
mar 4/7 2022
shelat

connecting houses

A village begins with just a single home.

connecting houses

At some point, a neighbor moves in.

connecting houses

And with human nature, they build a road to connect each other.

connecting houses

Soon others follow, and each wants a way to reach their neighbors.

What is the best way to build such a network?

connecting houses

Soon others follow, and each wants a way to reach their neighbors.

What is the best way to build such a network?

connecting houses

Soon others follow, and each wants a way to reach their neighbors.

What is the best way to build such a network?

connecting houses

Soon others follow, and each wants a way to reach their neighbors.

What is the best way to build such a network?

connecting houses

Soon others follow, and each wants a way to reach their neighbors.

What is the best way to build such a network?

The best way to represent the input to this problem is a graph.

graphs

clrs [ch 22]

$G=(\underline{V}, \underline{E})$

A graph is a pair of two sets, A set of vertices, and a set of edges.

Edges may have annotations, such as weights, w(e). $\quad e \in E$

$$
c(e): E \rightarrow \mathbb{N}
$$

representation

$$
G=(V, E)
$$

adjacency list
space:
time list neighbors:
time check an edge:
The first way to represent a graph is via its adjacancy list. For the edges, each vertex maintains a list of its neighbors.

representation

$$
G=(V, E)
$$

adjacency list
space:
time list neighbors:
time check an edge:
The first way to represent a graph is via its adjacancy list. For the edges, each vertex maintains a list of its neighbors.

representation

$$
G=(V, E)
$$

adjacency list
$a\{b, c, d\}$
b $\{\mathrm{d}\}$
space: 0 (IEI)
time list neighbors: $0($ degree(v)) time check an edge: O(V)
c $\{d, e\}$
d $\{\mathrm{e}\}$
e $\}$

The first way to represent a graph is via its adjacancy list. For the edges, each vertex maintains a list of its neighbors.

representation

$$
G=(V, E)
$$

adjacency matrix
space:
time list neighbors:
time check an edge:

The second way to represent a graph is via its adjacancy matrix.

representation

$$
G=(V, E)
$$

space:
time list neighbors:
time check an edge:

The second way to represent a graph is via its adjacancy matrix.

representation

$$
G=(V, E)
$$

space: $0\left(\left|V^{2}\right|\right)$
time list neighbors: $O(V)$ time check an edge: $0(1)$

The second way to represent a graph is via its adjacancy matrix.

definition: path

a sequence of nodes $v_{1}, v_{2}, \ldots, v_{k}$
with the property that $\left(v_{i}, v_{i+1}\right) \in E$
simple path:
cycle:

definition: path

a sequence of nodes $v_{1}, v_{2}, \ldots, v_{k}$
with the property that $\left(v_{i}, v_{i+1}\right) \in E$
simple path: Path in which each vertex appears at most once.
cycle:

definition: path

a sequence of nodes $v_{1}, v_{2}, \ldots, v_{k}$
with the property that $\left(v_{i}, v_{i+1}\right) \in E$
simple path: Path in which each vertex appears at most once.
cycle: Path with the same start and end vertex.

definition:tree

connected graph:

a tree is

definition:tree

connected graph:

A graph G in which for each pair of vertices, (u, v), there exists a path from u to v.

a tree is

definition:tree

connected graph:

a tree is

A graph G in which for each pair of vertices, (u, v), there exists a path from u to v.

what we want:

what we want:

We want to connect all nodes in G in the cheapest way. We want a tree in G with the minimum sum of edge costs.
minimum spanning tree
looking for a set of edges that $T \subseteq E$
(a) connects all vertices
(b) has the least cost $\min \sum_{(u, v) \in T} w(u, v)$
(1) How many edges does the solution have?? V-1
(2) Do wot want Any cycles.

Because cycles add extra cost withat adding extra corrected nodes. Removing a cycle \Rightarrow lower cot Solution

minimum spanning tree

looking for a set of edges that $T \subseteq E$
(a) connects all vertices
(b) has the least cost $\min \sum_{(u, v) \in T} w(u, v)$

This object is called a minimum spanning tree.

facts

looking for a set of edges that $T \subseteq E$
(a) connects all vertices
(b) has the least cost $\min \sum_{(u, v) \in T} w(u, v)$
how many edges does solution have ?
does solution have a cycle?

facts

looking for a set of edges that $T \subseteq E$
(a) connects all vertices
(b) has the least cost $\min \sum_{(u, v) \in T} w(u, v)$
how many edges does solution have ?
V-1
does solution have a cycle?

Foß

looking for a set of edges that $T \subseteq E$
(a) connects all vertices
(b) has the least cost $\min \sum_{(u, v) \in T} w(u, v)$
how many edges does solution have?
does solution have a cycle?

V-1

No. Because removing the cycle leads to a cheaper solution.

Greedy strategy

start with an empty set of edges A
repeat for v-1 times:
add lightest edge that does not create a cycle

B edge

Solution.

Kruskal

Kruskal

Kruskal

Kruskal

Kruskal

Kruskal

Kruskal

Kruskal

why does this work?
$1 \quad T \leftarrow \emptyset$
2 repeat $V-1$ times:
3
add to T the lightest edge $e \in E$ that does not create a cycle
definition: cut (graph cut)
A cut is a partition of the vertices into 2 sets.

$$
\text { e.g: } \quad(S, V-S)
$$

definition: cut

A cut is a partition of V into two sets.

example of a cut

This is an example of 1 cut, a graph has 2^{V} many cuts.

example of a cut

$$
\begin{aligned}
& \text { edges whit } \\
& \text { cross this } \\
& \text { cut. }
\end{aligned}
$$

This is an example of 1 cut, a graph has 2^{V} many cuts.

definition: crossing a cut

$$
x, y \in V
$$

A edge $e=(x, y)$ crosses a cut $(S, V-S)$ if $x \in S$ and $y \in V-S$.

definition: crossing a cut

an edge $\quad e=(u, v)$ crosses a graph cut (S,V-S) if

$$
u \in S \quad v \in V-S
$$

example of a crossing

$$
\begin{aligned}
& (a, b) \\
& (h,:) \\
& \text { Respect } \\
& \text { this } \\
& \text { cut. }
\end{aligned}
$$

Edge (b, d) crosses the cut $\{a, b, h, i\},\{c, d, e, f, g\}$.

definition: respect

A set of edges $\underset{A}{ }$ respects a cut S if no edge in \underline{A} crosses the cut.

Cut theorem
Them: Suppose that the set of edger A is part of some MST ${ }_{0} f \quad G=(v, E)$.
Let $(S, V-S)$ be any cut that A respect.
Lat e be the min. cost edge that crosses $(S, U-S)$.
Then: $A \cup\{e\}$ is then part of some MST.

Cut theorem

Suppose the set of edges A is part of an m.s.t.
Let ($\mathrm{S}, \mathrm{V}-\mathrm{S}$) be any cut that A respects.
Let edge \boldsymbol{e} be the min-weight edge across ($S, V-S$)
Then: $\mathcal{A} \cup\{e\}$ is part of an m.s.t.
example of theorem
$A=\{(c, f)$
$(g ; i)\}$

Consider these two edges as part of some MST.

We can redraw the graph to identify this cut.

The min cost edge that crosses this cut is part of some MST.

proof of cut theorem
Theorem 2 Suppose the set of edges $\underset{A}{A}$ is part of a minimum spanning tree of $G=$ (V, E). Let $(S, V-S)$ be any cut that respects A and let e be the edge with the minimum weight that crosses $(S, V-S)$. Then the set $A \bar{\cup}\{e\}$, is part of a minimum spanning tree.

Proof: Let es (uv). Let T be some MST of G.
If $A \cup\{e\}$ is already pat of T, then our the holds.
T/\{e\} If $\left.A \cup \xi_{e}\right\}$ is not pat of T_{1} we will construct a new T^{\prime} which contains $A \cup\{e\}$ and is also an MST.
Step 1: Add e to T. what is the result?? This create a cycle form $u \rightarrow v \rightarrow u$.
$w\left(e^{\prime}\right) \geqslant w(e) \quad$ Let $e^{\prime} \neq e$ be the edge w/highert cost on this cycle. Now consider $T^{\prime}=\left(T-\left\{e^{\prime}\right\}\right) \cup\{e\}, w\left(T^{\prime}\right) \leq w(T) \quad D:$

proof of cut theorem

Theorem 2 Suppose the set of edges A is part of a minimum spanning tree of $G=$ (V, E). Let $(S, V-S)$ be any cut that respects A and let e be the edge with the minimum weight that crosses $(S, V-S)$. Then the set $A \cup\{e\}$ is part of a minimum spanning tree.

Let $e=(u, v)$.
If $A \cup\{e\}$ is already in T then theorem follows.
Suppose that $A \cup\{e\}$ is not part of T.
Add e to the tree T.
This creates a cycle. Let e^{\prime} be another edge on this cycle.
Now consider $T^{\prime}=T-\left\{e^{\prime}\right\} \cup\{e\}$.
The weight $w\left(T^{\prime}\right) \leq w(T)$ since e has min weight.

proof of cut thm

As an example, the set A is in orange. The edge e is yellow and T is blue. We will construct a T' which includes A+e.

proof of cut thm

As an example, the set A is in orange. The edge e is yellow and T is blue. We will construct a T^{\prime} which includes A+e.

Add e to T, which creates a cycle.

Let e' be the first edge on the cycle that crosses the cut.
correctness
Kruskal-Pseudocode (G)

$$
\begin{aligned}
& A \leftarrow \emptyset \\
& \text { repeat } \quad V-1 \text { times: }
\end{aligned}
$$

$$
\text { add to } A \text { the lightest edge } e \in E \text { that does not create a cycle }
$$

Tho: Kruskalt algorithm terminates with A as a MST of G.
Proof: By Inaction. In step (1), A is part of some MST.
Our argument will maintain the invariant that A is part of an MST.
IH: Suppose that after K step, of log $2, A$ is part of an MST.
We plan treargue that at the end if the Valet iteration of $\log _{2} 2, A$ is pat of some MST.

correctness

Kruskal-Pseudocode (G)
$1 \quad A \leftarrow \emptyset$
2 repeat $V-1$ times:
add to A the lightest edge $e \in E$ that does not create a cycle
Proof: By induction. in step 1, A is part of some MST. Suppose that after k steps, A is part of some MST (line 2). In line 3, we add an edge $e=(u, v)$.

Because e does not create a cycle, there are 3 cases to consider:

3 cases for edge e.
Case 1: $e=(u, v)$ and both u, v are in A. Recall, c is the lightest edge that doesn't create a cycle.

We need to identify a cut $(S, U-S)$ that A respect and that e crosses.
S is the "component" of A that contains just u
\Rightarrow A respects S because all if the nodes one $\begin{gathered}\text { can reader by stating at } U\end{gathered}$ Wedge in A crosses S. \rightarrow and only wing edges in A
$\Rightarrow e$ crosses $S, \& e$ is the lightest edge that does so.

3 cases for edge e.
Case 1: $e=(u, v)$ and both u, v are in A.

In this case, set S to be the component that contains $\{u\}$

3 cases for edge e.
Case 1: $e=(u, v)$ and both u, v are in A.

In this case, set S to be the component that contains $\{u\}$ The edge e crosses this cut and A respects S. By the cut theorem, A+e belongs to an MST.

3 cases for edge e.
tease 2: $\mathrm{e}=(\mathrm{u}, \mathrm{v})$ and only u is in A .

Now do you set ?? Set S to be the compinet that contains \{us.

The edge e crosses this cut and A respects S .

Theorem 2 Suppose the set of edges A is part of a minimum spanning tree of $G=$ (V, E). Let $(S, V-S)$ be any cut that respects A and let e be the edge with the minimum weight that crosses $(S, V-S)$. Then the set $A \cup\{e\}$ is part of a minimum spanning tree.

3 cases for edge e.

Case 2: $e=(u, v)$ and only u is in A.

In this case, set S to be the component that contains $\{u\}$ The edge e crosses this cut and A respects S .

3 cases for edge e.
Case 3: $e=(u, v)$ and neither u nor v are in A.
$\int s=\{u\}$

In this case, set S to be the component that contains $\{u\}$
Notice A respects S. e is the lightest edge that crosses 5 . By the exchange lewra,
$A \cup\{e\}$ is pat of an MST.

Kruskal-PSEudocode (G)

```
A\leftarrow\emptyset
repeat }V-1\mathrm{ times:
add to }A\mathrm{ the lightest edge }e\inE\mathrm{ that does not create a cycle
```

Theorem 3 The Kruskal algorithm outputs a minimum spanning tree.
Proof. By Induction. At the first step, A is a set of edges that is part of a minimum spanning tree of G. Suppose this is true by induction for the first i loops of the algorithm.

Consider the $i+1^{\text {th }}$ iteration and let $e=(u, v)$ be the edge added to A in line 2. By construction, e is the lightest edge in E that does not create a cycle in A.

Since e does not create a cycle in A, e must either connect two connected components of A, extend one connected component of A or connect two nodes that are not covered by A. In the first two cases, let A_{1} be the connected component in A that covers u. In the third case, let $A_{1}=\{u\}$.

Consider the graph cut $\left(A_{1}, V-A_{1}\right)$. By selection, e is the lightest edge that crosses this cut: all other edges are either heavier, or they create a cycle in A and therefore do not cross the cut since they connect nodes in A_{1} or in $V-A_{1}$. Thus, by the previous theorem, $A \cup\{e\}$ must be part of a minimum spanning tree.

During each iteration, line 3 always succeeds. This follows because A is part of some MST by hypothesis. At the end of the loop, $|A|=V-1$. Therefore, A must be the full spanning tree since it has the correct size.

$$
14 \text { seviterces. }
$$

analysis?
Kruskal-Pseudocode (G)

$$
\begin{array}{rll}
\begin{array}{ll}
1 & A \leftarrow \emptyset \\
2 & \text { repeat } \\
3
\end{array} & V-1 \text { times: } \\
\text { add to } A \text { the lightest edge } e \in E \text { that d } \\
\text { Running not create a cycle five }
\end{array}
$$

In fact, this approach can be generalized into a family of algorithms.

Keep A ace throughout the algorithms. Keep $A=S$.

Prim's algorithm

```
General-MST-Strategy (G=(V,E))
A\leftarrow\emptyset
repeat V-1 times:
Pick a cut (S,V-S) that respects A
Let e be min-weight edge over cut (S,V-S)
A\leftarrowA\cup{e}
```

A is a subtree
edge e is lightest edge that grows the subtree
prim

prim

prim

prim

prim

implementation

idea:
Maintain the set A. Update neighbors of A with weights.
Use a new data structure, priority queue to track light edges.
new data structure

A priority queue is a data structure with 3 operations:

Make: Initializes a queue with same elements
ExtractMin: Returns the lightest entry in the queue.
DecreaseKey: decreases the value of some carry in the queue.

binary heap

full tree, key value <= to key of children

binary heap

full tree, key value <= to key of children

binary heap
full tree, key value <= to key of children
Add an entry. (g)

binary heap
full tree, key value <= to key of children
Add (lo gn) time (swaps)

binary heap
full tree, key value <= to key of children how to extractmin?

binary heap

full tree, key value $<=$ to key of children how to extractmin?

binary heap

binary heap
full tree, key value $<=$ to key of children
$\partial(\log n)$ how to extractmin? remove root. replace withe last ch. Td. Sway down. how to decreasekey?

binary heap
full tree, key value <= to key of children how to extractmin?
OClogu) how to decreasekey? decrease. \& sump up.

EACK population on a priority quove/hesp take $O(\log n)$

implementation

use a priority queue to keep track of light edges
insert:
makequeue:
extractmin:

$$
O(\log n)
$$

decreasekey:

Prim's algorithm

implementation

```
\(\operatorname{Prim}(G=(V, E))\)
    \(Q \leftarrow \emptyset \quad \triangleright \quad Q\) is a Priority Queue
    2 Initialize each \(v \in V\) with key \(k_{v} \leftarrow \infty, \pi_{v} \leftarrow\) NIL
    3 Pick a starting node \(r\) and set \(k_{r} \leftarrow 0\)
    4 Insert all nodes into \(Q\) with key \(k_{v}\).
\(\int\) while \(\underline{Q} \neq \emptyset\)
        do \(\underline{u} \leftarrow\) Extract-min \((Q)\)
        for each \(v \in \operatorname{Adj}(u)\)
            Co if \(v \in Q\) and \(w(u, v)<k_{v}\)
                then \(\pi_{v} \leftarrow u\)
                \(\operatorname{DECREASE-KEY}(Q, v, w(u, v)) \quad \triangleright\) Sets \(k_{v} \leftarrow w(u, v)\)
```


$\operatorname{PRIM}(G=(V, E))$
$Q \leftarrow \emptyset \quad \triangleright Q$ is a Priority Queue
Initialize each $v \in V$ with key $k_{v} \leftarrow \infty, \pi_{v} \leftarrow$ NIL
Pick a starting node r and set $k_{r} \leftarrow 0$
Insert all nodes into Q with key k_{v}.
while $Q \neq \emptyset$
do $u \leftarrow$ EXTRACT-MIN (Q)
for each $v \in \operatorname{Adj}(u)$
do if $v \in Q$ and $w(u, v)<k_{v}$
then $\pi_{v} \leftarrow \widetilde{u}$
$\widetilde{\text { DECREASE-KEY }(Q, v, w(u, v)) \quad \triangleright \text { Sets } k_{v} \leftarrow w(u, v), ~(u)}$

$$
\operatorname{PRIM}(G=(V, E))
$$

$$
Q \leftarrow \emptyset \quad \triangleright Q \text { is a Priority Queue }
$$

$$
\text { Initialize each } v \in V \text { with key } k_{v} \leftarrow \infty, \pi_{v} \leftarrow \text { NIL }
$$

$$
\text { Pick a starting node } r \text { and set } k_{r} \leftarrow 0
$$

$$
4 \text { Insert all nodes into } Q \text { with key } k_{v}
$$

A 5 while $Q \neq \emptyset$
do $u \leftarrow$ Extract-min (Q)
for each $v \in \operatorname{Adj}(u)$
do if $v \in Q$ and $w(u, v)<k_{v}$
ther $\pi_{v} \leftarrow u$
DECREASE-KEY $(Q, v, w(u, v)) \quad \triangleright$ Sets $k_{v} \leftarrow w(u, v)$

[^0]
$\operatorname{PRIM}(G=(V, E))$
$Q \leftarrow \emptyset \quad \triangleright Q$ is a Priority Queue
Initialize each $v \in V$ with key $k_{v} \leftarrow \infty, \pi_{v} \leftarrow$ NIL
Pick a starting node r and set $k_{r} \leftarrow 0$
Insert all nodes into Q with key k_{v}.
while $Q \neq \emptyset$
do $u \leftarrow \operatorname{EXTRACT}-\operatorname{Min}(Q)$
for each $v \in \operatorname{Adj}(u)$
do if $v \in Q$ and $w(u, v)<k_{v}$
then $\pi_{v} \leftarrow u$
$\operatorname{DECREASE-KEY}(Q, v, w(u, v)) \quad \triangleright$ Sets $k_{v} \leftarrow w(u, v)$

[^1]

```
\(\operatorname{PRIM}(G=(V, E))\)
    \(Q \leftarrow \emptyset \quad \triangleright Q\) is a Priority Queue
    Initialize each \(v \in V\) with key \(k_{v} \leftarrow \infty, \pi_{v} \leftarrow\) NIL
    Pick a starting node \(r\) and set \(k_{r} \leftarrow 0\)
    Insert all nodes into \(Q\) with key \(k_{v}\).
    while \(Q \neq \emptyset\)
        do \(u \leftarrow \operatorname{EXTRACT}-\operatorname{Min}(Q)\)
        for each \(v \in \operatorname{Adj}(u)\)
            do if \(v \in Q\) and \(w(u, v)<k_{v}\)
            then \(\pi_{v} \leftarrow u\)
                \(\operatorname{DECREASE-KEY}(Q, v, w(u, v)) \quad \triangleright\) Sets \(k_{v} \leftarrow w(u, v)\)
```

running time
$\operatorname{PRIM}(G=(V, E))$
$\theta(E-\log V)$

why?? b/c decrease-vey can be called once per edge at mort

implementation

```
PRIM(G=(V,E))
    Q\leftarrow\emptyset\quad\triangleright Q is a Priority Queue
    Initialize each v\inV with key }\mp@subsup{k}{v}{}\leftarrow\infty,\mp@subsup{\pi}{v}{}\leftarrow\mathrm{ NIL
    Pick a starting node r and set }\mp@subsup{k}{r}{}\leftarrow
    Insert all nodes into Q with key }\mp@subsup{k}{v}{
    while }Q\not=
    do }u\leftarrow\operatorname{Extract-min}(Q
        for each v\in Adj(u)
            do if v\inQ and w(u,v)<\mp@subsup{k}{v}{}
            then }\mp@subsup{\pi}{v}{}\leftarrow
                        DECREASE-KEY (Q,v,w(u,v)) \triangleright Sets }\mp@subsup{k}{v}{}\leftarroww(u,v
```

$\mathrm{O}(\mathrm{V} \log \mathrm{V}+\mathrm{E} \log \mathrm{V})=\mathrm{O}(\mathrm{E} \log \mathrm{V})$

implementation

use a priority queue to keep track of light edges

	priority queue	fibonacci heap
insert:	O(log $n)$	$\log n$
makequeue:	n	n
extractmin:	$O(\log n)$	$\log n \quad$ amortized
decreasekey:	$O(\log n)$	$O(1)$ amorized

fibonacci head

faster implementation

```
PRIM(G=(V,E))
    1 Q\leftarrow\emptyset \triangleright Q is a Priority Queue
    Initialize each v\inV with key }\mp@subsup{k}{v}{}\leftarrow\infty,\mp@subsup{\pi}{v}{}\leftarrow\mathrm{ NIL
    Pick a starting node r and set }\mp@subsup{k}{r}{}\leftarrow
    Insert all nodes into Q with key }\mp@subsup{k}{v}{}\mathrm{ .
    while }Q\not=
    do }u\leftarrow\mathrm{ Extract-min (Q)
            for each v\in Adj(u)
                        do if }v\inQ\mathrm{ and }w(u,v)<\mp@subsup{k}{v}{
                            then }\mp@subsup{\pi}{v}{}\leftarrow
                                    DECREASE-KEY (Q,v,w(u,v)) \triangleright Sets }\mp@subsup{k}{v}{}\leftarroww(u,v
    O(E + V log V)
```


Research in mst

Euclidean mst:

$$
\begin{aligned}
& E+V \log V \\
& E \log \left(\log ^{*} V\right) \\
& E \alpha(V) \log \alpha(V) \\
& E \alpha(V) \\
& \quad \text { (optimal) } \\
& E
\end{aligned}
$$

$$
V \log V
$$

Ackerman function

$$
A(m, n)= \begin{cases}n+1 & m=0 \\ A(m-1,1) & m>0, n=0 \\ A(m-1, A(m, n-1)) & m, n>0\end{cases}
$$

$$
A(4,2)=
$$

inverse ackerman

$$
\alpha(n)=
$$

application of mst

application of mst

Use Kruskal's algorithm to perform k-clustering.

application of mst

[^0]: $\operatorname{PRIM}(G=(V, E))$
 $Q \leftarrow \emptyset \quad \triangleright Q$ is a Priority Queue
 Initialize each $v \in V$ with key $k_{v} \leftarrow \infty, \pi_{v} \leftarrow$ NIL
 Pick a starting node r and set $k_{r} \leftarrow 0$
 Insert all nodes into Q with key k_{v}.
 while $Q \neq \emptyset$
 do $u \leftarrow \operatorname{Extract-min}(Q)$
 for each $v \in \operatorname{Adj}(u)$
 do if $v \in Q$ and $w(u, v)<k_{v}$
 then $\pi_{v} \leftarrow u$
 $\operatorname{DECREASE-KEY}(Q, v, w(u, v)) \quad \triangleright$ Sets $k_{v} \leftarrow w(u, v)$

[^1]: $\operatorname{PRIM}(G=(V, E))$
 $Q \leftarrow \emptyset \quad \triangleright Q$ is a Priority Queue
 Initialize each $v \in V$ with key $k_{v} \leftarrow \infty, \pi_{v} \leftarrow$ NIL
 Pick a starting node r and set $k_{r} \leftarrow 0$
 Insert all nodes into Q with key k_{v}.
 while $Q \neq \emptyset$
 do $u \leftarrow \operatorname{EXTRACT}-\operatorname{Min}(Q)$
 for each $v \in \operatorname{Adj}(u)$
 do if $v \in Q$ and $w(u, v)<k_{v}$
 then $\pi_{v} \leftarrow u$
 $\operatorname{DECREASE-KEY}(Q, v, w(u, v)) \quad \triangleright$ Sets $k_{v} \leftarrow w(u, v)$

