
L11 5800
feb 27 2022

shelat

Greedy is only good for certain problems

caching

cache hit
Cache

load r2, addr a

main memory

CPU

store r4, addr b

question:

question:

How do we manage a fully-associate cache?

When it is full, which element do we replace?

problem statement
input:

output:

cache is

problem statement
input:

output:

cache is

K, the size of the cache
d1, d2, ..., dm memory accesses

schedule for that cache that minimizes # of cache
misses while satisfying requests

fully associative, line size is 1

contrast with reality

contrast with reality
In a real situation, we may not know the future
memory access patterns.

Some caches have additional restrictions, like
line-size, associativity, etc.

However, this algorithm can still be used to
compare a real-world algorithm against the
optimum cache miss rate possible.

Belady eviction rule

Belady eviction rule

Replace the element in the cache that is accessed
“farthest into the future”

example
a

b

c

cache

a b c d a d e a d b a e c e a

example
a

b

c

cache a

b

d

a b c d a d e a d b a e c e a

nop n
o
p

Evict c for d.n
o
p

Memory accesses:

Cache operations:

example
a

b

c

cache a

b

d

a

e

d

a b c d a d e a d b a e c e aMemory accesses:

Cache operations: nop Evict (c,d) Evict (b,e)

example
a

b

c

cache a

b

d

a

e

d

a

e

b

a b c d a d e a d b a e c e aMemory accesses:

Cache operations: nop Evict (c,d) Evict (b,e) Evict (d,b)

example
cache a

e

b

a b c d a d e a d b a e c e a

a

e

c

a

b

c

a

d

c

a

d

e

a

b

e

a

c

e

a

b

c

a

b

d

a

e

d

Here is an
alternate
optimal set of
cache
operations.

Surprising theorem

Surprising theorem

The schedule produced by the Belady “farthest
in the future” eviction rule is optimal.

Sff

schedule
Schedule for access pattern d1,d2,...,dn:

Reduced schedule:

schedule
Schedule for access pattern d1,d2,...,dn:

Reduced schedule:

A list of instructions for each access that is either
“NOP” or “evict x for y”

schedule
Schedule for access pattern d1,d2,...,dn:

Reduced schedule:

A list of instructions for each access that is either
“NOP” or “evict x for y”

A schedule in which“evict x for y” instruction only
occurs when y is accessed.

schedule
Schedule for access pattern d1,d2,...,dn:

Reduced schedule:

A list of instructions for each access that is either
“NOP” or “evict x for y”

A schedule in which“evict x for y” instruction only
occurs when y is accessed.

Note: any schedule can be transformed into a reduced schedule with
the same or fewer cache misses.

(Idea: starting at the end, defer “evict…t” until y is read)

Non-Reduced Schedule example
cache a

e

b

a b c d a d e a d b a e c e a

a

e

c

a

b

c

a

b

d

a

e

d

Example of a non-reduced schedule.

At this point, the cache evicts (b,c) when “a”
is being accessed. It is possible to delay
this eviction until “c” is accessed, thereby
leading to a reduced schedule.

Exchange lemma

Exchange lemma
Let be a reduced schedule that agrees with on
the first j accesses.

Then there exists a schedule that agrees with
on the first j+1 accesses and has the same or fewer
misses.

S Sff

S′￼ Sff

What does it mean for 2 schedules to agree?
A schedule is a sequence of cache instructions:

NOP,NOP,NOP,evict(c,d),NOP,NOP,…

cache a

e

b

a b c d a d e a d b a e c e a

a

e

c

a

b

c

a

d

c

a

d

e

a

b

e

a

c

e

a

b

c

a

b

d

a

e

d

For example, these two schedules agree on the first three operations.

S⇤ S↵

Some optimal
schedule.

S⇤ S↵

Some optimal
schedule.

S1

Agrees with on
the first access. Can
be constructed by
applying the Lemma
to which agrees
on 0 accesses.

Sff

S*

S⇤ S↵

Some optimal
schedule.

S1

Agrees with on
the first access. Can
be constructed by
applying the Lemma
to which agrees
on 0 accesses.

Sff

S*

S2

Agrees with on
the first two
accesses.

Sff

S⇤ S↵

Some optimal
schedule.

S1

Agrees with on
the first access. Can
be constructed by
applying the Lemma
to which agrees
on 0 accesses.

Sff

S*

S2

Agrees with on
the first two
accesses.

Sff

S3 Sn−1

Agrees with on
the first three
accesses.

Sff

 has the same
number of cache
misses as .

Sff

S*

S⇤ S↵

Some optimal
schedule.

S1

Agrees with on
the first access. Can
be constructed by
applying the Lemma
to which agrees
on 0 accesses.

Sff

S*

S2

Agrees with on
the first two
accesses.

Sff

S3 Sn−1

Agrees with on
the first three
accesses.

Sff

 has the same
number of cache
misses as .

Sff

S*

miss(S*) ≥ miss(S1) ≥ miss(S2) ≥ ⋯ ≥ miss(Sn)

S⇤ S↵

Some optimal
schedule.

Since is optimal, this means that all of these relations need to be equality.S*

This also means the is therefore optimal.Sff

miss(S*) ≥ miss(S1) ≥ miss(S2) ≥ ⋯ ≥ miss(Sn) = miss(Sff)

S⇤ S↵

Some optimal
schedule.

Since is optimal, this means that all of these relations need to be equality.S*

This also means the is therefore optimal.Sff

Proof of Lemma
Let S be a reduced sched that agrees with Sff on the first j items.

There exists a reduced sched S’ that agrees with Sff on the first j+1
items and has the same or fewer #misses as S.

Proof of Lemma
Let S be a reduced sched that agrees with Sff on the first j items.

There exists a reduced sched S’ that agrees with Sff on the first j+1
items and has the same or fewer #misses as S.

At time j, both and have the same state.

Let d be the element accessed at time j+1.

S Sff

Proof of lemma
e

S
e
Sf

f f

easy case 1

State of the cache after J operations under the two schedules.

Proof of lemma
e

S
e
Sf

f f

easy case 1

State of the cache after J operations under the two schedules.

d is in the cache.

Proof of lemma
e

S
e
Sf

f f

easy case 1

State of the cache after J operations under the two schedules.

d is in the cache.

Both and agree since both do NOPs at j+1.S Sff

Proof of lemma
e

S
e
Sf

f f

easy case 2

State of the cache after J operations under the two schedules.

Proof of lemma
e

S
e
Sf

f f

easy case 2

State of the cache after J operations under the two schedules.

d is not in the cache, but both schedules “evict e for d.”

Proof of lemma
e

S
e
Sf

f f

easy case 2

State of the cache after J operations under the two schedules.

d is not in the cache, but both schedules “evict e for d.”

Both and agree at j+1.S Sff

Proof of lemma

case 3

e
S

e
Sf

f f

Proof of lemma

case 3

e
S

e
Sf

f f

 does evict(d,e), and does evict(f,e)S Sff

Proof of lemma

case 3

e
S

e
Sf

f f

 does evict(d,e), and does evict(f,e)S Sff

d
S

f e
Sf
d

The state of the cache after this operation:

Proof of lemma

case 3

e
S

e
Sf

f f

 does evict(d,e), and does evict(f,e)S Sff

d
S

f e
Sf
d

The state of the cache after this operation:

Challenge: the lemma requires us to find some schedule
that agrees with and has the same or fewer misses as .

S′￼

Sff S

Timeline

S’

S

Sf
j t

Timeline

S’

S

Sf
j t

Copy j+1 from . Then copy from S until (the first time that
either or are involved). Then copy from S until the end.

Sff t
e f

?

Timeline

S’

S

Sf
j t

Copy j+1 from . Then copy from S until (the first time that
either or are involved). Then copy from S until the end.

Challenge: Argue that S’ has the same misses as S.

Sff t
e f

?

Proof of lemma
dS eS’f d

Let be the first access that either or are involved.t e f
What if t is “access e”:

Proof of lemma
dS eS’f d

What if t = access e:

S needs to evict some element to load e.

If it evicts(f,e), then S’ can do a NOP.

If it evicts(h,e) , S’ can evict(h,f)

and maintain equality of the cache.

h ≠ f

d

S
e

d

S
fe e

S’
df

Proof of lemma
what if t=access f ?

dS eS’f d

Proof of lemma
what if t=access f ?

dS eS’f d

This case is impossible because f is accessed
“farthest in the future.”

Proof of lemma

what if t is evict(f,x) ?

dS eS’f d

Proof of lemma

what if t is evict(f,x) ?

dS eS’f d

Then S’ can evict(e,x) and have the same cache state.

d X

S
X

S’
d

What have we shown

S’

S

Sf

Let S be a reduced sched that agrees with Sff on the first j items.

There exists a reduced sched S’ that agrees with Sff on the first j+1
items and has the same or fewer #misses as S.

S⇤ S↵

Let S be a reduced sched that agrees with Sff on the first j items.

There exists a reduced sched S’ that agrees with Sff on the first j+1
items and has the same or fewer #misses as S.

Recap

The greedy algorithm is quite simple.

But the analysis for why the solution works is more
subtle and complicated.

In this case, we had to apply the exchange lemma
multiple times to prove optimality.

Huffman

Coding 

image: wikimedia

Alice Bob

mm

Alice Bob

mm

m

MOSCOW — President Vladimir V. Putin’s typically
theatrical order to withdraw the bulk of Russian forces
from Syria, a process that the Defense Ministry said it
began on Tuesday, seemingly caught Washington,
Damascus and everybody in between off guard — just the
way the Russian leader likes it.

By all accounts, Mr. Putin delights at creating surprises,
reinforcing Russia’s newfound image as a sovereign,
global heavyweight and keeping him at the center of
world events.

 m

MOSCOW — President Vladimir V. Putin’s typically
theatrical order to withdraw the bulk of Russian forces
from Syria, a process that the Defense Ministry said it
began on Tuesday, seemingly caught Washington,
Damascus and everybody in between off guard — just the
way the Russian leader likes it.

By all accounts, Mr. Putin delights at creating surprises,
reinforcing Russia’s newfound image as a sovereign,
global heavyweight and keeping him at the center of
world events.

Characters in the msg
e: 235

i: 200

o: 170

u: 87

p: 78

g: 47

b: 40

f: 24

881

e: 235 000

i: 200 001

o: 170 010

u: 87 011

p: 78 100

g: 47 101

b: 40 110

f: 24 111

881

3
3
3
3
3
3
3
3

B(T, {fc}) =
X

c2C

fc · `c

def: cost of an encoding

881

e: 235 000

i: 200 001

o: 170 010

u: 87 011

p: 78 100

g: 47 101

b: 40 110

f: 24 111

3
3
3
3
3
3
3
3

character frequency

0

75

150

225

300

e i a o r n t s l c u p m d h y g b f v k w z x q j

e: 234803

i: 200613

a: 198938

o: 170392

r: 160491

n: 158281

t: 152570

s: 139238

l: 130172

c: 103307

u: 87211

p: 78077

m: 70504

d: 68007

h: 64165

y: 51527

g: 47011

b: 40351

f: 24110

v: 20103

k: 16012

w: 13825

z: 8439

x: 6926

q: 3729

j: 3075

Morse code

image http://en.wikipedia.org/wiki/Morse_code

Morse code

def: prefix-free code

def: prefix-free code

def: prefix code

e: 235 0

i: 200 10

o: 170 110

u: 87 1110

p: 78 11110

g: 47 111110

b: 40 1111110

f: 24 11111110

Example of a prefix free code

decoding a prefix code
e: 235 0

i: 200 10

o: 170 110

u: 87 1110

p: 78 11110

g: 47 111110

b: 40 1111110

f: 24 11111110

111111010111110

Prefix code to binary tree
e: 235 0

i: 200 10

o: 170 110

u: 87 1110

p: 78 11110

g: 47 111110

b: 40 1111110

f: 24 11111110

111111010111110

prefix code

binary tree

The prefix-free code and the binary tree are different
representations of the same object.

ie o u p

use tree to encode
e: 235 00

i: 200 01

o: 170 10

u: 87 110

p: 78 111

2
2
2
3
3

goal
given the

{fc}c�C

min
T

B(T, {fc})

goal
given the character frequencies

produce a prefix code T with smallest cost

(all frequencies are > 0)

property

x

y

a b

lemma:optimal tree must be full.

property

x

y

a b

lemma:optimal tree must be full.

A full tree has nodes with either 0 or 2 children.

property

x

y

a b

lemma:optimal tree must be full.

A full tree has nodes with either 0 or 2 children.

Consider a node with only 1 child.

a

property

x

y

a b

lemma:optimal tree must be full.

A full tree has nodes with either 0 or 2 children.

Consider a node with only 1 child.
a

The length of the code for this child can be reduced
by replacing the parent with the child.

Thus, the cost of the code can be reduced or remain
equal if the parent is replaced by the child

divide & conquer Tug of War?
Consider a “Tug of War” strategy in which we
balance the weights of the teams and recurse.

e: 32

i: 25

o: 20

u: 18

p: 5

counter-example

e: 32

i: 25

o: 20

u: 18

p: 5

e u i

o p

2: 64

2: 50

3: 60

2: 36

3: 15

 225

counter-example

e: 32

i: 25

o: 20

u: 18

p: 5

e i

p

2: 64

2: 50

2: 40

3: 54

3: 15

 223

u

o

By switching {u,o}, the cost of the code can be reduced.

It can be reduced further with an optimal code.

2440477887170200235

e i o u p g b f

64

Huffman construction

7887170200235

e i o u p
47
g

2440

b f

64

7887170200235

e i o u p
47
g

2440

b f

64

111

7887170200235

e i o u p
47

g

2440

b f

64

1117887170200235

e i o u p
47

g

2440

b f

64

235

e
200

i
170

o
87

u
78

p
111

47
g

2440
b f

64

235

e
200

i
170

o
87

u
78

p
111

47
g

2440
b f

64

165

235
e

200
i

170
o

111

g

b f

u p

165

276

276

87 u 78 p

165

47 g

40 b 24 f

64

111

235 e

370

170 o200 i

881

511

e: 235 01
i: 200 11
o: 170 10
u: 87 0011
p: 78 0010
g: 47 0000
b: 40 00011
f: 24 00010

276

87 u 78 p

165

47 g

40 b 24 f

64

111

235 e

370

170 o200 i

881

511

e: 235 01
i: 200 11
o: 170 10
u: 87 0011
p: 78 0010
g: 47 0000
b: 40 00011
f: 24 00010

470
400
340
348
312
188
200
120
2378

276

87 u 78 p

165

47 g

40 b 24 f

64

111

235 e

370

170 o200 i

881

511

objective

objective
The goal is to prove that the procedure outlined produced
an optimal code. Taking a greedy step to make the problem
one size smaller is optimal.

exchange argument
lemma:

x

y

a b

exchange argument

T

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma:

a

b

x y

T ��

exchange argument

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma:

x

y

a b

T

Idea: take an arbitrary optimal tree T for a prefix code and modify it
into another optimal tree in which x,y are sibling children at the
lowest level of the tree.

exchange argument

proof:

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma:

exchange argument

proof:

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma:

Let be an optimal code. If are siblings in ,
then the lemma holds.

Otherwise, since is full, let be the sibling
nodes with the largest depth. (Q: Why do exist?)

T x, y T

T a, b
a, b

x

y

a b

exchange argument

T

example of such a tree

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma:

x

y

a b

exchange argument

T

example of such a tree

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma:

Suppose wlog that fx ≤ fa, fy ≤ fb

The first step is to exchange with to
construct a new tree .

x a
T′￼

exchange argument

x

y

a b

T

a

y

x b

T �

fa � fb

fx � fy

fx � fa

fy � fb

first step

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma:

exchange argument

x

y

a b

T

a

y

x b

T �

fa � fb

fx � fy

fx � fa

fy � fb

first step

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma:

B(T) = Z + fx ⋅ ℓx + fa ⋅ ℓa B(T′￼) = Z + fx ⋅ ℓa + fa ⋅ ℓx

Z Z

x

y

a b

T

a

y

x b

T �

This tree is optimal.

B(T) = Z + fx ⋅ ℓx + fa ⋅ ℓa B(T′￼) = Z + fx ⋅ ℓa + fa ⋅ ℓx

Z Z

B(T) − B(T′￼) =

x

y

a b

T

a

y

x b

T �

This tree is optimal.

B(T) = Z + fx ⋅ ℓx + fa ⋅ ℓa B(T′￼) = Z + fx ⋅ ℓa + fa ⋅ ℓx

Z Z

B(T) − B(T′￼) = fxℓx + faℓa − faℓx − fxℓa

= fx(ℓx − ℓa) − fa(ℓx − ℓa)
= (fx − fa)(ℓx − ℓa) Both terms must be because ≤ 0

fx ≤ fa, ℓx ≤ ℓa

But since is optimal, the product must be 0.B(T)

B(T �) =
�

c

fc⇤
�
c + fx⇤�

x + fa⇤�
aB(T) =

�

c

fc⇤c + fx⇤x + fa⇤a

fx � fa
x

y

a b

T

a

y

x b

T �

B(T) − B(T′￼) = 0

exchange argument

a

y

x b

a

b

x y

T � T ��

B(T′￼) − B(T′￼′￼) = 0
We can apply the same argument to .y, b

x

y

a b

T

a

y

x b

T �

a

b

x y

T ��

x

y

a b

T

a

y

x b

T �

a

b

x y

T ��

B(T)�B(T �) ⇥ 0 B(T �)�B(T ��) ⇥ 0

T ��
is also optimal

x

y

a b

a

b

x y

exchange argument

T T �

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma:

fc

optimal sub-structure
2440477887170200235

fx fy

fz
fc�

optimal sub-structure
2440477887170200235

64477887170200235

fx fy

problem of size n

problem of size n-1

fc

Lemma:

fz
fc�

optimal sub-structure
2440477887170200235

64477887170200235

fx fy

problem of size n

problem of size n-1

fc

Lemma: The optimal solution for consists of computing an
optimal solution for and replacing the node for
with an internal node having children .

T fc
T′￼ fc′￼

z
x, y

z

T �

z

Let be an optimal solution for of size n-1.T′￼ fc′￼

T

Our lemma suggests constructing T by replacing z with {x,y} leaves.

B(T �) B(T)

z

T �

x y

T

Lets analyze B(T)

B(T �) B(T)

z

T �

x y

T

B(T) = B(T′￼) − fzℓz + (ℓz + 1)(fx + fy)

= B(T′￼) + fx + fy

Lets analyze B(T)

B(T �) B(T)

B(T �) = B(T)� fx � fy

z

T �

x y

T

Rearranging, we get

Suppose is not optimal T
What does that mean?

Suppose is not optimal T
What does that mean?

There exists another tree such that

Moreover, by the exchange lemma, there exists a such that x,y are siblings.

U B(U) < B(T) .

U′￼

yx

U
B(U) < B(T)

Suppose is not optimal T

yx

U
B(U) < B(T)

Suppose is not optimal T
= B(T′￼) + fx + fy

yx

U
B(U) < B(T)

Suppose is not optimal T
= B(T′￼) + fx + fy

This implies
B(U) − fx − fy < B(T′￼)

yx

U
B(U) < B(T)

Suppose is not optimal T
= B(T′￼) + fx + fy

This implies
B(U) − fx − fy < B(T′￼)

z

U �
B(U′￼) < B(T′￼)

yx

U
B(U) < B(T)

Suppose is not optimal T
= B(T′￼) + fx + fy

This implies
B(U) − fx − fy < B(T′￼)

z

U �
B(U′￼) < B(T′￼)

Which means that T’ was not optimal!

This is a contradiction, which means that our
supposition (T not optimal) must be wrong.

