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Greedy is only good for certain problems 



caching



cache hit
Cache

load r2, addr a

main memory

CPU

store r4, addr b



question:



question:

How do we manage a fully-associate cache?


When it is full, which element do we replace?



problem statement
input:

output:

cache is 



problem statement
input:

output:

cache is 

K, the size of the cache
d1, d2, ..., dm  memory accesses

schedule for that cache that minimizes # of cache 
misses while satisfying requests

fully associative, line size is 1



contrast with reality



contrast with reality
In a real situation, we may not know the future 
memory access patterns.


Some caches have additional restrictions, like 
line-size, associativity, etc.


However, this algorithm can still be used to 
compare a real-world algorithm against the 
optimum cache miss rate possible.



Belady eviction rule



Belady eviction rule

Replace the element in the cache that is accessed 
“farthest into the future”
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Memory accesses:

Cache operations:
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a b c d a d e a d b a e c e aMemory accesses:

Cache operations: nop Evict (c,d) Evict (b,e)
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a b c d a d e a d b a e c e aMemory accesses:

Cache operations: nop Evict (c,d) Evict (b,e) Evict (d,b)
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Here is an 
alternate 
optimal set of 
cache 
operations.



Surprising theorem



Surprising theorem

The schedule  produced by the Belady “farthest 
in the future” eviction rule is optimal.

Sff
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Schedule for access pattern d1,d2,...,dn:

Reduced schedule:
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A list of instructions for each access that is either 
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A schedule in which“evict x for y” instruction only 
occurs when y is accessed.



schedule
Schedule for access pattern d1,d2,...,dn:

Reduced schedule:

A list of instructions for each access that is either 
“NOP” or “evict x for y”

A schedule in which“evict x for y” instruction only 
occurs when y is accessed.

Note: any schedule can be transformed into a reduced schedule with 
the same or fewer cache misses. 

(Idea: starting at the end, defer “evict…t” until y is read)



Non-Reduced Schedule example
cache a

e

b

a b c d a d e a d b a e c e a
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Example of a non-reduced schedule.

At this point, the cache evicts (b,c) when “a” 
is being accessed. It is possible to delay 
this eviction until “c” is accessed, thereby 
leading to a reduced schedule.



Exchange lemma



Exchange lemma
Let  be a reduced schedule that agrees with  on 
the first j accesses.


Then there exists a schedule  that agrees with  
on the first j+1 accesses and has the same or fewer 
misses.

S Sff

S′￼ Sff



What does it mean for 2 schedules to agree?
A schedule is a sequence of cache instructions:

NOP,NOP,NOP,evict(c,d),NOP,NOP,…

cache a
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a b c d a d e a d b a e c e a
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For example, these two schedules agree on the first three operations.
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Some optimal 
schedule.



S⇤ S↵

Some optimal 
schedule.

S1

Agrees with  on 
the first access. Can 
be constructed by 
applying the Lemma 
to  which agrees 
on 0 accesses.

Sff
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Some optimal 
schedule.

S1

Agrees with  on 
the first access. Can 
be constructed by 
applying the Lemma 
to  which agrees 
on 0 accesses.

Sff
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Agrees with  on 
the first two 
accesses.

Sff
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Some optimal 
schedule.

S1

Agrees with  on 
the first access. Can 
be constructed by 
applying the Lemma 
to  which agrees 
on 0 accesses.

Sff

S*

S2

Agrees with  on 
the first two 
accesses.

Sff

S3 Sn−1

Agrees with  on 
the first three 
accesses.

Sff

 has the same 
number of cache 
misses as .

Sff
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S⇤ S↵

Some optimal 
schedule.

S1

Agrees with  on 
the first access. Can 
be constructed by 
applying the Lemma 
to  which agrees 
on 0 accesses.

Sff

S*

S2

Agrees with  on 
the first two 
accesses.

Sff

S3 Sn−1

Agrees with  on 
the first three 
accesses.

Sff

 has the same 
number of cache 
misses as .

Sff

S*

miss(S*) ≥ miss(S1) ≥ miss(S2) ≥ ⋯ ≥ miss(Sn)



S⇤ S↵

Some optimal 
schedule.

Since  is optimal, this means that all of these relations need to be equality.S*

This also means the  is therefore optimal.Sff



miss(S*) ≥ miss(S1) ≥ miss(S2) ≥ ⋯ ≥ miss(Sn) = miss(Sff)

S⇤ S↵

Some optimal 
schedule.

Since  is optimal, this means that all of these relations need to be equality.S*

This also means the  is therefore optimal.Sff
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Let S be a reduced sched that agrees with Sff on the first j items.

There exists a reduced sched S’ that agrees with Sff on the first j+1 
items and has the same or fewer #misses as S.



Proof of Lemma
Let S be a reduced sched that agrees with Sff on the first j items.

There exists a reduced sched S’ that agrees with Sff on the first j+1 
items and has the same or fewer #misses as S.

At time j, both  and  have the same state.

Let d be the element accessed at time j+1.

S Sff
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easy case 1

State of the cache after J operations under the two schedules.

d is in the cache.

Both  and  agree since both do NOPs at j+1.S Sff
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Proof of lemma
e

S
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Sf
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easy case 2

State of the cache after J operations under the two schedules.

d is not in the cache, but both schedules “evict e for d.”

Both  and  agree at j+1.S Sff
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case 3
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f f

 does evict(d,e), and   does evict(f,e)S Sff
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case 3
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e
Sf
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 does evict(d,e), and   does evict(f,e)S Sff

d
S

f e
Sf
d

The state of the cache after this operation:



Proof of lemma

case 3

e
S

e
Sf

f f

 does evict(d,e), and   does evict(f,e)S Sff

d
S

f e
Sf
d

The state of the cache after this operation:

Challenge: the lemma requires us to find some schedule  
that agrees with  and has the same or fewer misses as .

S′￼

Sff S
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Timeline

S’

S

Sf
j t

Copy j+1 from . Then copy from S until  (the first time that 
either  or  are involved). Then copy from S until the end.

Challenge: Argue that S’ has the same misses as S.

Sff t
e f

?



Proof of lemma
dS eS’f d

Let  be the first access that either  or  are involved.t e f
What if t is “access e”:



Proof of lemma
dS eS’f d

What if t = access e:

S needs to evict some element to load e. 

If it evicts(f,e), then S’ can do a NOP.


If it evicts(h,e) , S’ can evict(h,f)

and maintain equality of the cache.

h ≠ f

d

S
e

d

S
fe e

S’
df



Proof of lemma
what if t=access f ?

dS eS’f d



Proof of lemma
what if t=access f ?

dS eS’f d

This case is impossible because f is accessed 
“farthest in the future.”




Proof of lemma

what if t is evict(f,x) ?

dS eS’f d



Proof of lemma

what if t is evict(f,x) ?

dS eS’f d

Then S’ can evict(e,x) and have the same cache state.

d X

S
X

S’
d



What have we shown

S’

S

Sf

Let S be a reduced sched that agrees with Sff on the first j items.

There exists a reduced sched S’ that agrees with Sff on the first j+1 
items and has the same or fewer #misses as S.



S⇤ S↵

Let S be a reduced sched that agrees with Sff on the first j items.

There exists a reduced sched S’ that agrees with Sff on the first j+1 
items and has the same or fewer #misses as S.



Recap

The greedy algorithm is quite simple.


But the analysis for why the solution works is more 
subtle and complicated.


In this case, we had to apply the exchange lemma 
multiple times to prove optimality.



Huffman

Coding 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MOSCOW — President Vladimir V. Putin’s typically 
theatrical order to withdraw the bulk of Russian forces 
from Syria, a process that the Defense Ministry said it 
began on Tuesday, seemingly caught Washington, 
Damascus and everybody in between off guard — just the 
way the Russian leader likes it.


By all accounts, Mr. Putin delights at creating surprises, 
reinforcing Russia’s newfound image as a sovereign, 
global heavyweight and keeping him at the center of 
world events.
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MOSCOW — President Vladimir V. Putin’s typically 
theatrical order to withdraw the bulk of Russian forces 
from Syria, a process that the Defense Ministry said it 
began on Tuesday, seemingly caught Washington, 
Damascus and everybody in between off guard — just the 
way the Russian leader likes it.


By all accounts, Mr. Putin delights at creating surprises, 
reinforcing Russia’s newfound image as a sovereign, 
global heavyweight and keeping him at the center of 
world events.



Characters in the msg
e: 235  

i: 200   

o: 170   

u: 87    

p: 78    

g: 47     

b: 40     

f: 24     

881



e: 235    000

i: 200    001

o: 170    010

u: 87     011

p: 78     100

g: 47     101

b: 40     110

f: 24     111

881

3
3
3
3
3
3
3
3



B(T, {fc}) =
X

c2C

fc · `c

def: cost of an encoding

881

e: 235    000

i: 200    001

o: 170    010

u: 87     011

p: 78     100

g: 47     101

b: 40     110

f: 24     111

3
3
3
3
3
3
3
3



character frequency

0

75

150

225

300

e i a o r n t s l c u p m d h y g b f v k w z x q j

e: 234803

i: 200613

a: 198938

o: 170392

r: 160491

n: 158281

t: 152570

s: 139238

l: 130172

c: 103307

u: 87211

p: 78077

m: 70504

d: 68007

h: 64165

y: 51527

g: 47011

b: 40351

f: 24110

v: 20103

k: 16012

w: 13825

z: 8439

x: 6926

q: 3729

j: 3075



Morse code

image http://en.wikipedia.org/wiki/Morse_code



Morse code

  



def: prefix-free code



def: prefix-free code



def: prefix code

e: 235    0

i: 200    10

o: 170    110

u: 87     1110

p: 78     11110

g: 47     111110

b: 40     1111110

f: 24     11111110

Example of a prefix free code



decoding a prefix code
e: 235    0

i: 200    10

o: 170    110

u: 87     1110

p: 78     11110

g: 47     111110

b: 40     1111110

f: 24     11111110

111111010111110



Prefix code to binary tree
e: 235    0

i: 200    10

o: 170    110

u: 87     1110

p: 78     11110

g: 47     111110

b: 40     1111110

f: 24     11111110

111111010111110



prefix code

binary tree

 
The prefix-free code and the binary tree are different 
representations of the same object.



ie o u p

use tree to encode 
e: 235    00

i: 200    01

o: 170    10

u: 87     110

p: 78     111


2
2
2
3
3



goal
given the



{fc}c�C

min
T

B(T, {fc})

goal
given the character frequencies

produce a prefix code T with smallest cost

(all frequencies are > 0)
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lemma:optimal tree must be full.
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property

x

y

a b

lemma:optimal tree must be full.

A full tree has nodes with either 0 or 2 children.

Consider a node with only 1 child.

a



property

x

y

a b

lemma:optimal tree must be full.

A full tree has nodes with either 0 or 2 children.

Consider a node with only 1 child.
a

The length of the code for this child can be reduced 
by replacing the parent with the child.


Thus, the cost of the code can be reduced or remain 
equal if the parent is replaced by the child



divide & conquer Tug of War?
Consider a “Tug of War” strategy in which we 
balance the weights of the teams and recurse.

e: 32   

i: 25   

o: 20    

u: 18    

p: 5 




counter-example

e: 32   

i: 25   

o: 20    

u: 18    

p: 5 


e u i

o p

2: 64   

2: 50   

3: 60    

2: 36    

3: 15 

   225



counter-example

e: 32   

i: 25   

o: 20    

u: 18    

p: 5 


e i

p

2: 64   

2: 50   

2: 40    

3: 54    

3: 15 

   223

u

o

By switching {u,o}, the cost of the code can be reduced.

It can be reduced further with an optimal code.
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Huffman construction



7887170200235

e i o u p
47
g

2440

b f

64



7887170200235

e i o u p
47
g

2440

b f

64



111

7887170200235

e i o u p
47

g

2440

b f

64



1117887170200235

e i o u p
47

g

2440

b f

64



235

e
200

i
170

o
87

u
78

p
111

47
g

2440
b f

64



235

e
200

i
170

o
87

u
78

p
111

47
g

2440
b f

64

165



235
e

200
i

170
o

111

g

b f

u p

165

276



276

87 u 78 p

165

47 g

40 b 24 f

64

111

235 e

370

170 o200 i

881

511



e: 235 01
i: 200 11
o: 170 10
u: 87  0011
p: 78  0010
g: 47  0000
b: 40  00011
f: 24  00010

276

87 u 78 p
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47 g

40 b 24 f
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235 e
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e: 235 01
i: 200 11
o: 170 10
u: 87  0011
p: 78  0010
g: 47  0000
b: 40  00011
f: 24  00010

470
400
340
348
312
188
200
120
2378

276

87 u 78 p

165

47 g

40 b 24 f

64

111

235 e

370

170 o200 i

881

511



objective



objective
The goal is to prove that the procedure outlined produced 
an optimal code. Taking a greedy step to make the problem 
one size smaller is optimal.



exchange argument
lemma:



x

y

a b

exchange argument

T

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma: 



a

b

x y

T ��

exchange argument

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma: 

x

y

a b

T

Idea: take an arbitrary optimal tree T for a prefix code and modify it 
into another optimal tree in which x,y are sibling children at the 
lowest level of the tree.



exchange argument

proof:

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma: 



exchange argument

proof:

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma: 

Let  be an optimal code. If  are siblings in , 
then the lemma holds. 

Otherwise, since  is full, let  be the sibling 
nodes with the largest depth. (Q: Why do  exist?)

T x, y T

T a, b
a, b



x

y

a b

exchange argument

T

example of such a tree

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma: 



x

y

a b

exchange argument

T

example of such a tree

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma: 

Suppose wlog that fx ≤ fa, fy ≤ fb

The first step is to exchange  with  to 
construct a new tree .

x a
T′￼



exchange argument

x

y

a b

T

a

y

x b

T �

fa � fb

fx � fy

fx � fa

fy � fb

first step

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma: 



exchange argument

x

y

a b

T

a

y

x b

T �

fa � fb

fx � fy

fx � fa

fy � fb

first step

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma: 

B(T) = Z + fx ⋅ ℓx + fa ⋅ ℓa B(T′￼) = Z + fx ⋅ ℓa + fa ⋅ ℓx

Z Z
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y

a b

T

a

y
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T �

This tree is optimal.

B(T) = Z + fx ⋅ ℓx + fa ⋅ ℓa B(T′￼) = Z + fx ⋅ ℓa + fa ⋅ ℓx

Z Z

B(T) − B(T′￼) =
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T
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T �

This tree is optimal.

B(T) = Z + fx ⋅ ℓx + fa ⋅ ℓa B(T′￼) = Z + fx ⋅ ℓa + fa ⋅ ℓx

Z Z

B(T) − B(T′￼) = fxℓx + faℓa − faℓx − fxℓa

= fx(ℓx − ℓa) − fa(ℓx − ℓa)
= ( fx − fa)(ℓx − ℓa) Both terms must be  because ≤ 0

fx ≤ fa, ℓx ≤ ℓa

But since  is optimal, the product must be 0.B(T)



B(T �) =
�

c

fc⇤
�
c + fx⇤�

x + fa⇤�
aB(T ) =

�

c

fc⇤c + fx⇤x + fa⇤a

fx � fa
x

y

a b

T

a

y

x b

T �

B(T) − B(T′￼) = 0



exchange argument
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x b
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x y

T � T ��

B(T′￼) − B(T′￼′￼) = 0
We can apply the same argument to .y, b
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B(T )�B(T �) ⇥ 0 B(T �)�B(T ��) ⇥ 0

T ��
is also optimal
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a b
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x y

exchange argument

T T �

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma: 



fc

optimal sub-structure
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fz
fc�

optimal sub-structure
2440477887170200235
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fx fy

problem of size n

problem of size n-1

fc

Lemma:



fz
fc�

optimal sub-structure
2440477887170200235
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fx fy

problem of size n

problem of size n-1

fc

Lemma: The optimal solution  for  consists of computing an 
optimal solution  for  and replacing the node for  
with an internal node having children .

T fc
T′￼ fc′￼

z
x, y



z

T �

z

Let  be an optimal solution for  of size n-1.T′￼ fc′￼

T

Our lemma suggests constructing T by replacing z with {x,y} leaves.



B(T �) B(T )

z

T �

x y

T

Lets analyze B(T)



B(T �) B(T )

z

T �

x y

T

B(T) = B(T′￼) − fzℓz + (ℓz + 1)( fx + fy)

= B(T′￼) + fx + fy

Lets analyze B(T)



B(T �) B(T )

B(T �) = B(T )� fx � fy

z

T �

x y

T

Rearranging, we get



Suppose     is not optimal T
What does that mean?



Suppose     is not optimal T
What does that mean?

There exists another tree  such that 


Moreover, by the exchange lemma, there exists a  such that x,y are siblings.

U B(U) < B(T) .

U′￼



yx

U
B(U) < B(T )

Suppose     is not optimal T



yx

U
B(U) < B(T )

Suppose     is not optimal T
= B(T′￼) + fx + fy



yx

U
B(U) < B(T )

Suppose     is not optimal T
= B(T′￼) + fx + fy

This implies
B(U) − fx − fy < B(T′￼)



yx

U
B(U) < B(T )

Suppose     is not optimal T
= B(T′￼) + fx + fy

This implies
B(U) − fx − fy < B(T′￼)

z

U �
B(U′￼) < B(T′￼)



yx

U
B(U) < B(T )

Suppose     is not optimal T
= B(T′￼) + fx + fy

This implies
B(U) − fx − fy < B(T′￼)

z

U �
B(U′￼) < B(T′￼)

Which means that T’ was not optimal!

This is a contradiction, which means that our 
supposition (T not optimal) must be wrong.


