evict(f,e)

The state of the cache after this operation:

Proof of lemma

case $3 \quad S$ does evict(d,e), and $S_{f f}$ does evict(f,e)

The state of the cache after this operation:

Challenge: the lemma requires us to find some schedule S^{\prime} that agrees with $S_{f f}$ and has the same or fewer misses as S.

Timeline

Timeline

$S_{f f}$

S'

S

Copy j+1 from $S_{f f}$ Then copy from S until t (the first time that either e or f are involved). Then copy from S until the end.

Timeline

Copy j+1 from $S_{f f}$ Then copy from S until t (the first time that either e or f are involved). Then copy from S until the end. Challenge: Argue that S^{\prime} has the same misses as S.

Let t be the first access that either e or f are involved. What if t is "access e ":

Proof of lemma

S'

What if $t=$ access e :
S

S needs to evict some element to load e. If it evicts(f,e), then S' can do a NOP.

If it evicts(h, e) $h \neq f, \mathrm{~S}^{\prime}$ can evict(h, f) and maintain equality of the cache.
what if $\mathrm{t}=\mathrm{access} \mathrm{f}$?
what if $t=a c c e s s f ?$

This case is impossible because f is accessed "farthest in the future."
what if t is $\operatorname{evict}(\mathrm{f}, \mathrm{x})$?

what if t is $\operatorname{evict}(f, x)$?

Then S^{\prime} can evict(e, x) and have the same cache state.

S
d x

What have we shown

$S_{f f}$ \square

S'

S \square

Let S be a reduced sched that agrees with $S_{f f}$ on the first j items. There exists a reduced sched \mathbf{S}^{\prime} that agrees with Sff on the first j+1 items and has the same or fewer \#misses as S .

Let S be a reduced sched that agrees with $S_{f f}$ on the first j items. There exists a reduced sched \mathbf{S}^{\prime} that agrees with S_{ff} on the first $\mathrm{j}+1$ items and has the same or fewer \#misses as S.

Recap

The greedy algorithm is quite simple.
But the analysis for why the solution works is more subtle and complicated.

In this case, we had to apply the exchange lemma multiple times to prove optimality.

Huffman

Coding

SAmuEc morse.

MOSCOW - President Vladimir V. Putin's typically theatrical order to withdraw the bulk of Russian forces from Sa, a process that the Defense Ministry said it began on Tuesday, seemingly caught Washington, Damascus and everybody in between off guard - just the way the Russian leader likes it.

By all accounts, Mr. Putin delights at creating surprises, reinforcing Russia's newfound image as a sovereign, global heavyweight and keeping him at the center of world events.
cost of sending the massage

MOSCOW - President Vladimir V. Putin's typically theatrical order to withdraw the bulk of Russian forces from Syria, a process that the Defense Ministry said it began on Tuesday, seemingly caught Washington, Damascus and everybody in between off guard - just the way the Russian leader likes it.

By all accounts, Mr. Putin delights at creating surprises, reinforcing Russia's newfound image as a sovereign, global heavyweight and keeping him at the center of world events.

Characters in the msg

$$
\begin{array}{lll}
c \in C & f_{c} \\
\hline \underline{e}: & 235 \\
\hline i: & 200 \\
0: & 170 \\
\text { u: } & 87 \\
\text { p: } & 78 \\
\text { g: } & 47 \\
\text { b: } & 40 \\
f: & 24
\end{array}
$$

881
881
def: cost of an encoding
, $\#$ times c appears in the m

$$
\begin{aligned}
& \begin{array}{l}
B\left(T,\left\{f_{c}\right\}\right)=\sum_{c \in C} f_{c} \cdot \ell_{c} \\
T \in C \quad f_{c} \quad T
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 881.3=2643 \\
& \text { length of the } \\
& \text { encoding of } \\
& \text { C. }
\end{aligned}
$$

character frequency

Morse code

International Morse Code

- 1 dash $=3$ dots.
- The space between parts of the same letter $=1$ dot.
-The space between letters $=3$ dots.
- The space between words $=7$ dots.

Morse code

International Morse Code

- 1 dash $=3$ dots.
- The space between parts of the same letter $=1$ dot.
- The space between letters $=3$ dots.
- The space between words $=7$ dots.

ER
def: prefix-free code
For any two different x, y chacates in the alphabet C,
$\operatorname{CODE}(x)$ is Not a prefix of cone (y).

def: prefix-free code

$\forall x, y \in C, x \neq y \Longrightarrow \operatorname{CODE}(x)$ not a prefix of $\operatorname{CODE}(y)$
\qquad

$$
\uparrow
$$

not
equal

def: prefix code

$$
\forall x, y \in C, x \neq y \Longrightarrow \operatorname{CODE}(x) \text { not a prefix of } \operatorname{CODE}(y)
$$

```
e: 235
    0
i: 200
    10
o: 170 \overline{110}
u: 87 1110
p:78 11110
g: 47 111110
b:40 1111110
f: 24 
```

Example of a prefix free code

decoding a prefix code

e: 235	0	
i: 200	10	
o: 170	110	111111010111110
u: 87	1110	
p: 78	11110	$B 1$.
g: 47	111110	
b: 40	1111110	
f: 24	1111110	

Prefix code to binary tree

e: 235	\bigcirc
i : 200	10
o: 170	110
u: 87	1110
p: 78	11110
$\mathrm{g}: 47$	111110
b: 40	1111110
f: 24	11111110

prefix code

binary tree

The prefix-free code and the binary tree are different representations of the same object.

goal
given the character frequencies $\left\{f_{c}\right\} c \in C$
produce a prefix-free code T for C with the smallest cost

$$
\min _{T} B\left(T,\left\{j_{c}\right\}\right)
$$

(all frequencies are >0)
GIVEN THE CHARACTER FREQUENCIES $\{f, c \in$

PRODUCE A PREFIX CODE T wITH SMALLEST COST

$$
\min _{T} B\left(T,\left\{f_{c}\right\}\right)
$$

property

LEMMA: OPTIMAL TREE MUST BE FULL.
full: means all nodes either have 0 children or 2 children.

LEMMA:OPTIMAL TREE MUST BE FULL.
A full tree has nodes with either 0 or 2 children.

A full tree has nodes with either 0 or 2 children.
Consider a node with only 1 child.
The length of the code for this child can be reduced by replacing the parent with the child.

Thus, the cost of the code can be reduced or remain equal if the parent is replaced by the child

divide \& conquer Tug of War?

Consider a "Tug of War" strategy in which we balance the weights of the teams and recurse.

counter-example

$$
\begin{array}{llll}
\mathrm{e}: & 32 & 2: & 64 \\
\mathrm{i}: & 25 & 2: & 50 \\
\mathrm{o}: & 20 & 3: & 60 \\
\mathrm{u}: & 18 & 2: & 36 \\
\mathrm{p}: & 5 & 3: & 15 \\
& & & 225
\end{array}
$$

counter-example

$$
\begin{array}{llll}
\mathrm{e}: & 32 & 2: & 64 \\
\mathrm{i}: & 25 & 2: & 50 \\
\mathrm{o}: & 20 & 2: & 40 \\
\mathrm{u}: & 18 & 3: & 54 \\
\mathrm{p}: & 5 & 3: & 15 \\
: & & & 223
\end{array}
$$

By switching $\{u, 0\}$, the cost of the code can be reduced. It can be reduced further with an optimal code.

Huffman construction

235	200	170	87	78	47	40	24
E	I	O	U	P	G	B	F

Resulting code

e:	235	01
i:	200	11
o:	170	10
u:	87	0011
p:	78	0010
g:	47	0000
b:	40	00011
$\mathrm{f}:$	24	00010

e: 235	01	470	
i: 200	11	400	
o: 170	10	340	
u: 87	0011	348	
p: 78	0010	312	
g: 47	0000	188	
b: 40	00011	200	
f: 24	00010	120	
			2378

objective

The goal is to prove that the procedure outlined produced an optimal code. Taking a greedy step to make the problem one size smaller is optimal.
exchange argument
lemma: Let $x y$ be the characters in C with the smallest frequencies.

There exists an optimal prefIx-free code T in which x and y are siblings.

exchange argument

LEMMA: Let $x, y \in C$ be characters with smallest frequencies f_{x}, f_{y}. There exists an optimal prefix code $T^{\prime \prime}$ for C in which x, y are siblings. That is, the codes for x, y have the same length and only differ in the last bit.

exchange argument

LEMMA: Let $x, y \in C$ be characters with smallest frequencies f_{x}, f_{y}. There exists an optimal prefix code $T^{\prime \prime}$ for C in which x, y are siblings. That is, the codes for x, y have the same length and only differ in the last bit.

Idea: take an arbitrary optimal tree T for a prefix code and modify it into another optimal tree in which x, y are sibling children at the lowest level of the tree.
exchange argument
LEMMA: Let $x, y \in C$ be characters with smallest frequencies f_{x}, f_{y}. There exists an optimal prefix code $T^{\prime \prime}$ for C in which x, y are siblings. That is, the codes for x, y have the same length and only differ in the last bit.
PROOF:
Let T be an optimal code.
If $x y$ are siblings in T, then the (comma hole.
If not, let a, b be the sibling nodes with the largest depth. These 2 must cist be cause T is foll.

LEMMA: Let $x, y \in C$ be characters with smallest frequencies f_{x}, f_{y}. There exists an optimal prefix code $T^{\prime \prime}$ for C in which x, y are siblings. That is, the codes for x, y have the same length and only differ in the last bit.

PROOF:

Let T be an optimal code. If x, y are siblings in T, then the lemma holds.
Otherwise, since T is full, let a, b be the sibling nodes with the largest depth. (o: Why do a, b existe)
exchange argument
LEMMA: Let $x, y \in C$ be characters with smallest frequencies f_{x}, f_{y}. There exists an optimal prefix code $T^{\prime \prime}$ for C in which x, y are siblings. That is, the codes for x, y have the same length and only differ in the last bit.
example of suchatree without loss of generality, we can say that

$f_{x} \leq f_{a} \quad f_{y} \leq f_{b}$. because x, y have the smallest frequencies.
In our first step, we will swap
x and a and show that the tree must still be optimal.

exchange argument

LEMMA: Let $x, y \in C$ be characters with smallest frequencies f_{x}, f_{y}. There exists an optimal prefix code $T^{\prime \prime}$ for C in which x, y are siblings. That is, the codes for x, y have the same length and only differ in the last bit.

EXAMPLE OF SUCH A TREE

$$
\text { Suppose wlog that } f_{x} \leq f_{a}, f_{y} \leq f_{b}
$$

The first step is to exchange x with a to construct a new tree T^{\prime}.

exchange argument
LEMMA: Let $x, y \in C$ be characters with smallest frequencies f_{x}, f_{y}. There exists an optimal prefix code $T^{\prime \prime}$ for C in which x, y are siblings. That is, the codes for x, y have the same length and only differ in the last bit.

$$
B(T)=Z+f_{x} \cdot l_{x}+f_{a} \cdot l_{a}
$$

$$
B(T)=Z+f_{x} \cdot l_{a}+f_{a} \cdot l_{x}
$$

exchange argument

LEMMA: Let $x, y \in C$ be characters with smallest frequencies f_{x}, f_{y}. There exists an optimal prefix code $T^{\prime \prime}$ for C in which x, y are siblings. That is, the codes for x, y have the same length and only differ in the last bit.

$B(T)=Z+f_{x} \cdot \ell_{x}+f_{a} \cdot \ell_{a}$

$$
B\left(T^{\prime}\right)=Z+f_{x} \cdot \ell_{a}+f_{a} \cdot \ell_{x}
$$

This tree is optimal.

$$
\begin{array}{rlrl}
B(T)=Z+f_{x} \cdot l_{x}+f_{a} \cdot l_{a} & B\left(T^{\prime}\right)=Z+f_{x} \cdot l_{a}+f_{a} \cdot l_{x} \\
& -l_{x}-f_{x} l_{a}-f_{a} \cdot l_{x} \\
B(T)-B\left(T^{\prime}\right) & =f_{x}\left(l_{x}-l_{a}\right)+f_{a}\left(l_{a}-l_{x}\right) \\
& =f_{x}\left(l_{x}-l_{a}\right)-f_{a}\left(l_{x}-l_{a}\right) & B(T)-B(T)=0 \\
& =\left(f_{x}-f_{a}\right)\left(l_{x}-l_{a}\right) & \text { because } B(T) \text { is optimal } \\
& \leq 0 & \Rightarrow B(T) \text { is optional }
\end{array}
$$

This tree is optimal.

$$
B(T)=Z+f_{x} \cdot \ell_{x}+f_{a} \cdot \ell_{a} \quad B\left(T^{\prime}\right)=Z+f_{x} \cdot \ell_{a}+f_{a} \cdot \ell_{x}
$$

$$
\begin{aligned}
& B(T)-B\left(T^{\prime}\right)= f_{x} \ell_{x}+f_{a} \ell_{a}-f_{a} \ell_{x}-f_{x} \ell_{a} \\
&=f_{x}\left(\ell_{x}-\ell_{a}\right)-f_{a}\left(\ell_{x}-\ell_{a}\right) \\
&=\left(f_{x}-f_{a}\right)\left(\ell_{x}-\ell_{a}\right) \quad \begin{array}{l}
\text { Both terms must be } \leq 0 \text { because }
\end{array} \\
& \quad f_{x} \leq f_{a}, \ell_{x} \leq \ell_{a}
\end{aligned}
$$

But since $B(T)$ is optimal, the product must be 0 .

$$
f_{x} \leq f_{a}
$$

$$
\begin{gathered}
B(T)=\sum_{c} f_{c} \ell_{c}+f_{x} \ell_{x}+f_{a} \ell_{a} \quad B\left(T^{\prime}\right)=\sum_{c} f_{c} \ell_{c}^{\prime}+f_{x} \ell_{x}^{\prime}+f_{a} \ell_{a}^{\prime} \\
B(T)-B\left(T^{\prime}\right)=0
\end{gathered}
$$

This means that T^{\prime} is also an optional code.
exchange argument

We can apply the same argument to y, b.

$$
\begin{aligned}
& \frac{B\left(T^{\prime}\right)}{}-\underline{B\left(T^{\prime \prime}\right)}=0 \\
& \Rightarrow T^{\prime \prime} \text { is also optinal. }
\end{aligned}
$$

$$
B(T)-B\left(T^{\prime}\right) \geq 0
$$

$$
B\left(T^{\prime}\right)-B\left(T^{\prime \prime}\right) \geq 0
$$

\prod IS ALSO OPTIMAL

exchange argument

LEMMA: Let $x, y \in C$ be characters with smallest frequencies f_{x}, f_{y}. There exists an optimal prefix code $T^{\prime \prime}$ for C in which x, y are siblings. That is, the codes for x, y have the same length and only differ in the last bit.

optimal sub-structure
f_{c} (35)
optimal sub-structure

Lemma: The optimal prefix free code T for $\left\{f_{c}\right\}$ consists of computing the opting code for $\left\{f_{c^{\prime}}\right\}$ and then replacing z with $\{x, y\}$.
optimal sub-structure

Lemma:
The optimal solution T for f_{c} consists of computing an optimal solution T^{\prime} for $f_{c^{\prime}}$ and replacing the node for z with an internal node having children x, y.

Let T^{\prime} be an optimal solution for $f_{c^{\prime}}$ of size $\mathrm{n}-1$.

Our lemma suggests constructing T by replacing z with $\{\mathrm{x}, \mathrm{y}\}$ leaves.
optimal for $\left\{f_{c^{\prime}}\right\}$

Lets analyze $B(T)$
$B\left(T^{\prime}\right)$

$$
\begin{aligned}
& B(T)=B\left(T^{\prime}\right)-f_{z} \cdot l_{z}+f_{x}\left(l_{z+1}\right)+f_{y}\left(l_{z+1}\right) \\
& =B\left(T^{\prime}\right)-f_{z} \cdot l_{z}+\left(f_{x}+f_{y}\right) \cdot l_{z}+f_{x}+f_{y} \\
& =f_{z} \\
& =B\left(T^{\prime}\right)+f_{x}+f_{y}
\end{aligned}
$$

Rearranging, we get

$$
B\left(T^{\prime}\right)=B(T)-f_{x}-f_{y}
$$

Suppose T is not optimal
What does that mean?
There exists some other code Cl sit.
$B(U)<B(T)$ and in U, x and y are siblings by the exchange lima.

Suppose T is not optimal

What does that mean?

There exists another tree U such that $B(U)<B(T)$.

Moreover, by the exchange lemma, there exists a U^{\prime} such that x, y are siblings.

Suppose T is not optimal

$$
\begin{array}{r}
\underline{B(U)}<\underline{B(T)}=B\left(T^{\prime}\right)+f_{x}+f_{y} \\
B(u)=f_{x}-f_{y}<B\left(T^{\prime}\right)
\end{array}
$$

But then we could construct a new tree Cl' such that

$$
B\left(U^{\prime}\right)<B\left(T^{\prime}\right)
$$

This contradicts the assumption that T^{\prime} was optimal. Thur, the supposition that T is nut retinal must be false.

Suppose T is not optimal

Suppose T is not optimal U. $B(U)<B(T)=B\left(T^{\prime}\right)+f_{x}+f_{y}$

This implies

$$
B(U)-f_{x}-f_{y}<B\left(T^{\prime}\right)
$$

Suppose T is not optimal

This implies

$$
\begin{gathered}
B\left(u^{\prime}\right)=B(U)-f_{x}-f_{y}<B\left(T^{\prime}\right) \\
B\left(U^{\prime}\right)<B\left(T^{\prime}\right)
\end{gathered}
$$

Suppose T is not optimal

$$
B(U)<B(T)=B\left(T^{\prime}\right)+f_{x}+f_{y}
$$

This implies

$$
B(U)-f_{x}-f_{y}<B\left(T^{\prime}\right)
$$

$$
B\left(U^{\prime}\right)<B\left(T^{\prime}\right)
$$

Which means that T^{\prime} was not optimal! This is a contradiction, which means that our supposition (T not optimal) must be wrong.

