77 5800

222222222

SSSSSS

Greedy 1S only good for certain problems

cacne nit

guestion:

guestion:

How do we manage a fully-associate cache?

When 1t is full, which element do we replace?

oroplem statement

INput:

output:

cache Is

oroplem statement

input: K, the size of the cache
d1, do, ..., dm MEMOry accesses

output: schedule for that cache that minimizes # of cache
misses while satistying requests

cache is fully associative, line size is 1

contrast witn reality

contrast witn reality

In a real situation, we may not know the future
memory access patterns.

Some caches have additional restrictions, like
line-size, associativity, etc.

However, this algorithm can still be used to
compare a real-world algorithm against the
optimum cache miss rate possible.

Belaqy eviction rule

Belady eviction rule

Replace the element In the cache that Is accessed
“farthest into the future”

example

cache

Q) [ﬁ J[@ = J

bcdadeadbaecea

example

Cache operations: nop Evict ¢ for d.

n
o)
PP amm
cache a
2
&
9
Memoryaccesses: a b cdadeadbaecea

example

Cache operations: nop Fvict(¢d) - Bvict (b,e)
)
cache = a a
€
\ d

Memoryaccesses: a b cdadeadbaecea

example

Cache operations: nop Fvict(¢d) Evict(be) Evict (d,b)
A
cache a a a
.
Y
=

Memoryaccesses: a b cdadeadbaecea

example

cache = a a o
e
2 O
abcdadeadbaecea
D -
© 6. Here 1s an
- - alternate
optimal set of
cache

operations.

SUrprising theorem

SUrprising theorem

The schedule Sff produced by the Belady “farthest
In the future” eviction rule 1s optimal.

scheaule

Schedule for access pattern d+,do,...,dn:

Reduced schedule:

scheaule

Schedule for access pattern d+,do,...,dn:

A list of Instructions for each access that Is either
“NOP” or “evict x for y”

Reduced schedule:

scheaule

Schedule for access pattern d+,do,...,dn:

A list of Instructions for each access that Is either
“NOP” or “evict x for y”

Reduced schedule:

A schedule in which“evict x for y” Instruction only
occurs when y Is accessed.

scheaule

Schedule for access pattern d+,do,...,dn:

A list of Instructions for each access that Is either
“NOP” or “evict x for y”

Reduced schedule:

A schedule in which“evict x for y” Instruction only
occurs when y Is accessed.

Note: any schedule can be transformed into a reduced schedule with

the same or fewer cache misses.
(Idea: starting at the end, defer “evict...t" until y is read)

Non-Reduced Schedule example

cache

000

abcdadeadbaecea

Example of a non-reduced schedule.

At this point, the cache evicts (b,c) when “3”
IS being accessed. It 1s possible to delay
this eviction until “c” I1s accessed, thereby
leading to a reduced schedule.

—xXchange lemma

—xXchange lemma

Let S be a reduced schedule that agrees with Sffon
the first j accesses.

Then there exists a schedule S’ that agrees with Sff

on the first J+1 accesses and has the same or fewer
MISSES.

What does it mean for 2 schedules to agree?

A schedule 1s a sequence of cache Instructions:
NOP.NOPNOPevict(c,d) NOPNOP....

cache

elee

abcdadeadbae e a

000 -

For example, these two schedules agree on the first three operations.

Some optimal
schedule.

S*

Some optimal
schedule.

S* s
/

Agrees with 5on

the first access. Can
be constructed by
applying the Lemma
to S which agrees
on 0 accesses.

Some optimal
schedule.

S s s,
/

Agrees with 5on

the first access. Can
be constructed by
applying the Lemma
to S which agrees
on 0 accesses.

Agrees with Son

the first two
accesses.

Some optimal
schedule.

S* 51 9y 93 Sn—1 Sff
/ Srhas the same

Agrees with 5on number of cache

the first access. Can misses as .
be constructed by

applying t‘he Lemma Agrees with Son
to S which agrees
the first two
on 0 accesses.
accesses.
Agrees with Son
the first three

dCCesses.

Some optimal
schedule.

S* 51 9y 93 Sn—1 Sff
/ S¢rhas the same

Agrees with 5on number of cache

the first access. Can misses as .
be constructed by

applying the Lemma .
PPYINS | Agrees with Son
to S which agrees
the first two
on 0 accesses.
aCcesses.
Agrees with Son
the first three
aCCesses.

miss(S™) > miss(S;) = miss(S,) = -+ = miss(S,)

Some optimal
schedule.

S” St

Since S is optimal, this means that all of these relations need to be equality.

This also means the Sffis therefore optimal.

Some optimal
schedule.

S” St

miss(5™) 2 miss(Sy) = miss(Sy) = -+ = miss(S,) = miss(Sy)

Since S is optimal, this means that all of these relations need to be equality.

This also means the Sffis therefore optimal.

Proof of Lemma

Let S be a reduced sched that agrees with Si on the first | itenr
There exists a reduced sched S’ tha

items and has the same or fewer

]

ISSes as S.

- agrees with Sion the first

|+ 1

Proof of Lemma

Let S be a reduced sched that agrees with Si on the first | itenr

There exists a reduced sched S’ tha

items and has the same or fewer

]

ISSes as S.

At time j, both S and Sffhave the same state.
Let d be the element accessed at time j+1.

- agrees with Sion the first

|+ 1

Proof Of lemma

State of the cache after J operations under the two schedules.

- elf - fef
S S

easy case 1

Proof Of lemma

State of the cache after J operations under the two schedules.

- elf - fef
S S

easy case 1 d IS In the cache.

Proof Of lemma

State of the cache after J operations under the two schedules.

- elf - fef
S S

easy case 1 d IS In the cache.

Both .Y and Sffagree since both do NOPs at j+1.

Proof Of lemma

State of the cache after J operations under the two schedules.

- elf - fef
S S

easy case ?

Proof Of lemma

State of the cache after J operations under the two schedules.

- elf - fef
S S

easy case 2 d IS not In the cache, but both schedules “evict e for d.”

Proof Of lemma

State of the cache after J operations under the two schedules.

- elf - fef
S St

easy case 2 d IS not In the cache, but both schedules “evict e for d.”

Both .Y and Sffagree at J+1.

ProoT Of lemma
 Lelt —GS

S

case 3

ProoT Of lemma
 Lelt —GS

S
“a%e 3§ does evict(d,e), and Sy does evict(fie)

ProoT Of lemma
 Lelt —GS

S
“a%e 3§ does evict(d,e), and Sy does evict(fie)

The state of the cache after this operation:

_ SEEEEN0O
ft

S

ProoT Of lemma
(o0 00

S
“a%e 3§ does evict(d,e), and Sy does evict(fie)

The state of the cache after this operation:

(00 00

S

Challenge: the lemma requires us to find some schedule S’
that agrees with S,-and has the same or fewer misses as 5.

Timeline

J t

Timeline

J t
S
S i ’
S

Copy j+1 from Sy Then copy from S until t (the first time that
either e or fare involved). Then copy from S until the end.

Timeline

J t
S
S i ’
S

Copy j+1 from Sy Then copy from S until t (the first time that

either e or fare involved). Then copy from S until the end.
Challenge: Argue that S’ has the same misses as S.

ProoT Of lemma
s . W@ s e

Let t be the first access that either e or f are involved.
What If t Is “access e":

ProoT Of lemma
s . W@ s e

What If t = access e:

S needs to evict some element to load e.
If it evicts(fe), then S’ can do a NOP.

S
G0

S
f it evicts(h,e) A # £, S’ can evict(h,f)
- (&) deg and maintain equality of the cache. —a.

ProoT Of lemma
s . W@ s e

what If t=access f ?

ProoT Of lemma
S | d S [lel

what if t=access f 7/

This case 1s Impossible because f Is accessed
“farthest In the future.”

ProoT Of lemma
s . W@ s e

what if t Is evict(f,x) 7

ProoT Of lemma
s . W@ s e

what if t Is evict(f,x) 7

Then S’ can evict(e,x) and have the same cache state.

S

S)
SN @ L

VVVhat have we snown

S)

Let S be a reduced sched that agrees with Si on the first | items.
There exists a reduced sched S’ that agrees with S#on the first j+1
items and has the same or fewer #misses as S.

Let S be a reduced sched that agrees with S« on the first | items.
There exists a reduced sched S’ that agrees with Sion the first j+1
tems and has the same or fewer #misses as S.

S” St

Recap

The greedy algorithm 1s quite simple.

But the analysis for why the solution works 1s more
subtle and complicated.

In this case, we had to apply the exchange lemma
multiple times to prove optimality.

Hutman
Coding

¢y Winston_Salem ¢y Durham
® Raleigh

O Fayetteville

¢y Winston_Salem ¢y Durham
® Raleigh

O Fayetteville

T

/N /N

\; -—-'/' \' -——1/'

| —

Am——

MOSCOW — President Vladimir V. Putin’s typically
theatrical order to withdraw the bulk of Russian forces

from Syria, a process that the Defense Ministry said it

began on Tuesday, seemingly caught Washington,
Damascus and everybody In between off guard — just the

way the Russian leader likes it.

By all accounts, Mr. Putin delights at creating surprises,
reinforcing Russia’s newfound image as a sovereign,
global heavyweight and keeping him at the center of

worlad evente

m/\
' <y

\; -—-'/' \' -——1/'

| —

Am——

MOSCOW — President Vladimir V. Putin’s typically
theatrical order to withdraw the bulk of Russian forces

from Syria, a process that the Defense Ministry said it

began on Tuesday, seemingly caught Washington,
Damascus and everybody In between off guard — just the

way the Russian leader likes it.

By all accounts, Mr. Putin delights at creating surprises,
reinforcing Russia’s newfound image as a sovereign,
global heavyweight and keeping him at the center of

worlad evente

Characters in the msg

ceC Je T
. 235

. 200

. 170

. 3/

. /3

. 47

. 40

. 24

-~ O0Q ©C C O —= M

331

CGC fc

-~ O0Q C C O —= M

235
200
170
3/
/3
47
40
24

3831

0J010
001
010
011
100
101
110
111

S
®

w w w w w w w W

\

def: cost of an encoding

= > fe-te

*ﬂ
——
lew

cecC

ceC [e T l,
e: 235 000 3
1: 200 001 3
o: 170 010 3
u: 87/ 011 3
p: /8 100 3
g. 47 101 3
b: 40 110 3
f: 24 111 3

331

N — N 5 5 O O =MD

S A< O T3 3 T C

character frequency

2343803
200613
1989338
170392
160491
158281
152570
139238
130172
103307
37211
78077
70504
68007
64165
51527
47011
40351
24110
20103
16012
13825
3439
6926
3729
3075

300

225 R

150

75

Nlorse coge

International Morse Code
- 1 dash = 3 dots
- The space between parts of the same letter = 1 dot
- The space between letters = 3 dots.
The space between words = 7 dots.

A o mmm V e o ¢ mmm

Hosme oo VW e mam s

C e o s o X m—m o o mmm

D osm e o Y mmm o mmm mmm

E e 7 e e

F' '@ mmm e . ® EEE e WEE * mam
(> - @ , EENN EEEE © © NN .
Heeoeoe A RN B EX

| @ @ / " e ® mmm e

] ommm mmm mmm () mum Emm S mum S

. o e 1l & mam s S
Lo mmeoo 2 ® © NN W

M am S ® o o mmm =

N mm e 1 @ o o o s

O = —— - S5 oo e e e

P o mum s o O mmm e o e o0

Q- S e s Jma it /sl < 1@ 0 iy O 1K1/ Morse_code
R e = e E mum mmn mmm o @
Seee O semm SE S e

1 — O s -

) & & ==

Nlorse coge

International Morse Code

-1 dash = 3 dots

- The space between parts of the same letter = 1 dot
The space between letters = 3 dots.
The space between words = 7 dots.
A o mmm V e o ¢ mmm
Hosme oo VW e mam s
C o o s o X mmm e o mmm ¢ m @
D osme o ' KB B
E e L W e e
F '@ o mmm o ., ® FEE e WEm *
(> - o , EENN EEEE © © NN .

Heeoeooe ® O NN N e e
| @ @

] o mmm mam
. o s
Lo mm oo

M am

N mm o

O mum == =

P & mam mam o

QOVUONOUVBEWNER ~=w
]
a
2
o

() mmm mmm & e N e e e

L & mm o BN B N e o

S e e A B NN . e
T BN B B .

) ® ® =

det: prefix-free code

det: prefix-free code

Ve,y € C,x #y = CODE(x) not a prefix of CODE(y)

- O0Q O C O —= M

det: pretfix coae

Ve,y € C,x # 1y = CODE(x) not a prefix of CODE(y)

235 ©

200 10

170 110

37/ 1110

/8 11110

47 111110
40 1111110
24 11111110

Example of a prefix free code

decoding a prefix codae

. 235 0

. 200 10

. 170 110 111111010111116
. 87 1110

. 78 11110

. 47 111110

. 40 1111110

-~ O0Q ©C C O —= M

. 24 11111110

Prefix code to binary tree

. 235 © —
. 200 10 | Pt
. 170 110 ”
. 8/ 1110 ” <
. /8 11110 N
. 47 111110

. 40 1111110
. 24 11111110

111111010111110 .

-~ O0Q ©C C O —= M

orefix coae

A

\/

oinary tree

The prefix-free code and the binary tree are different
representations of the same object.

Use tree {0 encoge

\ e€235fc @g ;

) i: 200 01 2

/ P A

e / . pio78 111 3
/\ /A
o)) &) @ &5

goa

GIVEN THE

goal

(all frequencies are > 0)

GIVEN THE CHARACTER FREQUENCIES
R { f C } ceC

PRODUCE A PREFIX CODE | WITH SMALLEST COST

min B(T, {/.)

Oroperty

C) LEMMA:OPTIMAL TREE MUST BE FULL.
l

property

() LEMMA:OPTIMAL TREE MUST BE FULL.

;‘é A full tree has nodes with either 0 or 2 children.

Oroperty

LEMMA:OPTIMAL TREE MUST BE FULL.

/ b Consider a node with only 1 child.

J

()
d A full tree has nodes with either 0 or 2 children.
o

4

d

Oroperty

LEMMA.:OPTIMAL TREE MUST BE FULL.
A full tree has nodes with either 0 or 2 children.

Consider a node with only 1 child.

The length of the code for this child can be reduced
by replacing the parent with the child.

Thus, the cost of the code can be reduced or remain
equal If the parent 1s replaced by the child

divide & conguer lug of War"/

Consider a “Tug of War” strategy in which we
balance the weights of the teams and recurse.

. 32
. 25
. 20
. 13

o < O —- (D

© C O =M

S
. 25
. 20
. 13

counter-example

W N WIN DN

. 64
. 50
. 60
. 36
. 15

225

counter-example

e: 32 2. 64
1. 25 2: 50
o: 20 2: 40
u: 18 3: 54
p: 5 3: 15

223

By switching {u,0}, the cost of the code can be reduced.
It can be reduced further with an optimal code.

Hufiman construction

Ca
abe
o n e e

F

64

I

E

O

G G G G GEm <

|
-

\
o

/

mEmmme

.

U

:

U

EDEDEDEDED -
E I O P

AN

/
|

[\

)
/N

4
[\

/A
[\

Hh OWQ ™ & O - O

: 235 01

¢ 200 11

¢ 170 10

: 87 0011
: 78 0010
: 47 0000
: 40 00011
: 24 00010

Hh OWQ o & O - O

¢+ 235 01

¢ 200 11

¢ 170 10

¢ 87 0011
¢ 78 0010
: 47 0000
: 40 00011
: 24 00010

470
400
340
343
312
138

200
120

2373

opjective

opjective

The goal Is to prove that the procedure outlined produced
an optimal code. Taking a greedy step to make the problem
one size smaller 1s optimal.

exchange argument

LEMMA!:

exchange argument

LEMMA: Let z,y € C be characters with smallest frequencies f,, f,. There exists an
optimal prefix code 17" for C' in which x,y are siblings. That is, the codes for
x,y have the same length and only differ in the last bit.

(T

)

/
)
N
(
/
)

exchange argument

LEMMA: Let z,y € C be characters with smallest frequencies f,, f,. There exists an
optimal prefix code 17" for C' in which x,y are siblings. That is, the codes for
x,y have the same length and only differ in the last bit.

k.

1

N

< @ o

= @ @

) ()

|dea: take an arbitrary optimal tree T for a prefix code and modify 1t

Into another optimal tree in which x,y are sibling children at the
lowest level of the tree.

&

exchange argument

LEMMA: Let z,y € C be characters with smallest frequencies f,, f,,. There exists an
optimal prefix code T for C' in which z,y are siblings. That is, the codes for
x, 1y have the same length and only differ in the last bit.

PROOF:

exchange argument

LEMMA: Let z,y € C be characters with smallest frequencies f,, f,,. There exists an
optimal prefix code T for C' in which z,y are siblings. That is, the codes for
x, 1y have the same length and only differ in the last bit.

PROOF:

Let 1 be an optimal code. If x, y are siblings in 1,
then the lemma holds.

Otherwise, since 7T'is full, let a, b be the sibling
nodes with the largest depth. (q: why do a, b exist?)

exchange argument

LEMMA: Let x,y € C be characters with smallest frequencies f,, f,,. There exists an
optimal prefix code T" for C' in which z,y are siblings. That is, the codes for
x,y have the same length and only differ in the last bit.

EXAMPLE OF SUCH A TREE

A
=

exchange argument

LEMMA: Let x,y € C be characters with smallest frequencies f,, f,,. There exists an
optimal prefix code T" for C' in which z,y are siblings. That is, the codes for
x,y have the same length and only differ in the last bit.

EXAMPLE OF SUCH A TREE

=
b The first step Is to exchange x with a to
construct a new tree 7.

Suppose wlog that f, < fa,f; </}

LEMMA:

exchange argument

Let x,y € C be characters with smallest frequencies f,, f,,. There exists an
optimal prefix code T for C' in which z,y are siblings. That is, the codes for
x, 1y have the same length and only differ in the last bit.

T

(T
- - —

e

)

?) fo<h fo<fa <j/ k}
{ \ fo < Jy fy < Jo b

s

exchange argument

LEMMA: Let z,y € C be characters with smallest frequencies f,, f,,. There exists an
optimal prefix code T for C' in which z,y are siblings. That is, the codes for
x, 1y have the same length and only differ in the last bit.

o 2. =
) fu<tfh fo<fa Q{ \@
N h<f, f<h b

/
)
N

(
[
L)

BT)=Z+f.-C.+f,- £, BT)=Z+f. -, +f, -,

This tree Is optimal.

T
o cw) — (o
o @\

52

BI)=Z+f.-C.+f, ¢, BIT)=Z+f.-£,+f,- ¢,

B(T) — B(T) =

This tree Is optimal.

T
o cw) — (o
o @\

52

BT)=Z+f.-£.+f, ¢, BI)=Z+f.-£,+f,- £,
B(T)—B(T) = ft,+fL, —fL. —fL,

:]gc(z’ﬂx o fa) _fa(z’ﬂx o Z’ﬂa)
— (]gc _fa)(fx o fa)

— C{
= g . SRR
- fo < fa et

Zfz + foly + fole B(T Zfz + f bl + f

B(T) — B(T) =

exchange argument
" " T "
-

We can apply the same argument to y, b.

B(T) — B(T") = 0

i

o =

& =

//
IS ALSO OPTIMAL

exchange argument

LEMMA: Let z,y € C be characters with smallest frequencies f,, f,,. There exists an
optimal prefix code T for C' in which z,y are siblings. That is, the codes for
x, 1y have the same length and only differ in the last bit.

@/\. > T

=
pfie®

optimal sub-structure
/ CDEDEDEDEDEDEDED

optimal sub-structure
i --------

ROBLEM OF

¢, - D D G &5

ROBLEM OF

[LEMMA:

optimal sub-structure
fows oweowe v oA g e

PROBLEM OF SIZE 1N

fe 2550 (200 (700 0570 0720 04D | 64 \ff

PROBLEM OF SIZE n—1

Lemma: The optimal solution 7' for f. consists of computing an
optimal solution 7" for f . and replacing the node for z
with an internal node having children x, .

Let 7" be an optimal solution for f .. of size n-1.
"o »
ﬁg@/ fé

Our lemma suggests constructing T by replacing z with {x,y} leaves.

Lets analyze B(7) b

.
i 4
c@%K XD

B(T)

J b Lets analyze B(T) J b
é 4@
s ps
B(T") B(T)
B(T) = B(T") = £, + (£, +)(f. +)
=B(T) +f,+/,

-
A

Rearranging, we get

B(T")

B(T) = fx — [y

SuppPose 7' IS not optima

What does that mean?

SuppPose 7' IS not optima

What does that mean?

There exists another tree U such that B(U) < B(T') .

Moreover, by the exchange lemma, there exists a U’ such that x,y are siblings.

SuppOse T IS not optimal
<

o
= \de

- =

B(T)

SuppOse T IS not optimal

/
e B(T) = B(T) +f, +/,

dbdb
ENG

SuppOse T IS not optimal

/
d < B(T) =B(T") + [, + J,

d \@ éb This implies
B B(U) - f, — f, < B(T")

SuppOse T IS not optimal

/
d < B(T) =B(T") + [, + J,

d \@ éb This implies
‘ B(U) - f, — f, < B(T")

B(U") < B(T")

8upp086 T IS not optimal

/
d < B(T) =B(T") + [, + J,

d \@ db This implies
./ B(U) - f, — f, < B(T")

T
B(U") < B(T")
U’
4 Which means that T' was not optimal’
/< % / >\ This Is a contradiction, which means that our
) (=)) [supposition (T not optimal) must be wrong.

