

mar 4/7 2022

shelat

image: www.princegeorgeva.org, thefranciscofamily.org, www.rightdriveacademy.co.uk, www.ccscambridge.org, www.drawingcoach.com, www.pastoral.org.uk, www.daasgallery.com

A village begins with just a single home.

At some point, a neighbor moves in.

image: www.princegeorgeva.org, thefranciscofamily.org, www.rightdriveacademy.co.uk, www.ccscambridge.org, www.drawingcoach.com, www.pastoral.org.uk, www.daasgallery.com

And with human nature, they build a road to connect each other.

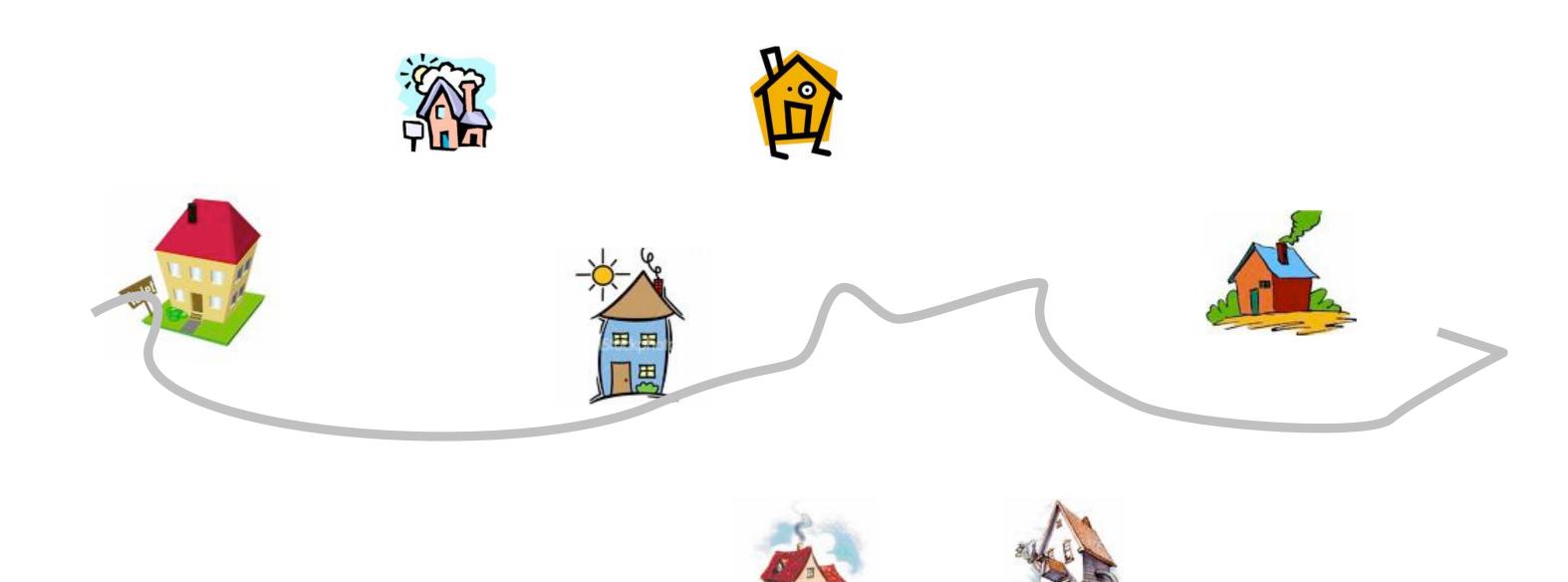
image: www.princegeorgeva.org, thefranciscofamily.org, www.rightdriveacademy.co.uk, www.ccscambridge.org, www.drawingcoach.com, www.pastoral.org.uk, www.daasgallery.com

Soon others follow, and each wants a way to reach their neighbors.

image: www.princegeorgeva.org, thefranciscofamily.org, www.rightdriveacademy.co.uk, www.ccscambridge.org, www.drawingcoach.com, www.pastoral.org.uk, www.daasgallery.com

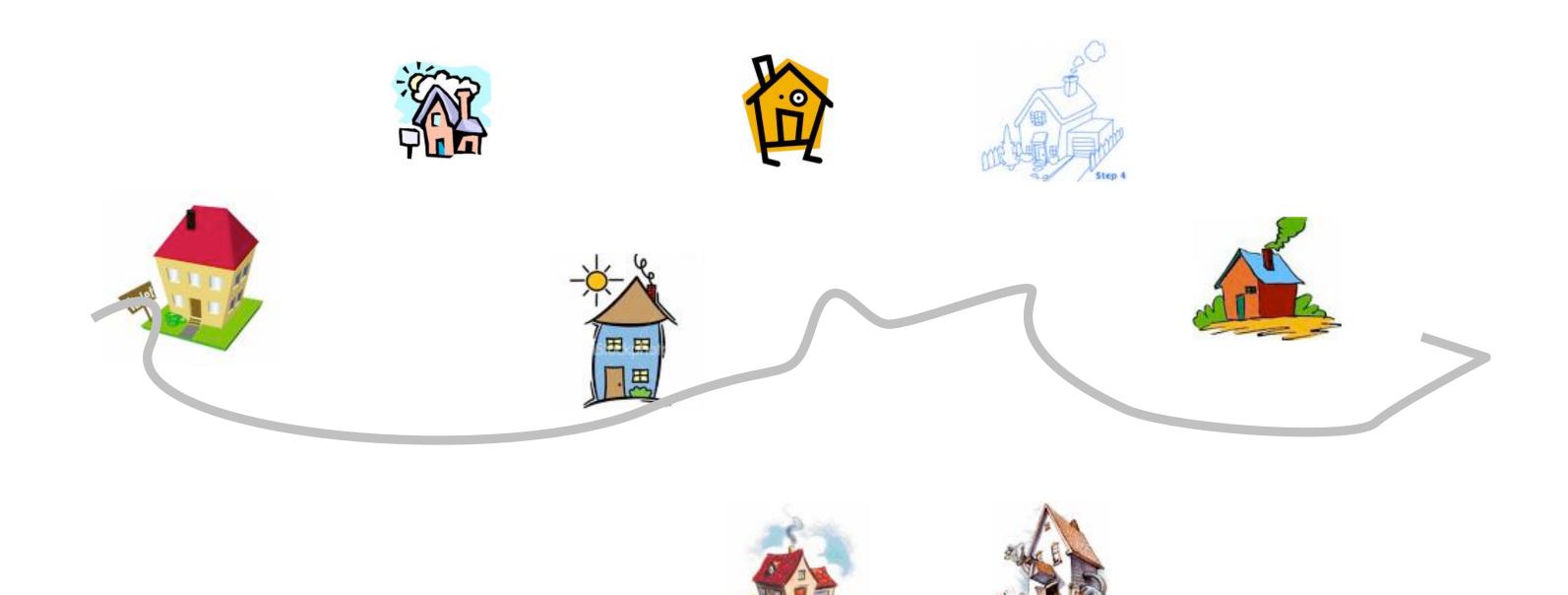
Soon others follow, and each wants a way to reach their neighbors.

image: www.princegeorgeva.org, thefranciscofamily.org, www.rightdriveacademy.co.uk, www.ccscambridge.org, www.drawingcoach.com, www.pastoral.org.uk, www.daasgallery.com



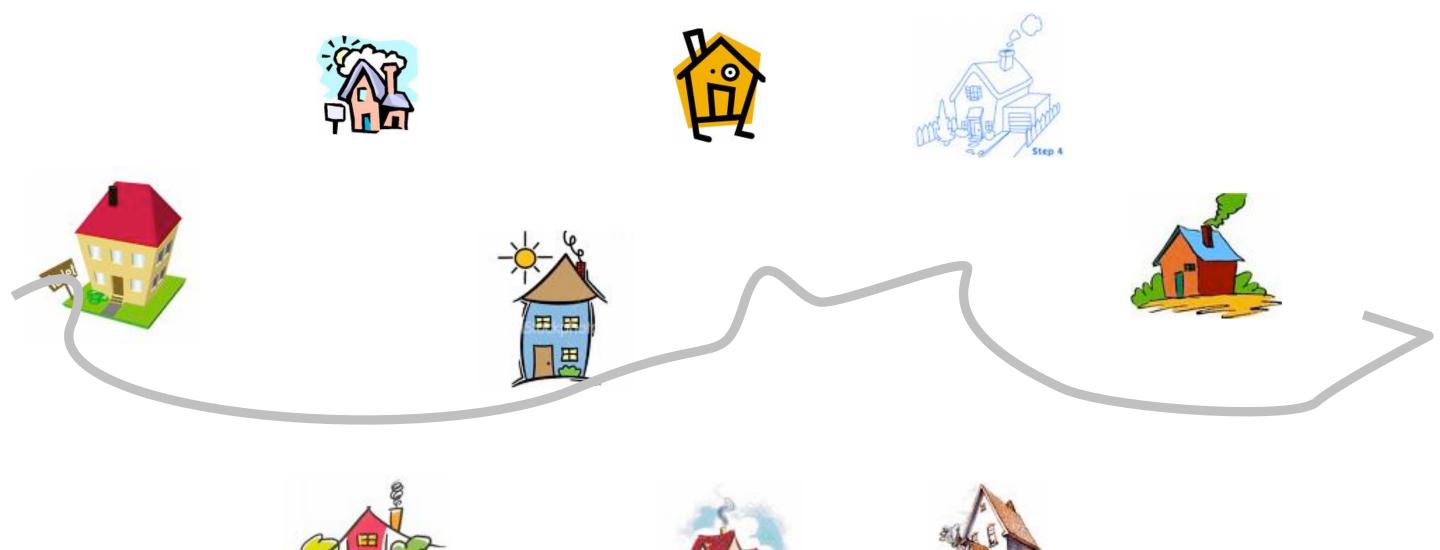
Soon others follow, and each wants a way to reach their neighbors.

image: www.princegeorgeva.org, thefranciscofamily.org, www.rightdriveacademy.co.uk, www.ccscambridge.org, www.drawingcoach.com, www.pastoral.org.uk, www.daasgallery.com



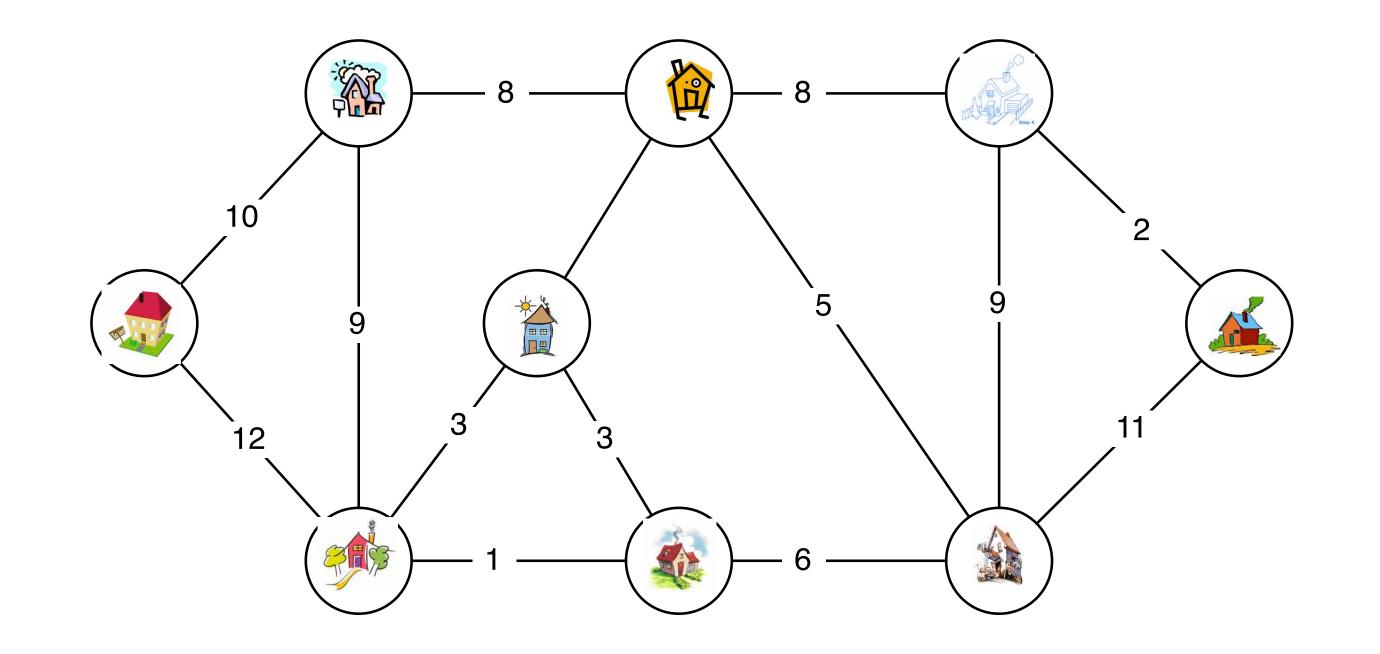
Soon others follow, and each wants a way to reach their neighbors.

image: www.princegeorgeva.org, thefranciscofamily.org, www.rightdriveacademy.co.uk, www.ccscambridge.org, www.drawingcoach.com, www.pastoral.org.uk, www.daasgallery.com



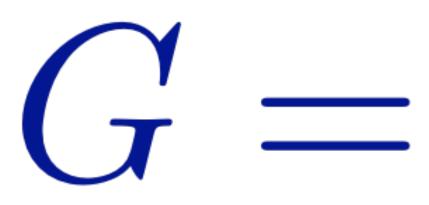
Soon others follow, and each wants a way to reach their neighbors.

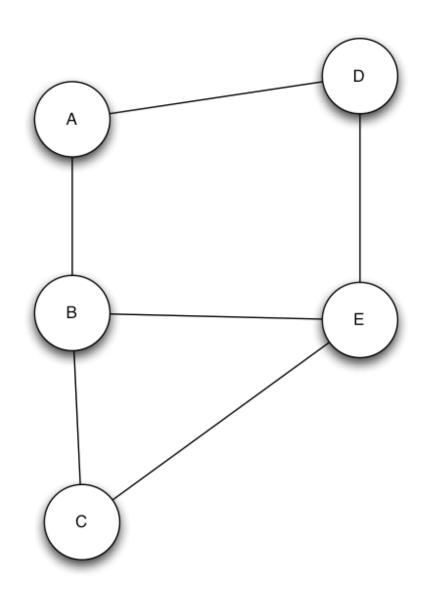
image: www.princegeorgeva.org, thefranciscofamily.org, www.rightdriveacademy.co.uk, www.ccscambridge.org, www.drawingcoach.com, www.pastoral.org.uk, www.daasgallery.com



The best way to represent the input to this problem is a graph.

clrs [ch 22]



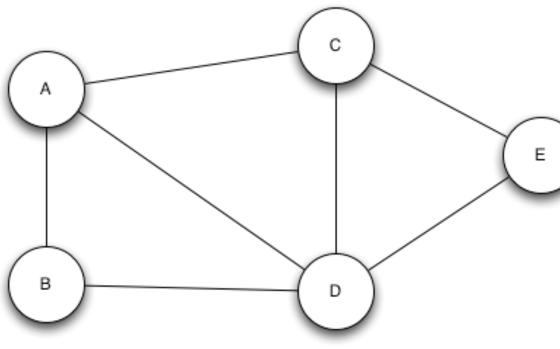


G = (V, E)

A graph is a pair of two sets, A set of vertices, and a set of edges.

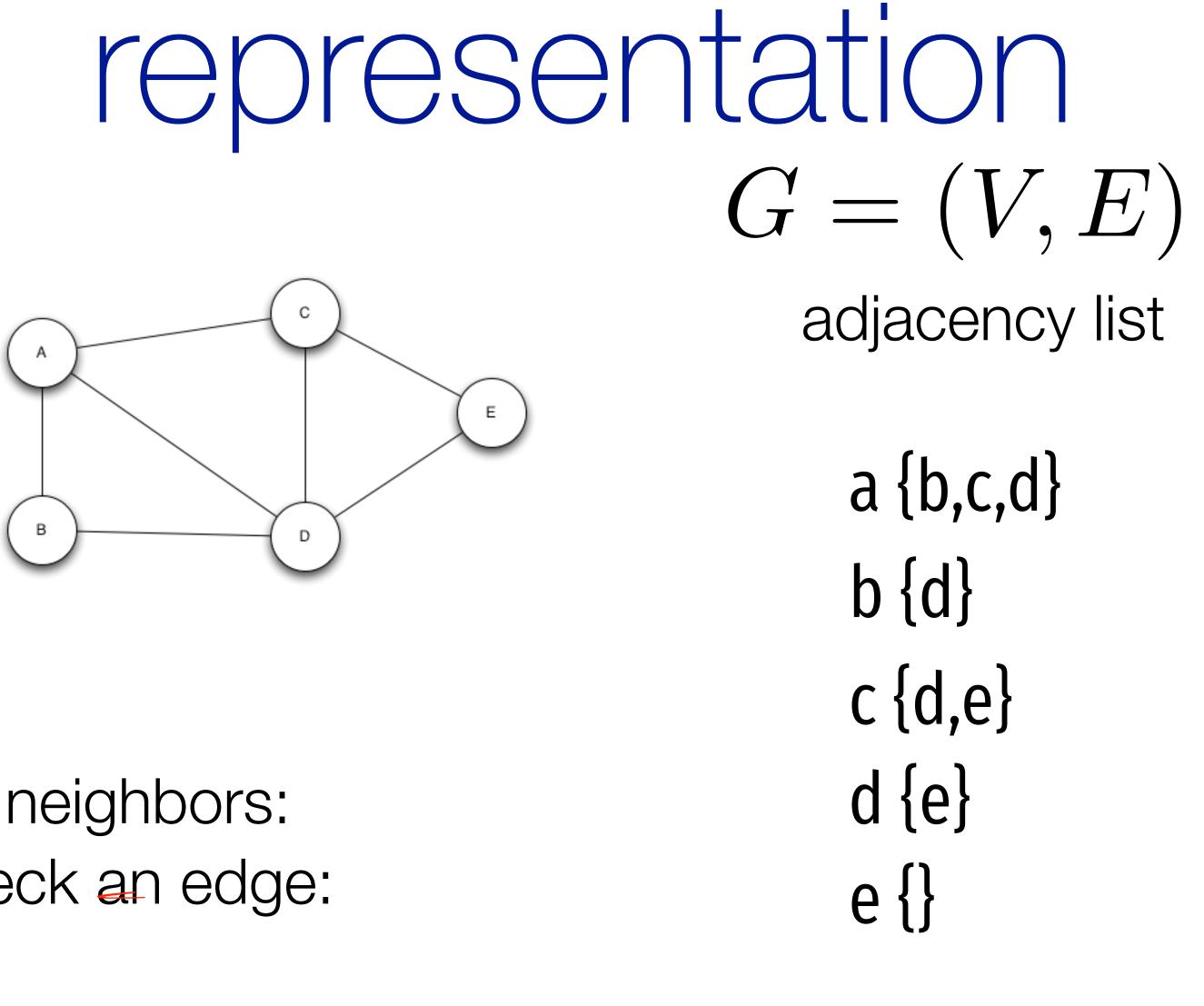
Edges may have annotations, such as weights, w(e).

representation G = (V, E)adjacency list



space: time list neighbors: time check an edge:

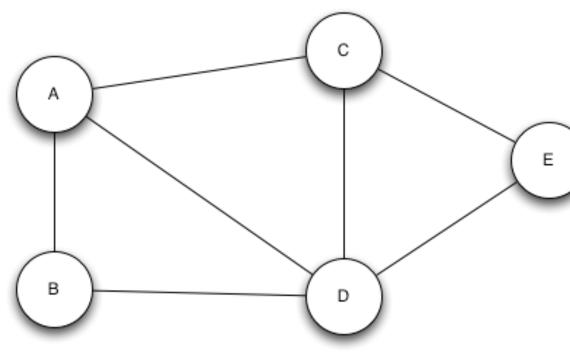
The first way to represent a graph is via its adjacancy list. For the edges, each vertex maintains a list of its neighbors.



space: time list neighbors: time check an edge:

The first way to represent a graph is via its adjacancy list. For the edges, each vertex maintains a list of its neighbors.

repres



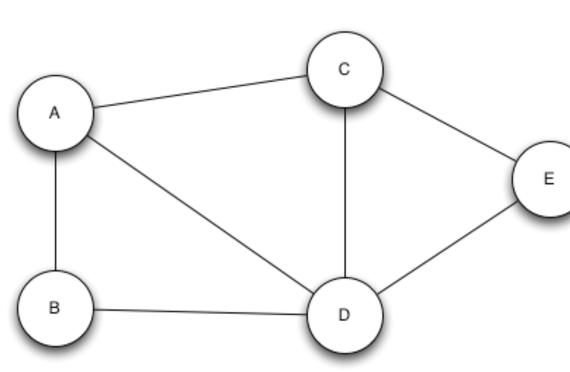
space: O(|E|) time list neighbors: O(degr time check an edge: O(V)

The first way to represent a graph is via its adjacancy list. For the edges, each vertex maintains a list of its neighbors.

sent	tion
	G = (V, E) adjacency list
	a {b,c,d} b {d}
ree(v))	c {d,e} d {e} e {}

The second way to represent a graph is via its adjacancy matrix.

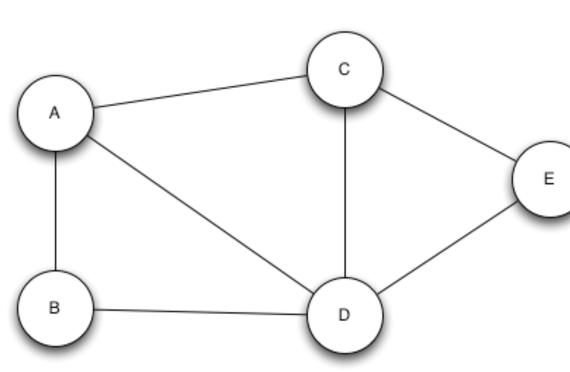
space: time list neighbors: time check an edge:



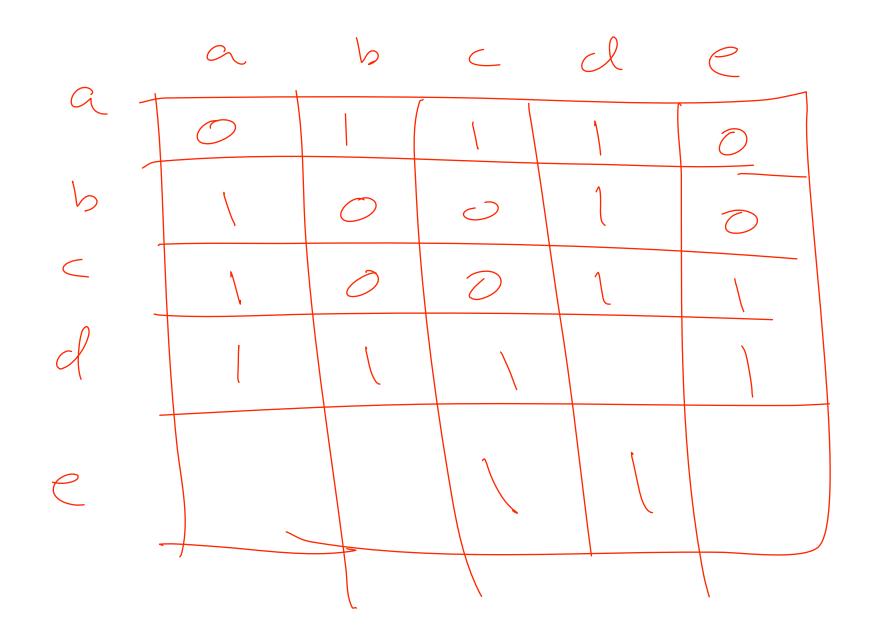
representation G = (V, E)adjacency matrix

The second way to represent a graph is via its adjacancy matrix.

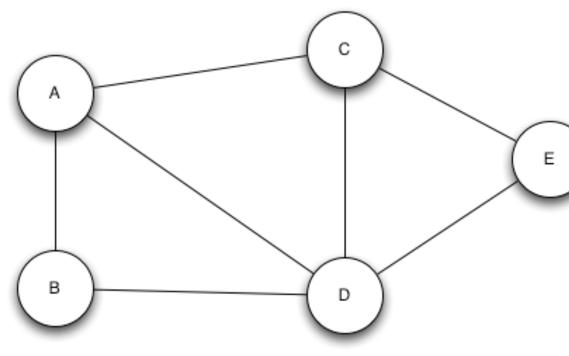
space: time list neighbors: time check an edge:



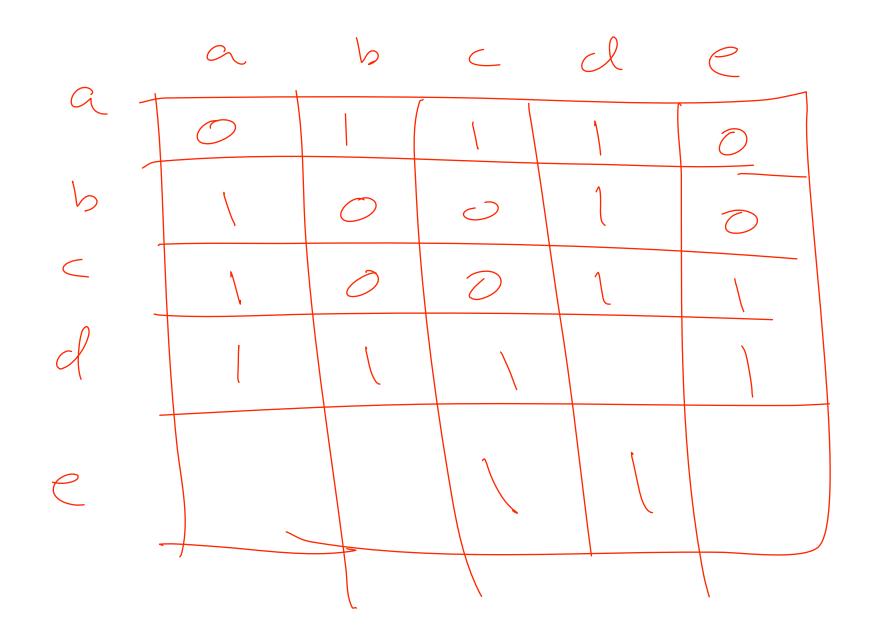
representation G = (V, E)adjacency matrix



representation G = (V, E)adjacency matrix



space: $0(|V^2|)$ time list neighbors: O(V) time check an edge: O(1)



The second way to represent a graph is via its adjacancy matrix.

definition: path

a sequence of nodes v_1, v_2, \ldots, v_k with the property that $(v_i, v_{i+1}) \in E$

simple path:

cycle:

definition: path

a sequence of nodes v_1, v_2, \ldots, v_k with the property that $(v_i, v_{i+1}) \in E$ cycle:

- simple path: Path in which each vertex appears at most once.

definition: path

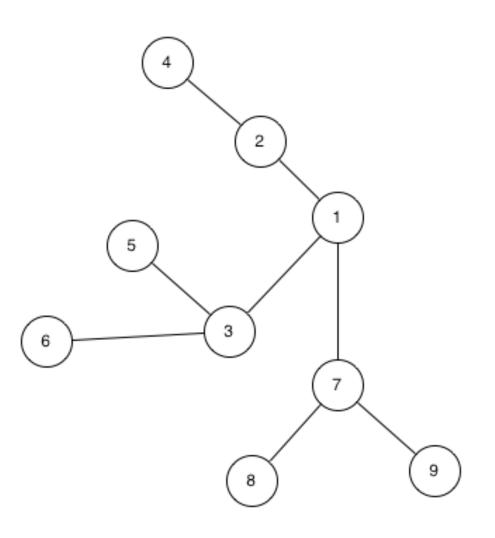
a sequence of nodes v_1, v_2, \ldots, v_k with the property that $(v_i, v_{i+1}) \in E$

- simple path: Path in which each vertex appears at most once.
- cycle: Path with the same start and end vertex.

definition:tree

connected graph:

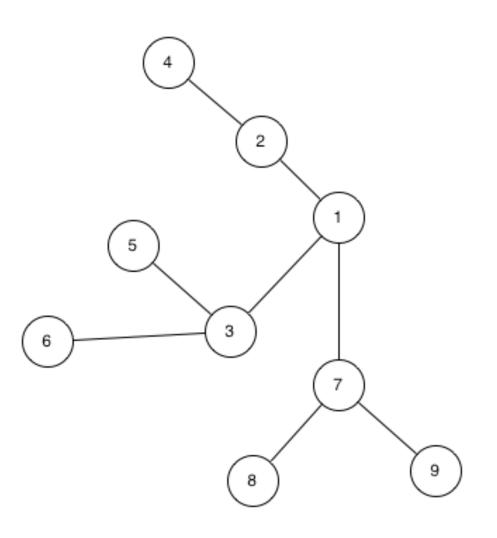
a tree is



definition:tree

connected graph:

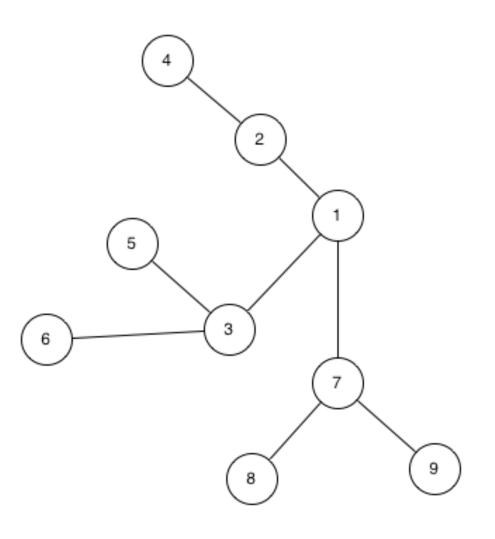
a tree is



A graph G in which for each pair of vertices, (u,v), there exists a path from u to v.

definition:tree

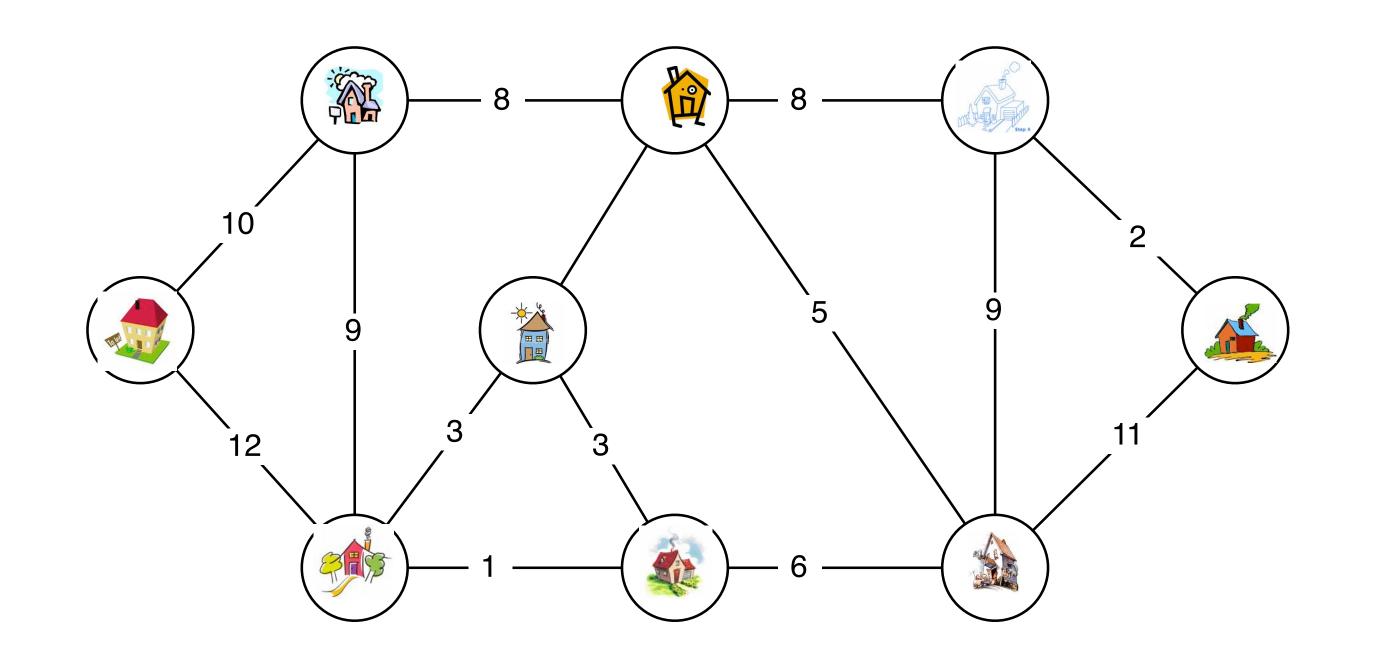
connected graph:



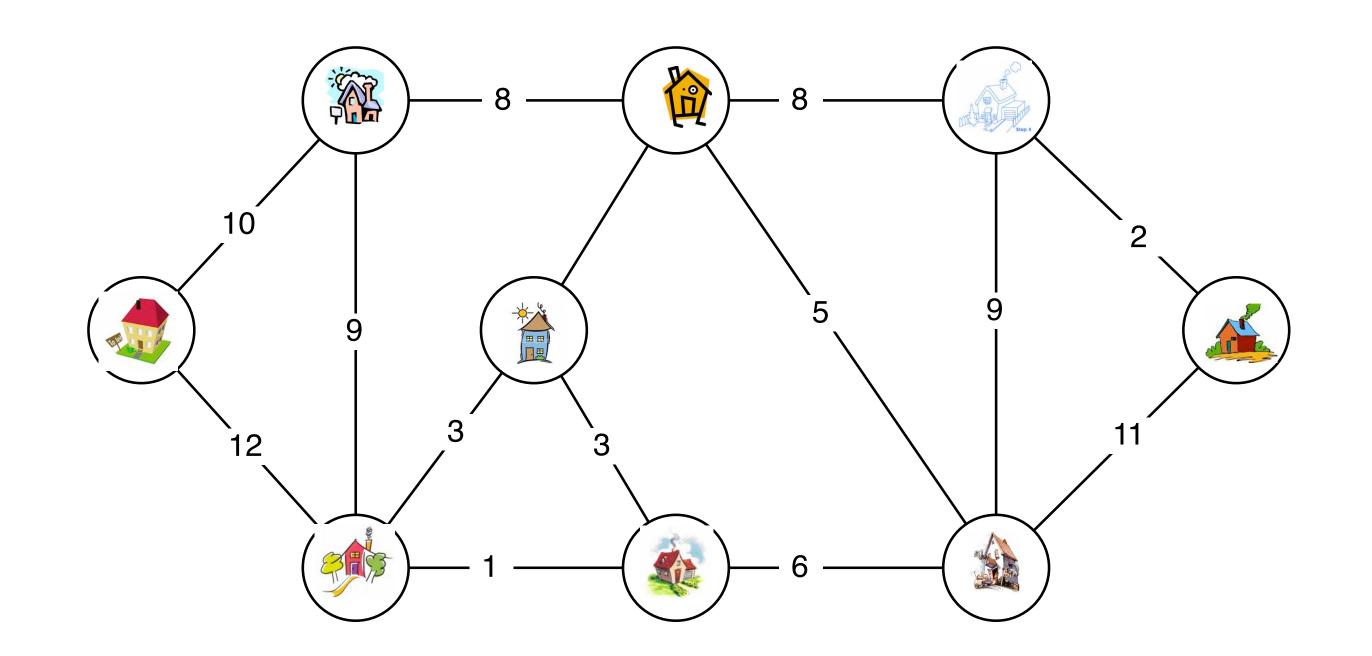
A graph G in which for each pair of vertices, (u,v), there exists a path from u to v.

A connected graph with no cycles

what we want:



what we want:



We want to connect all nodes in G in the cheapest way. We want a tree in G with the minimum sum of edge costs.

minimum spanning tree

looking for a set of edges that $T \subseteq E$ (a) connects all vertices (b) has the least cost min $\sum w(u,v)$

- $(u,v) \in T$

minimum spanning tree

looking for a set of edges that $T \subseteq E$ (a) connects all vertices (b) has the least cost min $\sum w(u,v)$

This object is called a minimum spanning tree.

- $(u,v) \in T$

looking for a set of edges that $T \subseteq E$ (a) connects all vertices (b) has the least cost $\min \sum w(u, v)$

how many edges does solution have ?

does solution have a cycle?

tacts

- $(u,v) \in T$

looking for a set of edges that $T \subseteq E$ (a) connects all vertices (b) has the least cost $\min \sum w(u, v)$

does solution have a cycle?

facts

- $(u,v) \in T$
- how many edges does solution have ? V-1

looking for a set of edges that $T \subseteq E$ (a) connects all vertices (b) has the least cost $\min \sum w(u, v)$

how many edges does solution have? V-1

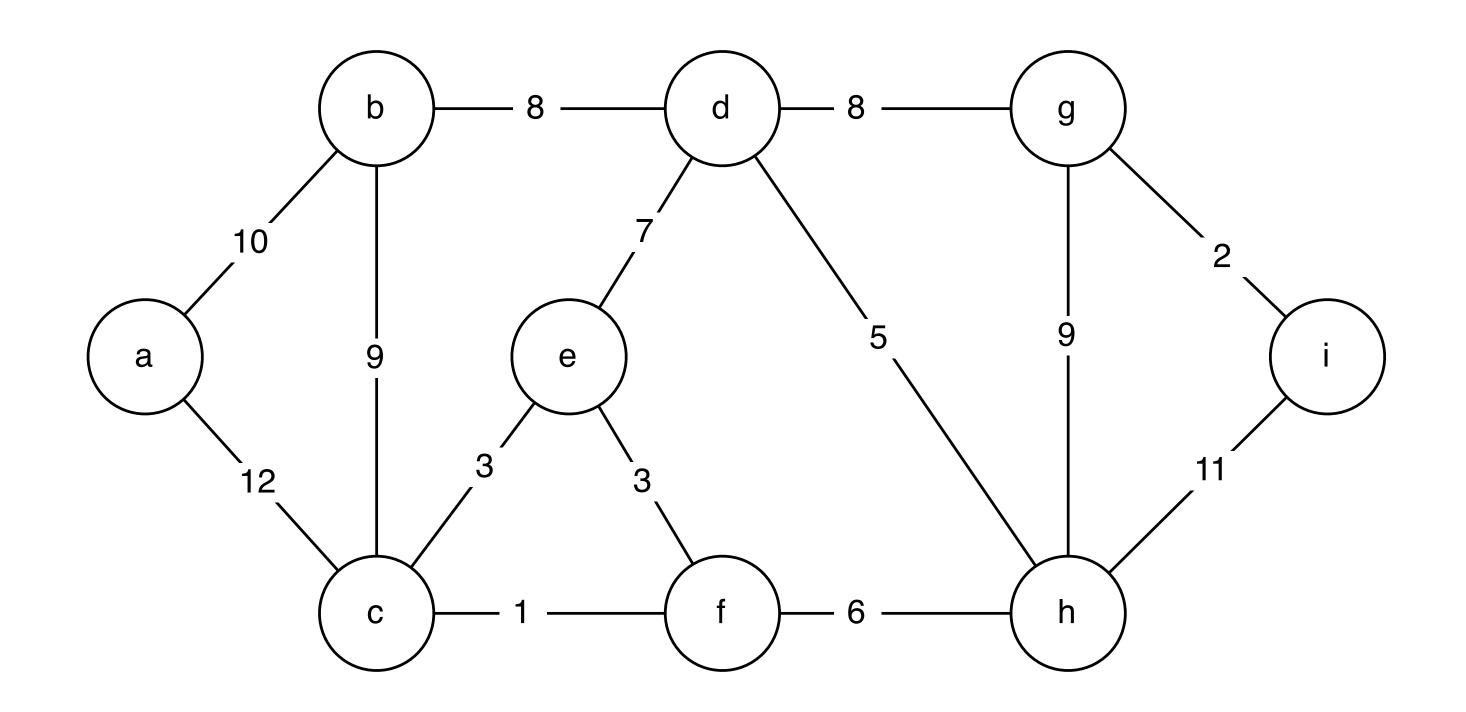
does solution have a cycle?

tacts

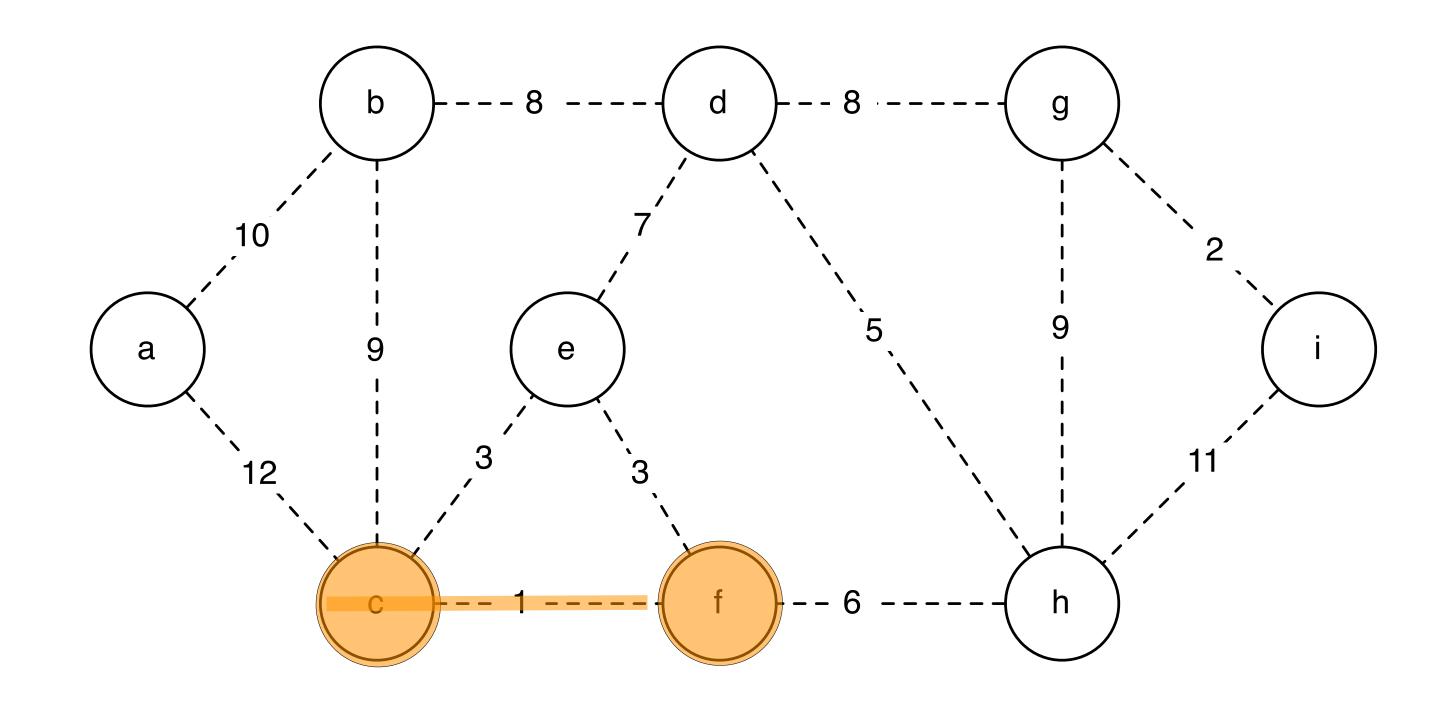
- $(u,v) \in T$

No. Because removing the cycle leads to a cheaper solution.

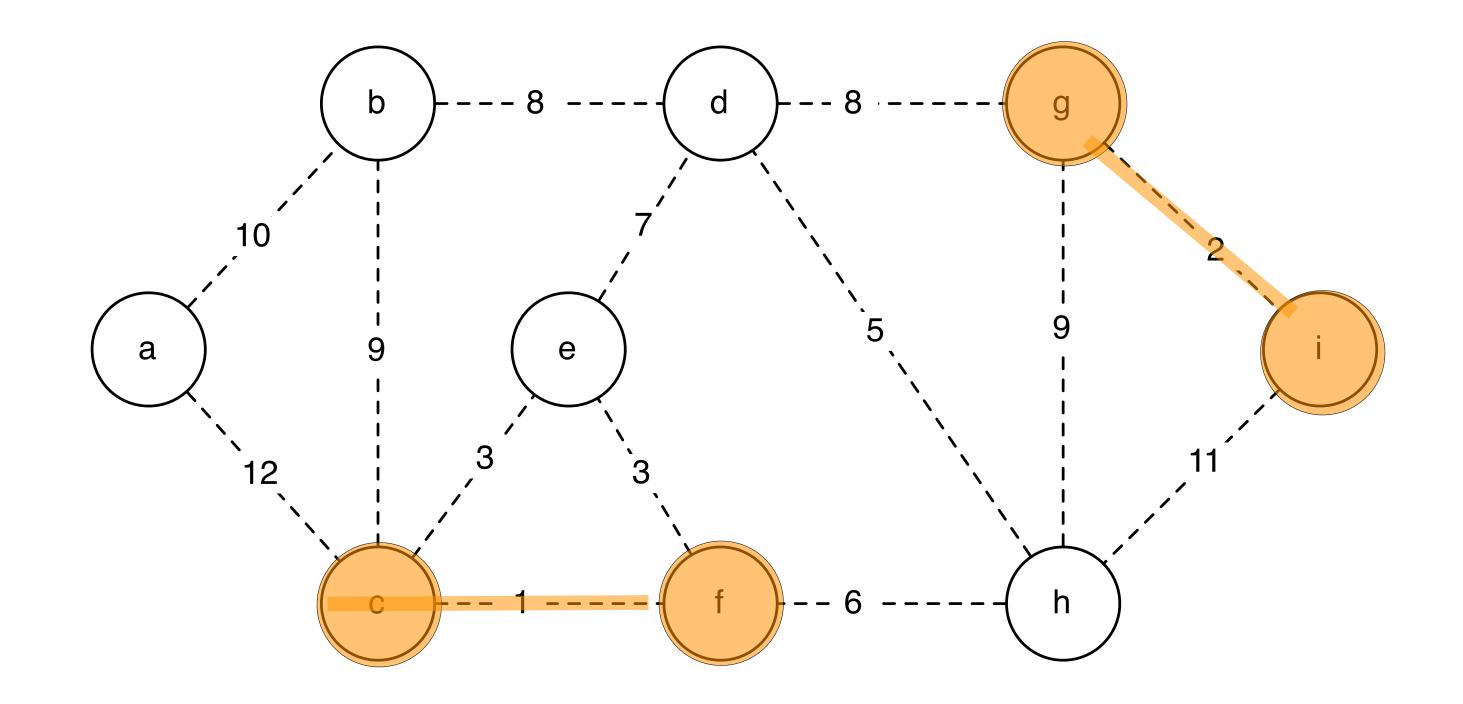
start with an empty set of edges A repeat for v-1 times: add lightest edge that does not create a cycle



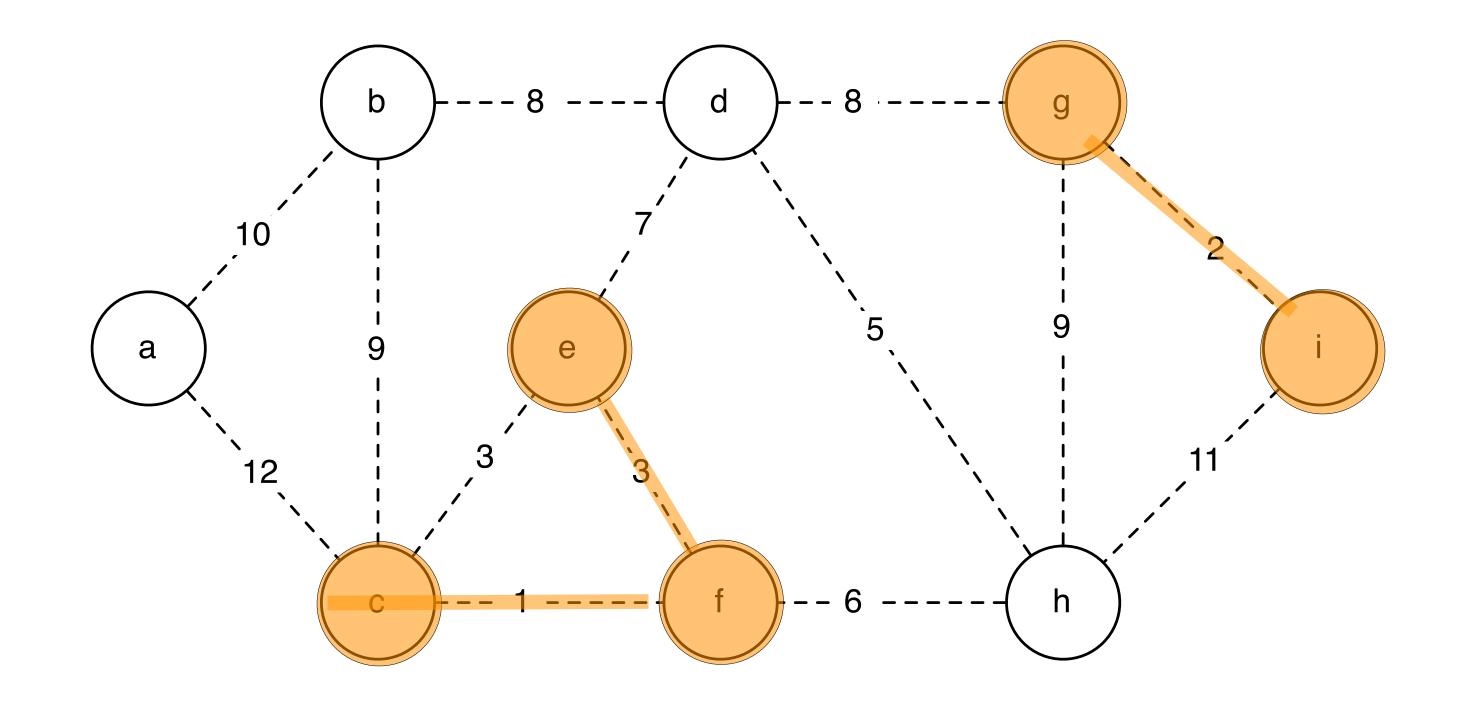
example

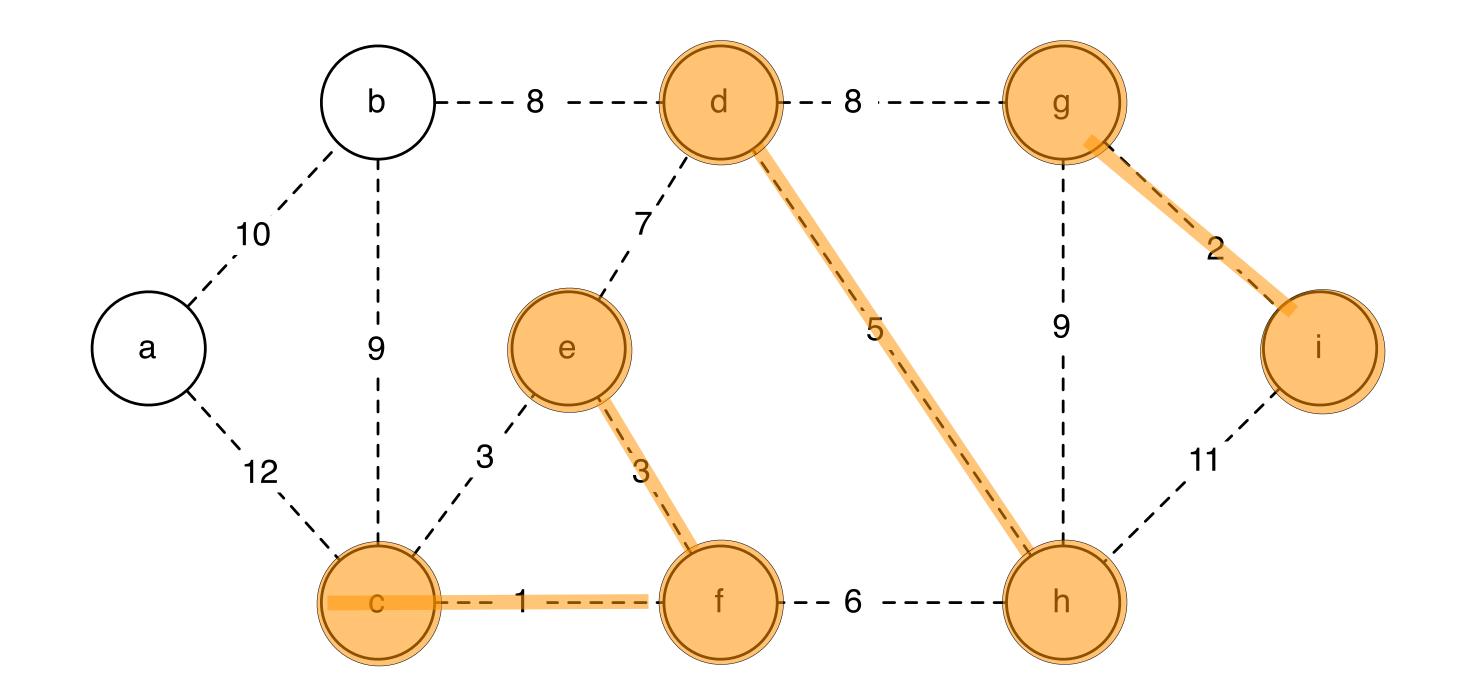


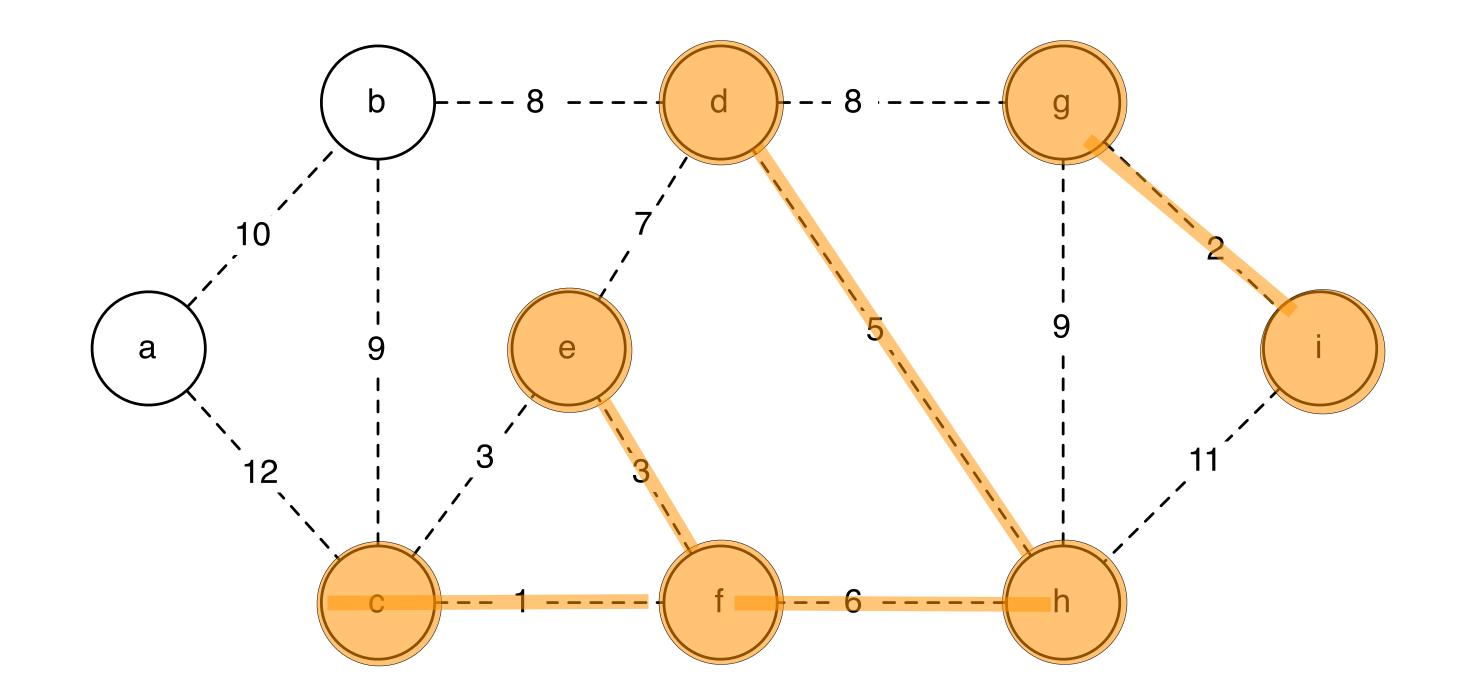


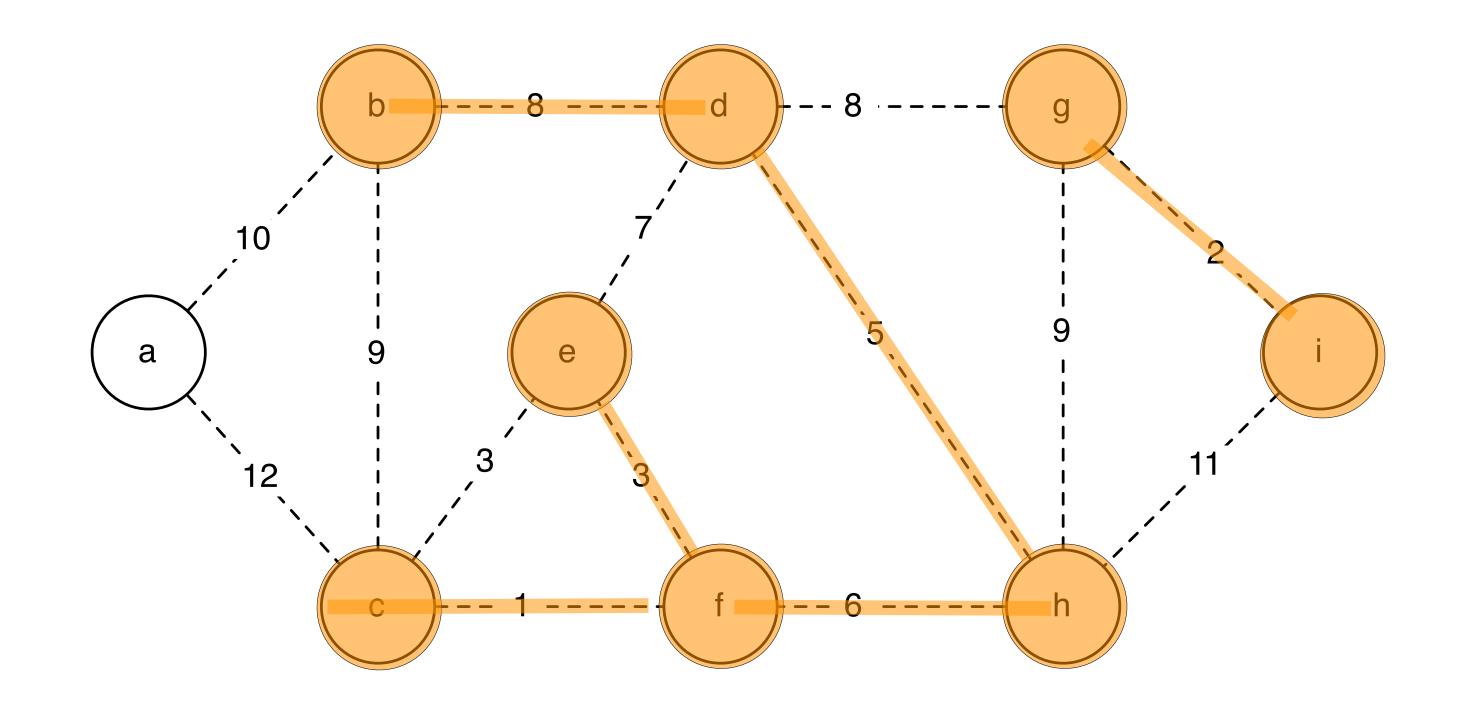


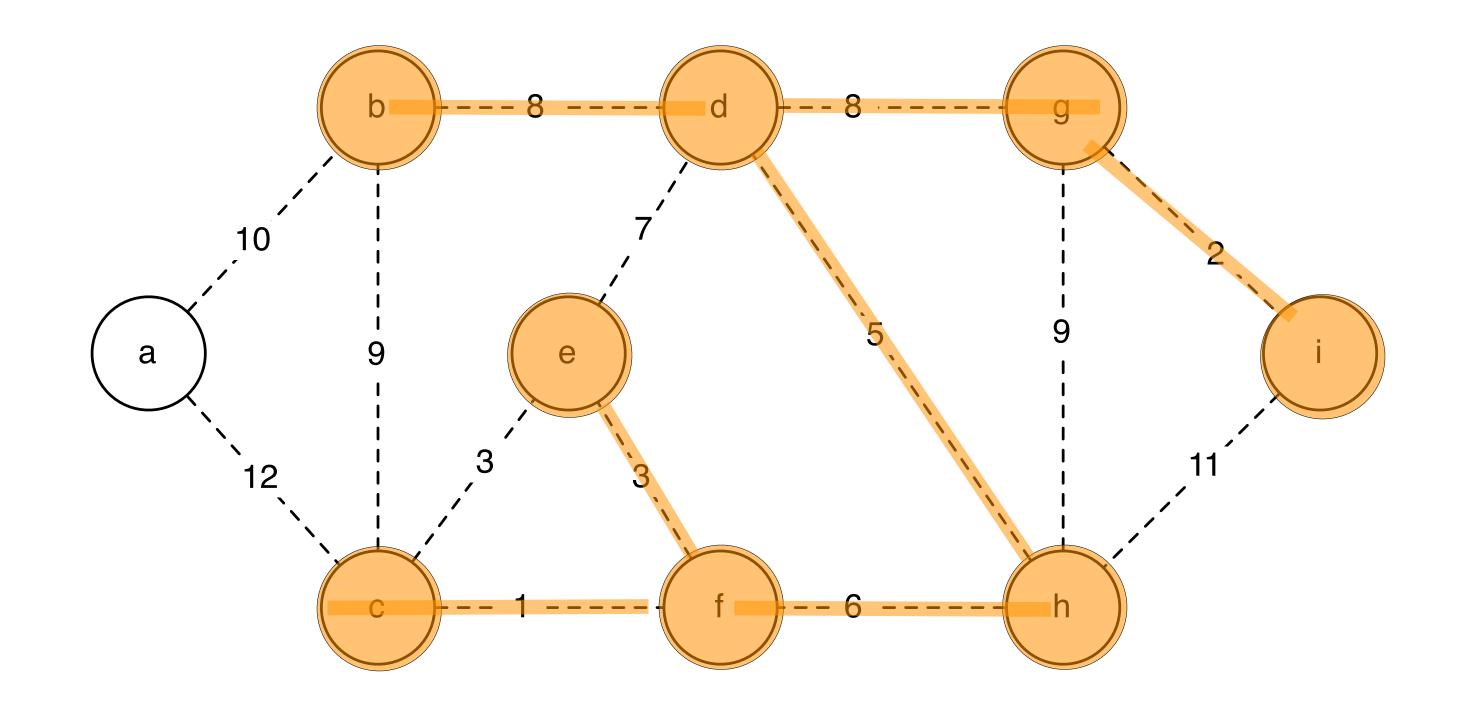


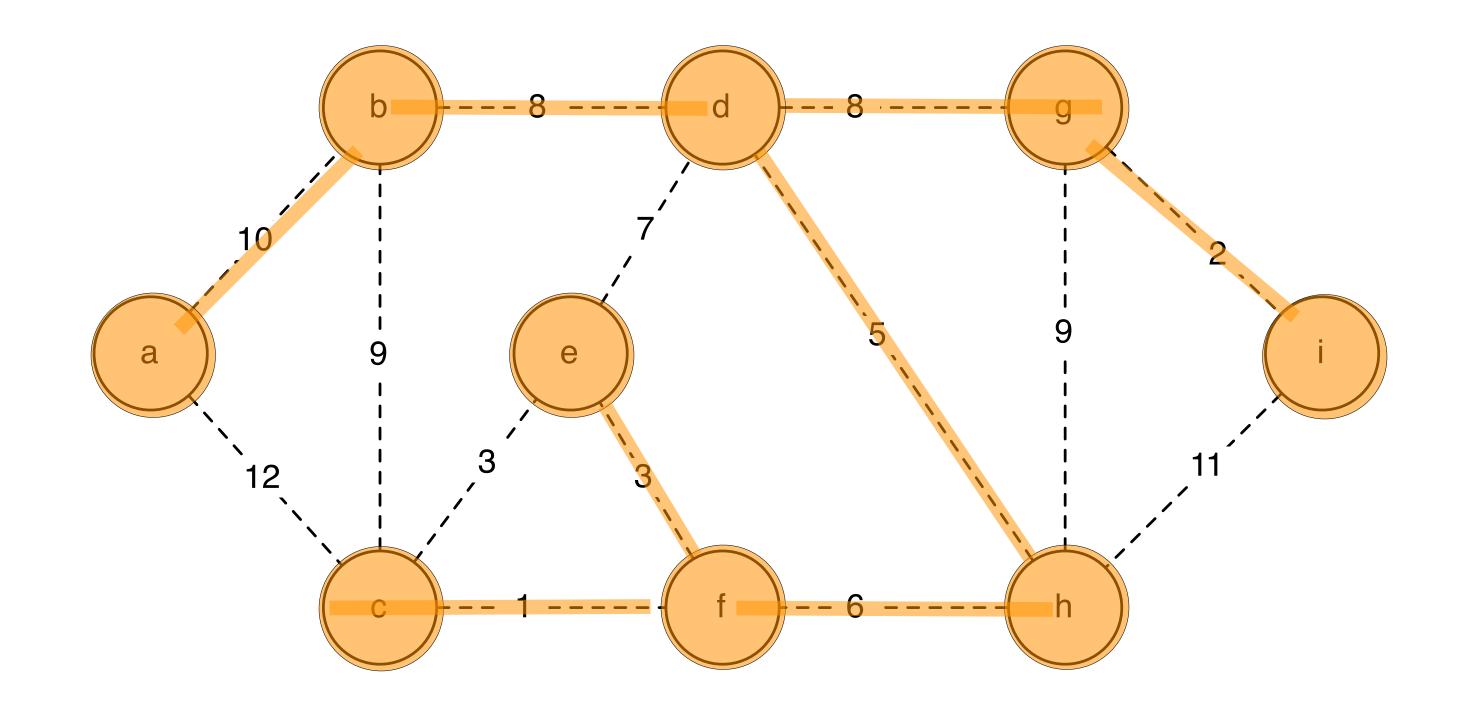


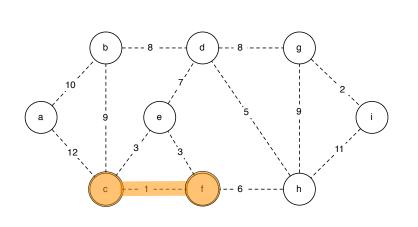


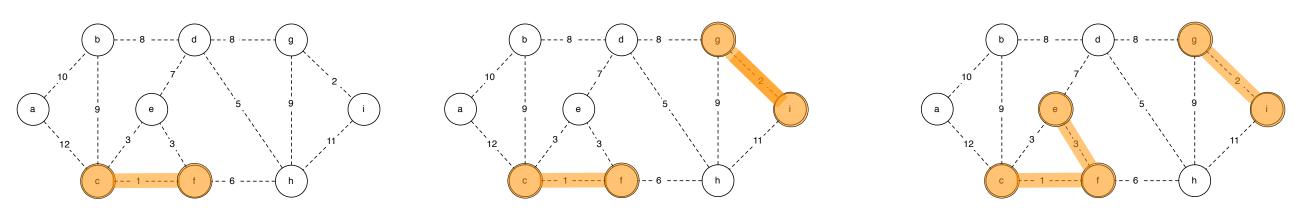


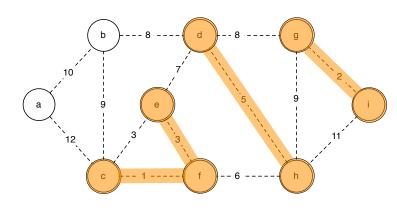


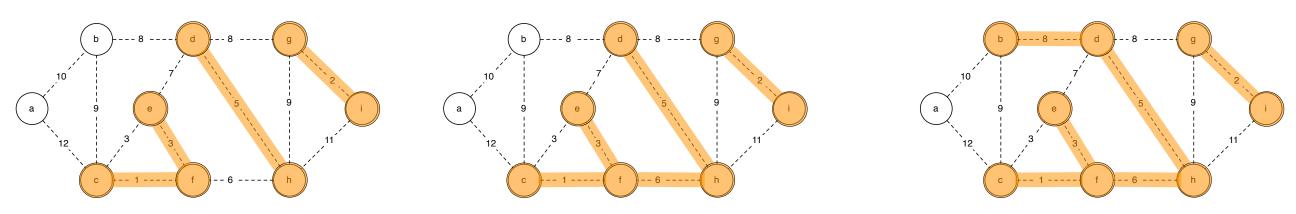


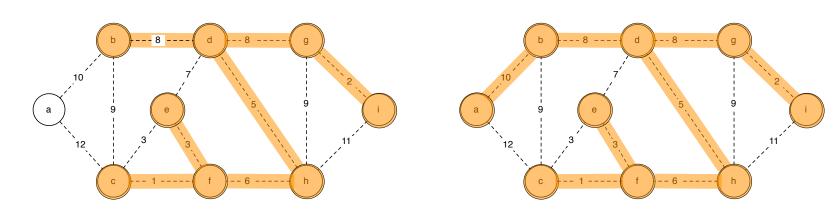




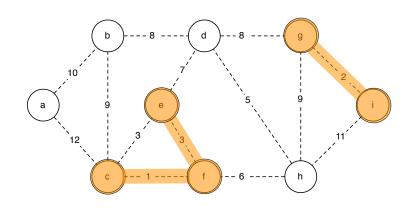


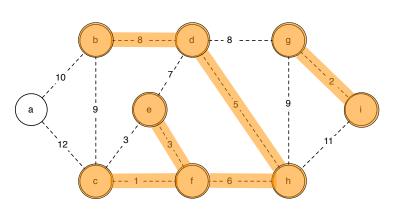


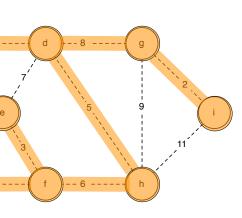




Kruska







why does this work?

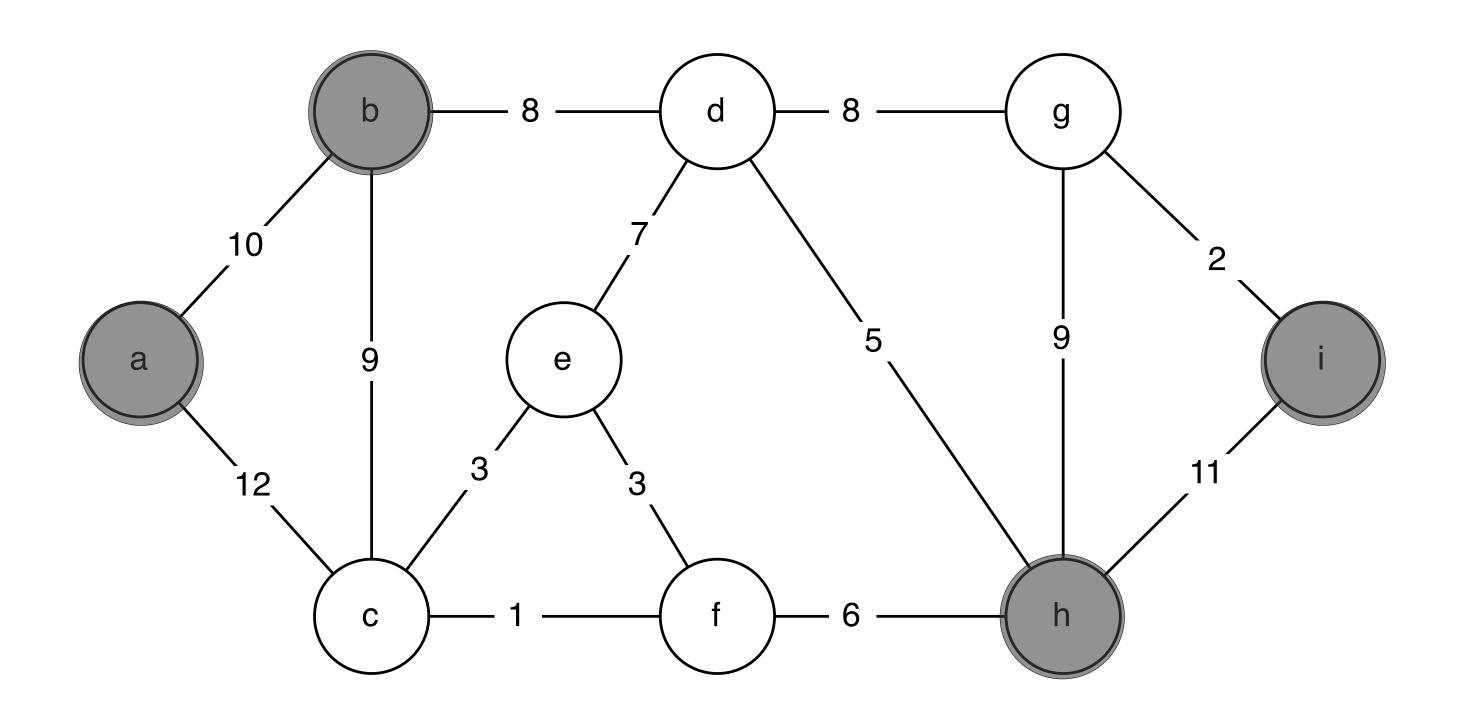
- 1 $T \leftarrow \emptyset$
- 2 repeat V-1 times:
- 3

add to T the lightest edge $e \in E$ that does not create a cycle

definition: cut

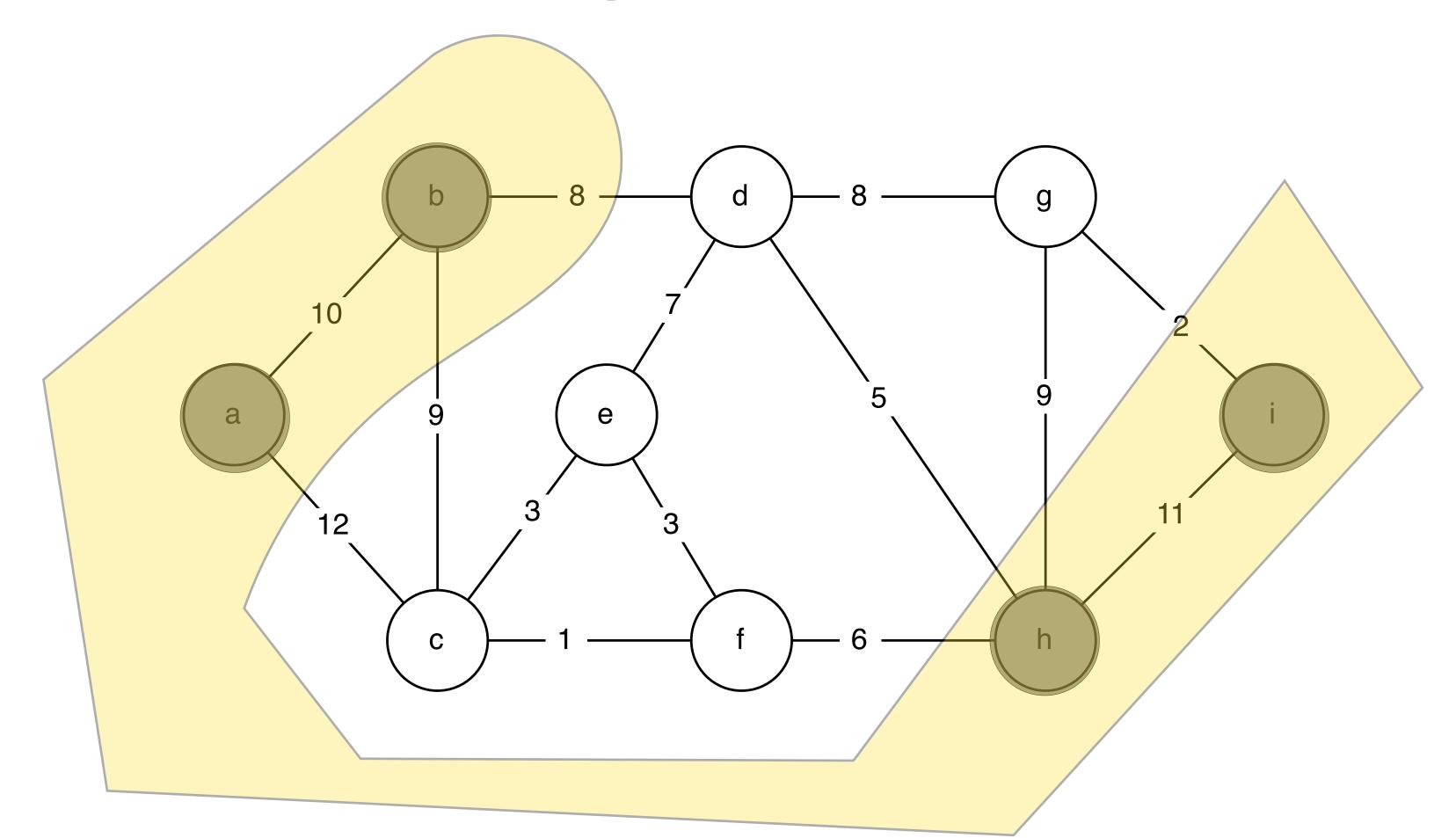
A cut is a partition of V into two sets.

example of a cut



This is an example of 1 cut, a graph has 2^V many cuts.

example of a cut

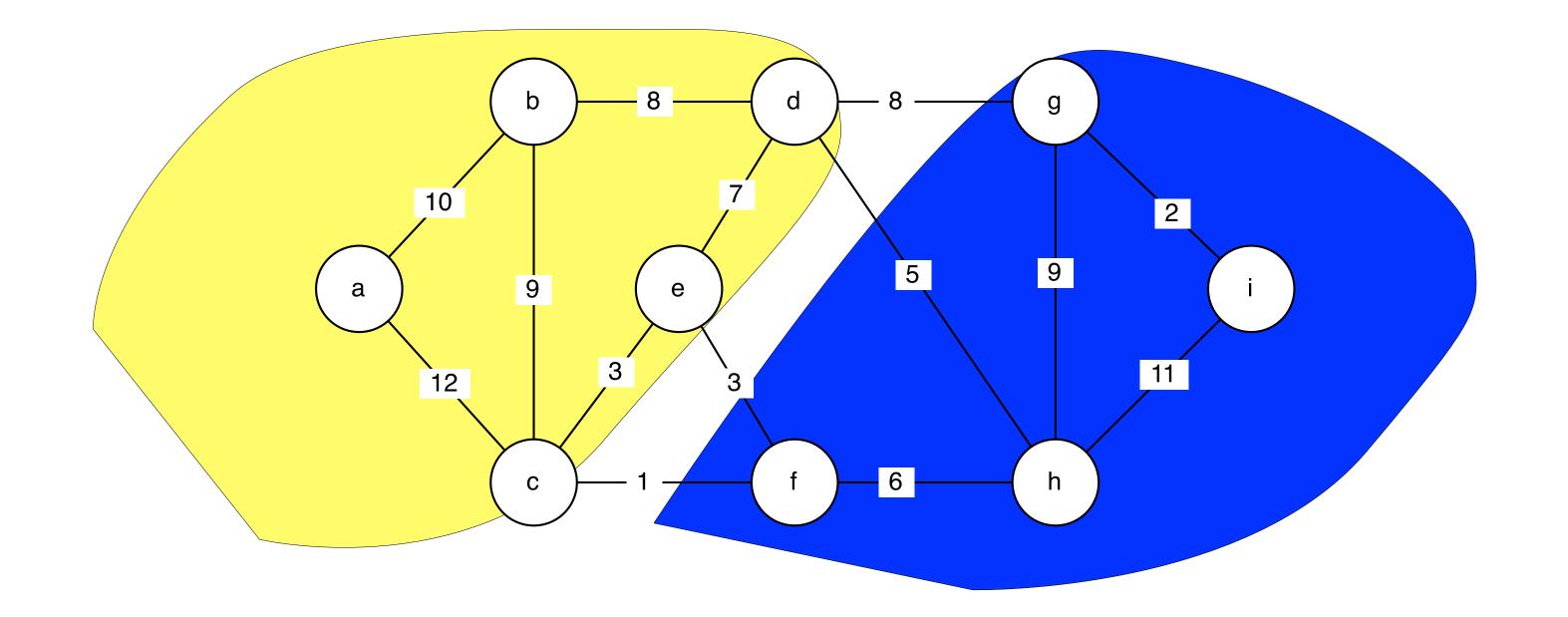


This is an example of 1 cut, a graph has 2^V many cuts.

definition: crossing a cut

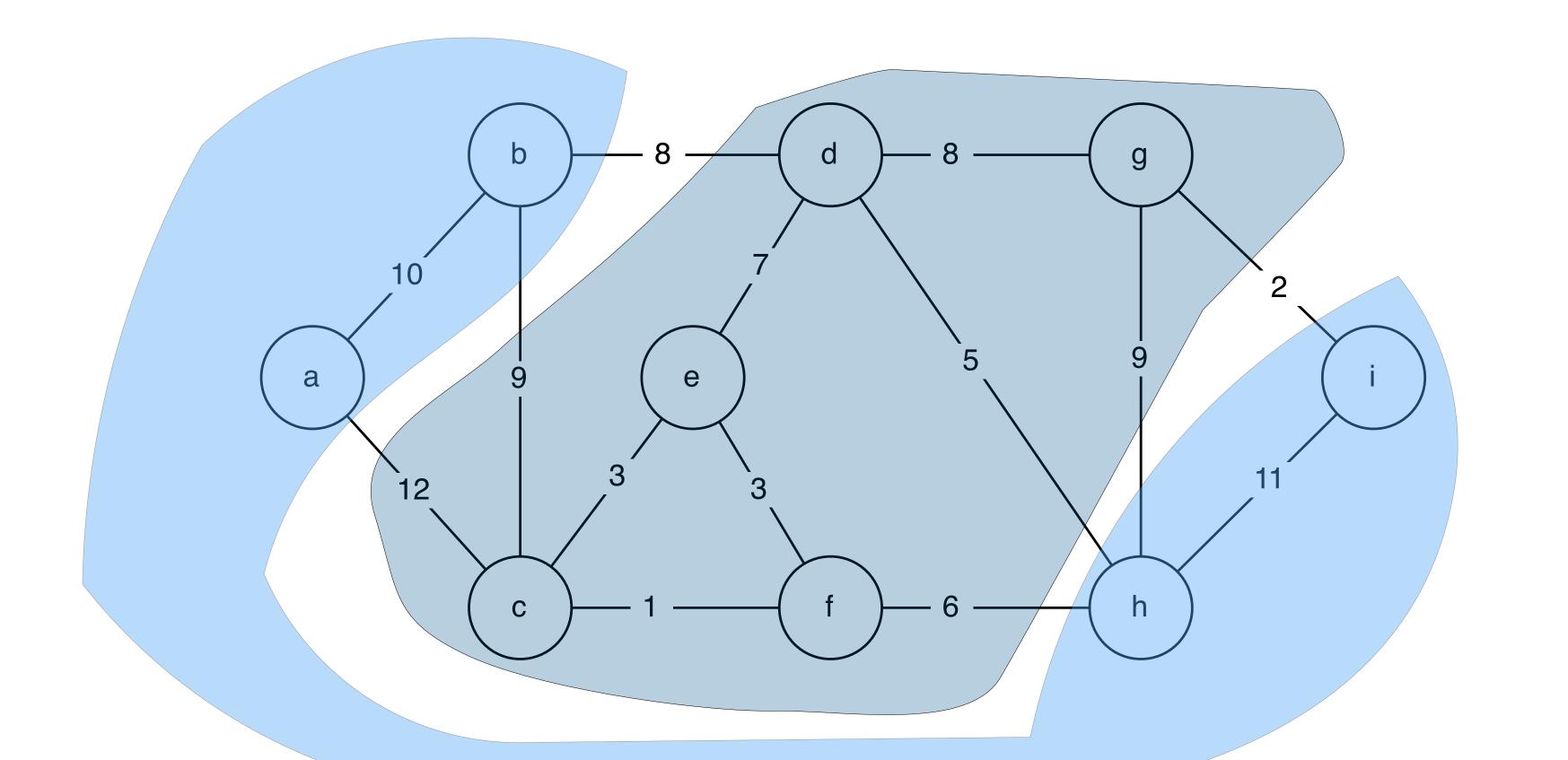
A edge e = (x, y) crosses a cut (S, V - S) if $x \in S$ and $y \in V - S$.

definition: crossing a cut



an edge e = (u, v) crosses a graph cut (S,V-S) if $u \in S$ $v \in V - S$

example of a crossing



Edge (b, d) crosses the cut $\{a, b, h, i\}, \{c, d, e, f, g\}$.

definition: respect

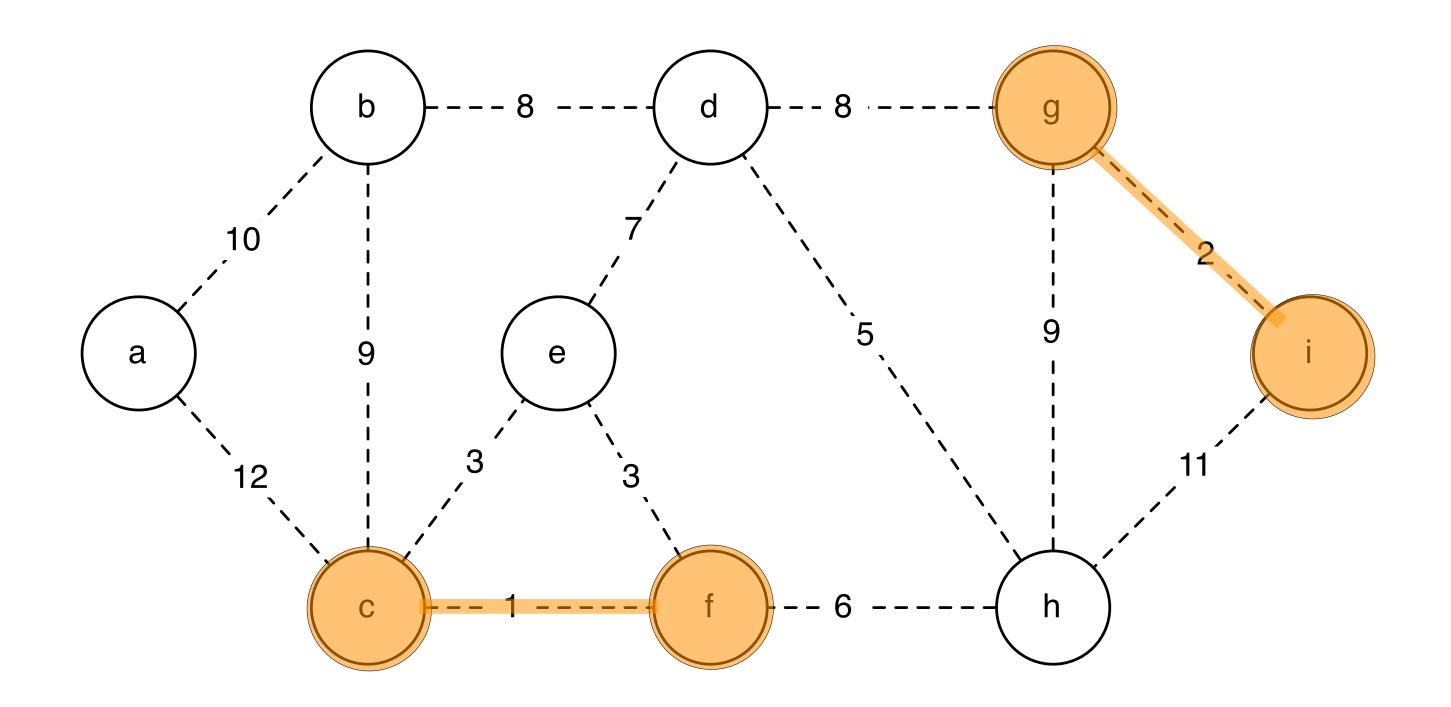
A set of edges A respects a cut S if no edge in A crosses the cut.

Cut theorem

Cut theorem

Let (S, V - S) be any cut that A respects. Then: $A \cup \{e\}$ is part of an m.s.t.

- Suppose the set of edges A is part of an m.s.t.
- Let edge e be the min-weight edge across (S, V S)

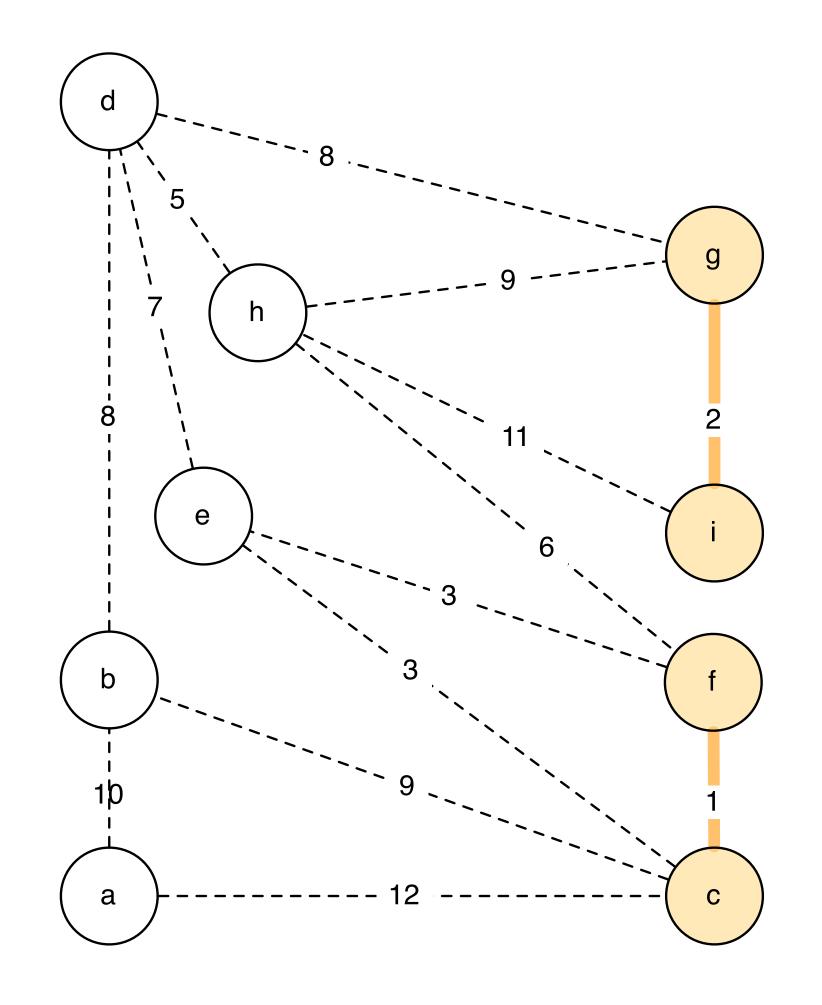


Consider these two edges as part of some MST.

example of theorem

We can redraw the graph to identify this cut.

The min cost edge that crosses this cut is part of some MST.



proof of cut theorem

Theorem 2 Suppose the set of edges A is part of a minimum spanning tree of G = (V, E). Let (S, V - S) be any cut that respects A and let e be the edge with the minimum weight that crosses (S, V - S). Then the set $A \cup \{e\}$ is part of a minimum spanning tree.

proof of cut theorem

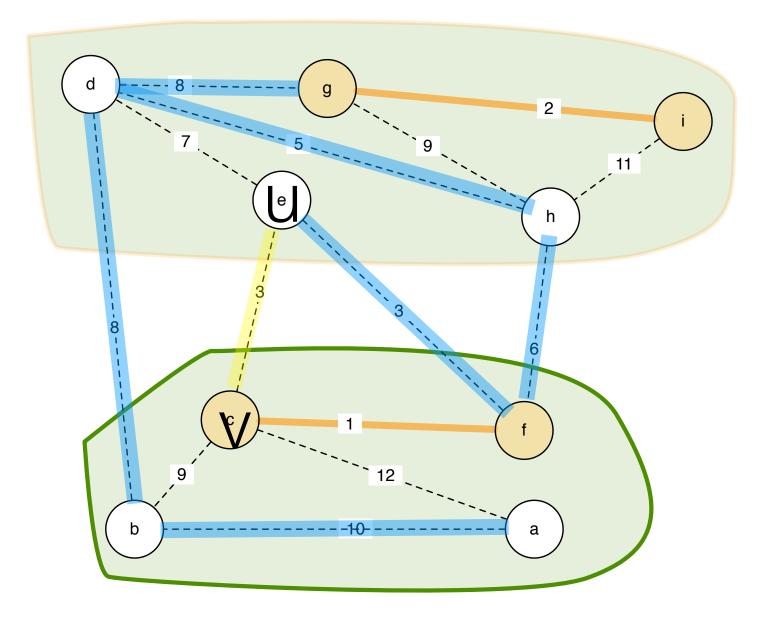
Let e = (u, v). If $A \cup \{e\}$ is already in T then theorem follows.

Suppose that $A \cup \{e\}$ is not part of T. Add *e* to the tree *T*. Now consider $T' = T - \{e'\} \cup \{e\}.$ The weight $w(T') \leq w(T)$ since *e* has min weight.

Theorem 2 Suppose the set of edges A is part of a minimum spanning tree of G =(V, E). Let (S, V - S) be any cut that respects A and let e be the edge with the minimum weight that crosses (S, V - S). Then the set $A \cup \{e\}$ is part of a minimum spanning tree.

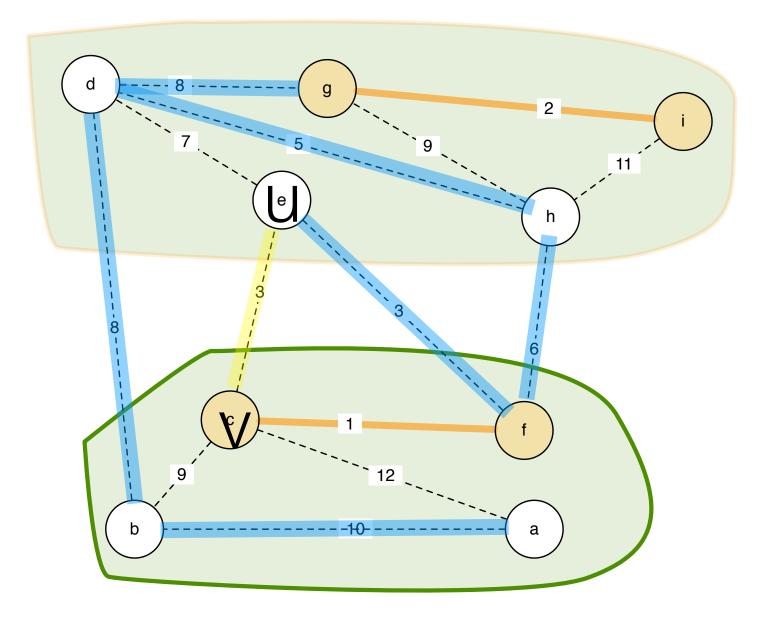
- This creates a cycle. Let e' be another edge on this cycle.

proof of cut thm



As an example, the set A is in orange. The edge e is yellow and T is blue. We will construct a T' which includes A+e.

proof of cut thm



As an example, the set A is in orange. The edge e is yellow and T is blue. We will construct a T' which includes A+e.

Add e to T, which creates a cycle.

Let e' be the first edge on the cycle that crosses the cut.

correctness

KRUSKAL-PSEUDOCODE(G) $1 \quad A \leftarrow \emptyset$ 2 repeat V-1 times: 3

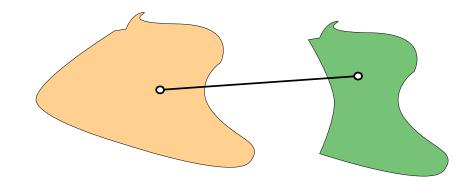
add to A the lightest edge $e \in E$ that does not create a cycle

correctness

KRUSKAL-PSEUDOCODE(G)

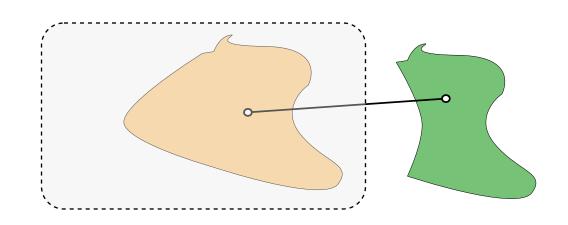
- $1 \quad A \leftarrow \emptyset$
- repeat V-1 times: 2
- add to A the lightest edge $e \in E$ that does not create a cycle 3

Proof: By induction. in step 1, A is part of some MST. In line 3, we add an edge e=(u,v).

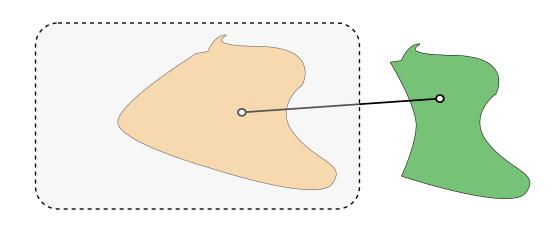


- Suppose that after k steps, A is part of some MST (line 2).
- Because e does not create a cycle, there are 3 cases to consider:

3 cases for edge e. Case 1: e=(u,v) and both u,v are in A.

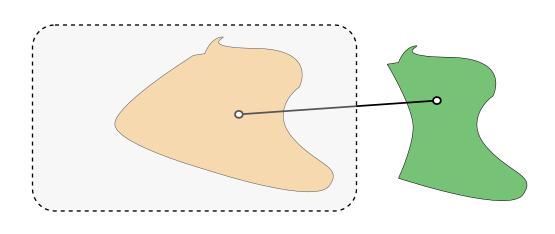


3 cases for edge e. Case 1: e=(u,v) and both u,v are in A.



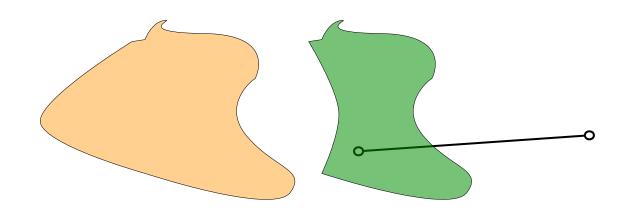
In this case, set S to be the component that contains {u}

3 cases for edge e. Case 1: e=(u,v) and both u,v are in A.



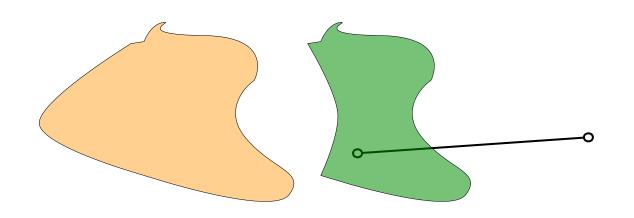
In this case, set S to be the component that contains {u} The edge e crosses this cut and A respects S. By the cut theorem, A+e belongs to an MST.

3 cases for edge e. Case 2: e=(u,v) and only u is in A.



The edge e crosses this cut and A respects S.

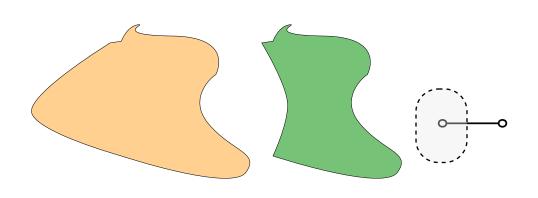
3 cases for edge e. Case 2: e=(u,v) and only u is in A.



In this case, set S to be the component that contains {u}

The edge e crosses this cut and A respects S.

3 cases for edge e. Case 3: e=(u,v) and neither u nor v are in A.



In this case, set S to be the component that contains {u}

KRUSKAL-PSEUDOCODE(G)

 $A \leftarrow \emptyset$

2repeat V-1 times:

add to A the lightest edge $e \in E$ that does not create a cycle 3

Theorem 3 The Kruskal algorithm outputs a minimum spanning tree.

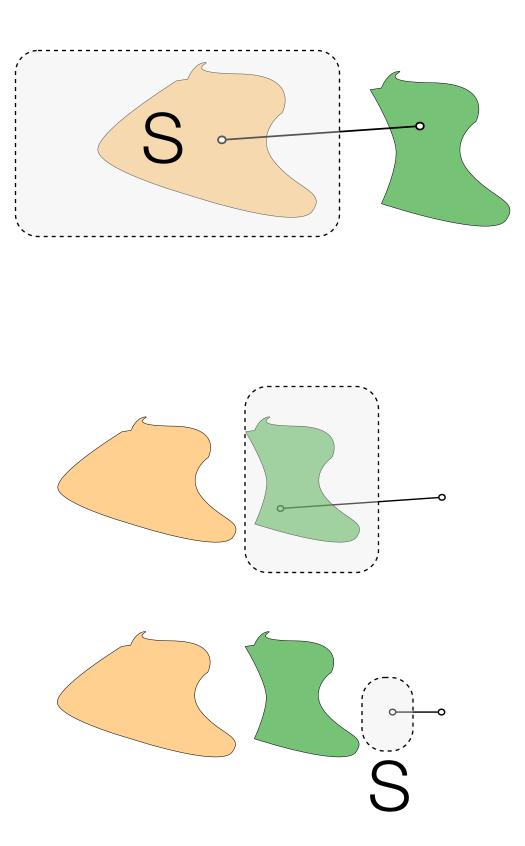
Proof. By Induction. At the first step, A is a set of edges that is part of a minimum spanning tree of G. Suppose this is true by induction for the first i loops of the algorithm.

Consider the $i + 1^{\text{th}}$ iteration and let e = (u, v) be the edge added to A in line 2. By construction, e is the lightest edge in E that does not create a cycle in A.

Since e does not create a cycle in A, e must either connect two connected components of A, extend one connected component of A or connect two nodes that are not covered by A. In the first two cases, let A_1 be the connected component in A that covers u. In the third case, let $A_1 = \{u\}$.

Consider the graph cut $(A_1, V - A_1)$. By selection, e is the lightest edge that crosses this cut: all other edges are either heavier, or they create a cycle in A and therefore do not cross the cut since they connect nodes in A_1 or in $V - A_1$. Thus, by the previous theorem, $A \cup \{e\}$ must be part of a minimum spanning tree.

During each iteration, line 3 always succeeds. This follows because A is part of some MST by hypothesis. At the end of the loop, |A| = V - 1. Therefore, A must be the full spanning tree since it has the correct size. \Box



analysis?

Kruskal-pseudocode(G)

- $1 \quad A \leftarrow \emptyset$
- 2 repeat V-1 times:
- 3

add to A the lightest edge $e \in E$ that does not create a cycle

GENERAL-MST-STRA $1 \quad A \leftarrow \emptyset$ repeat V-1 times: 23 4 5

In fact, this approach can be generalized into a family of algorithms.

$$\operatorname{TEGY}(G = (V, E))$$

Pick a cut (S, V - S) that respects A Let e be min-weight edge over cut (S, V - S) $A \leftarrow A \cup \{e\}$

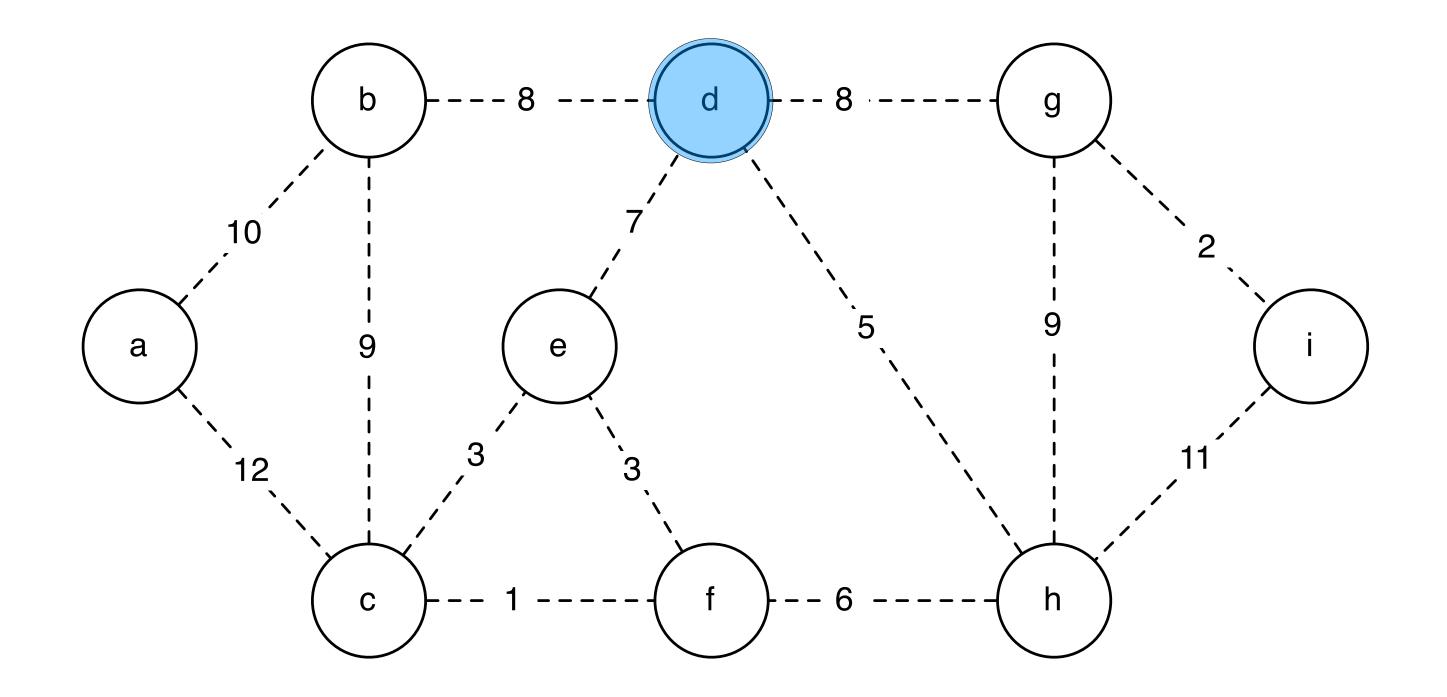
GENERAL-MST-STRATEGY(G = (V, E))1 $A \leftarrow \emptyset$ 2 repeat V-1 times: 3 5 $A \leftarrow A \cup \{e\}$

A is a subtree

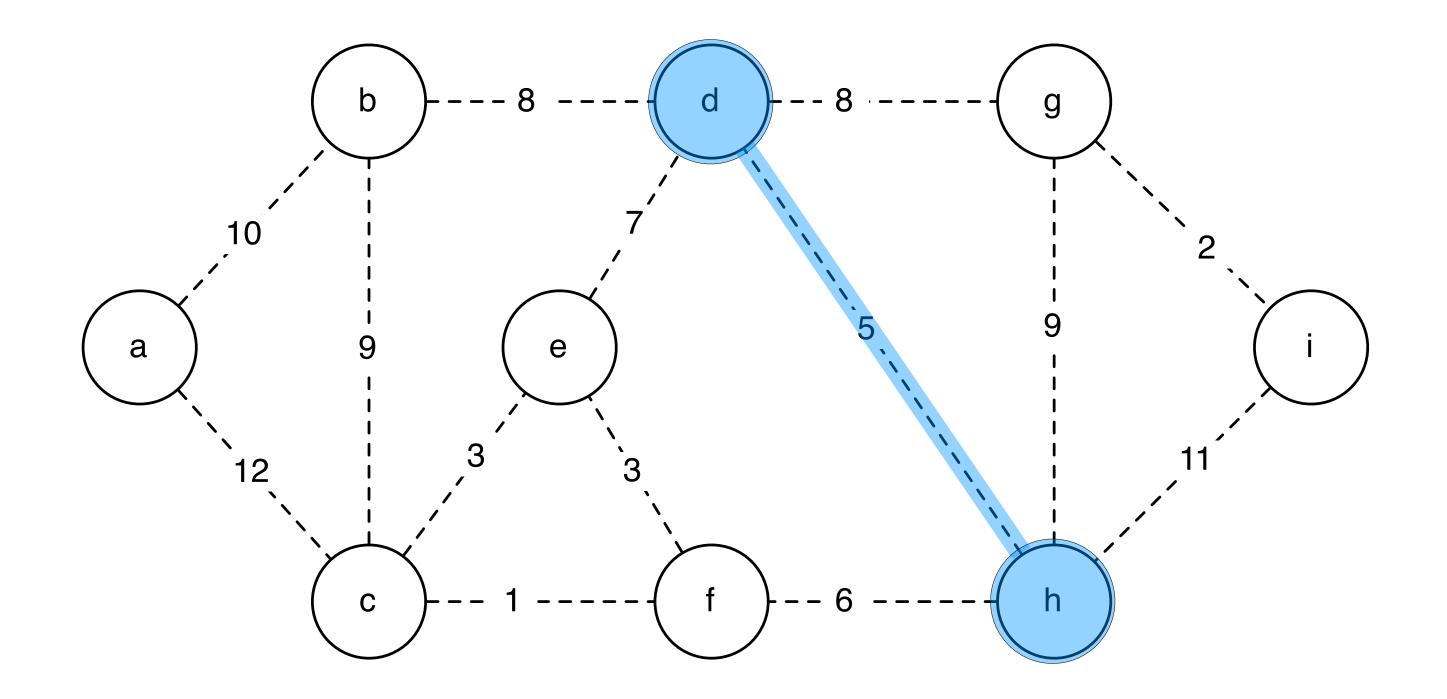
Prim's algorithm

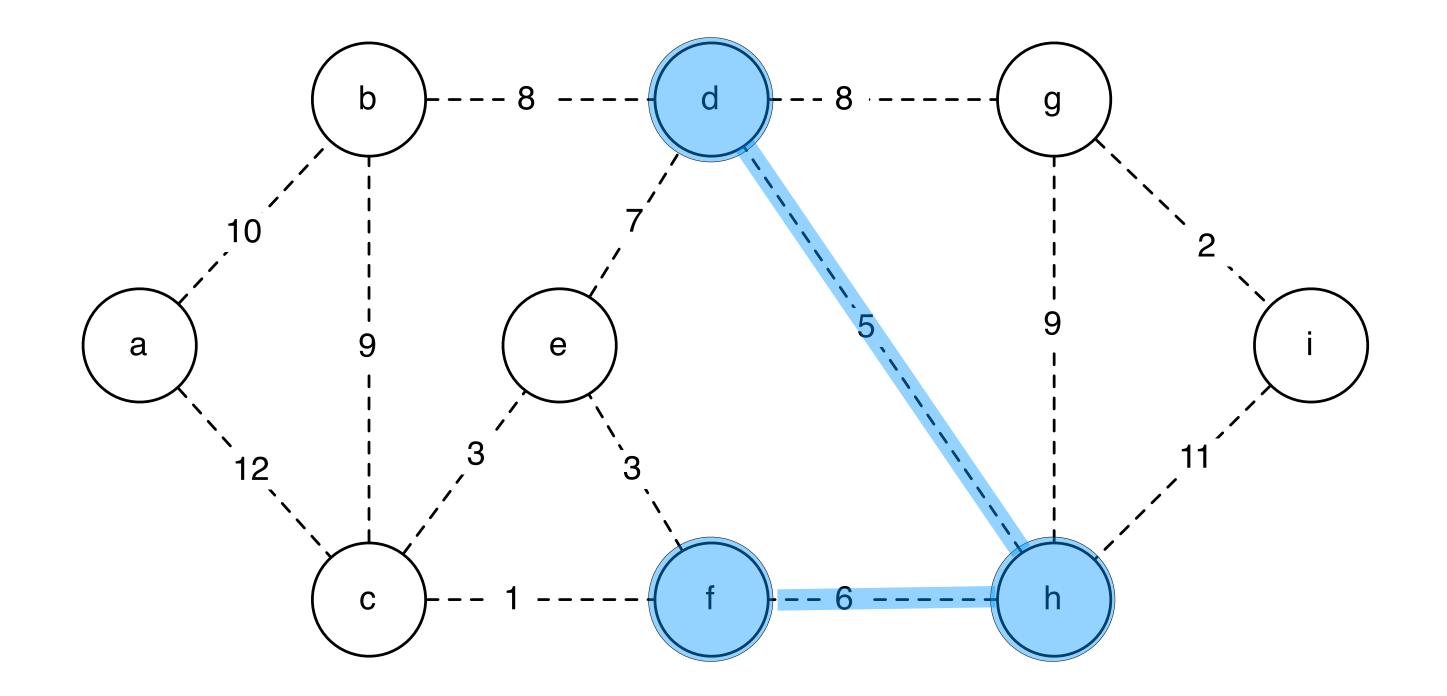
```
Pick a cut (S, V - S) that respects A
4 Let e be min-weight edge over cut (S, V - S)
```

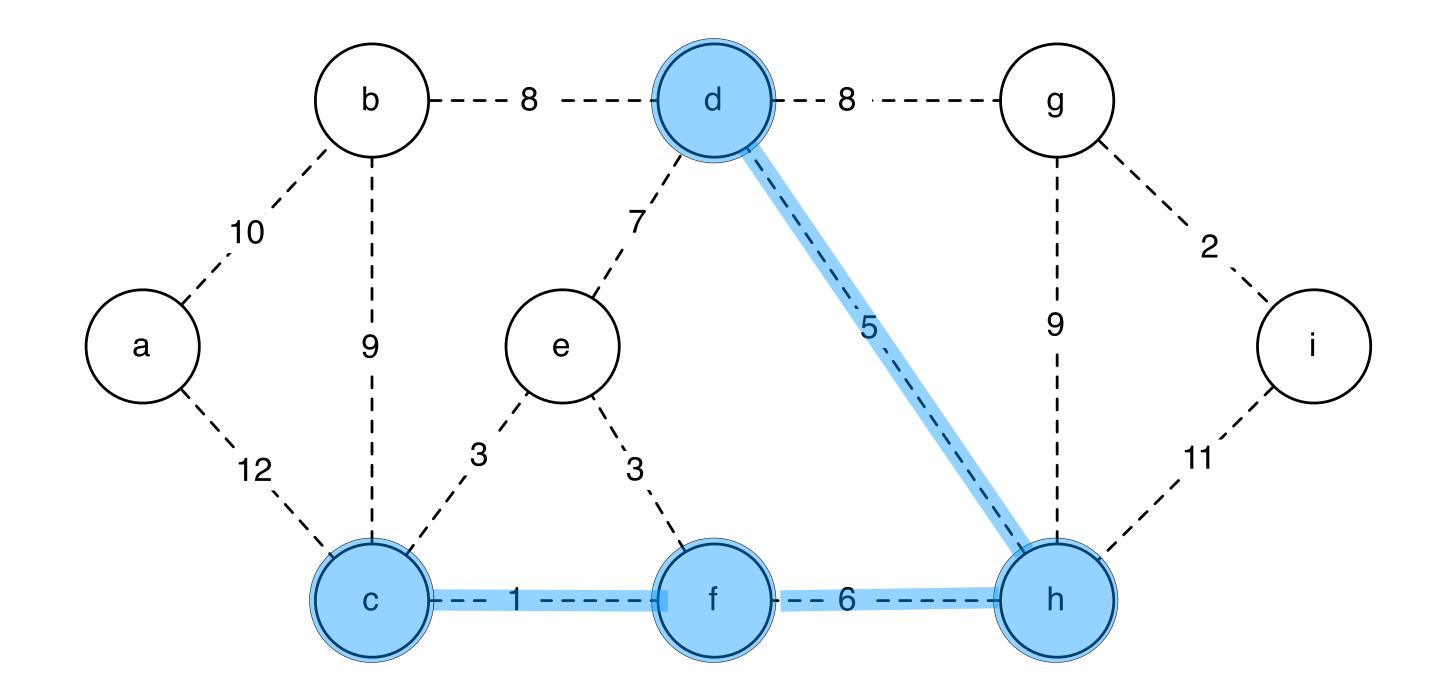
edge e is lightest edge that grows the subtree

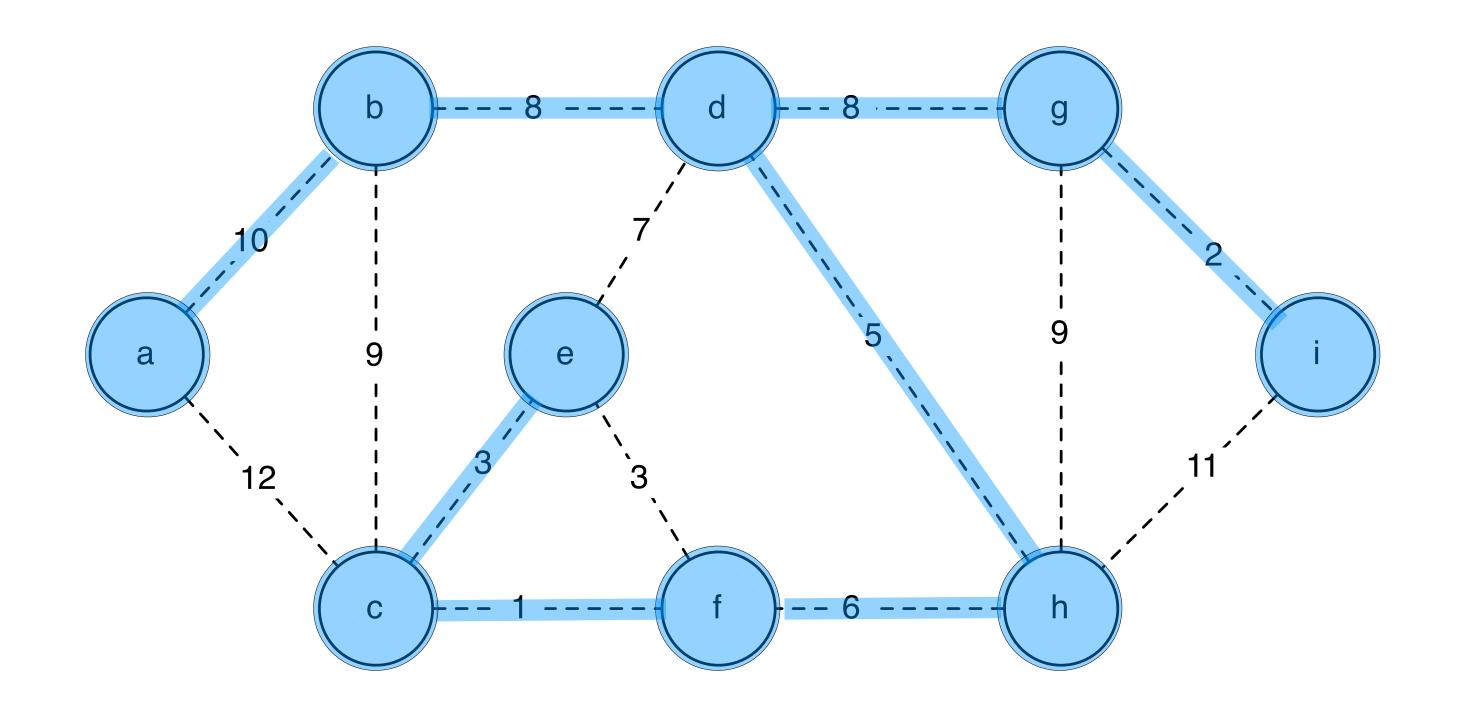


prim









implementation

idea: Maintain the set A. Update Use a new data structure,

- Maintain the set A. Update neighbors of A with weights.
- Use a new data structure, priority queue to track light edges.

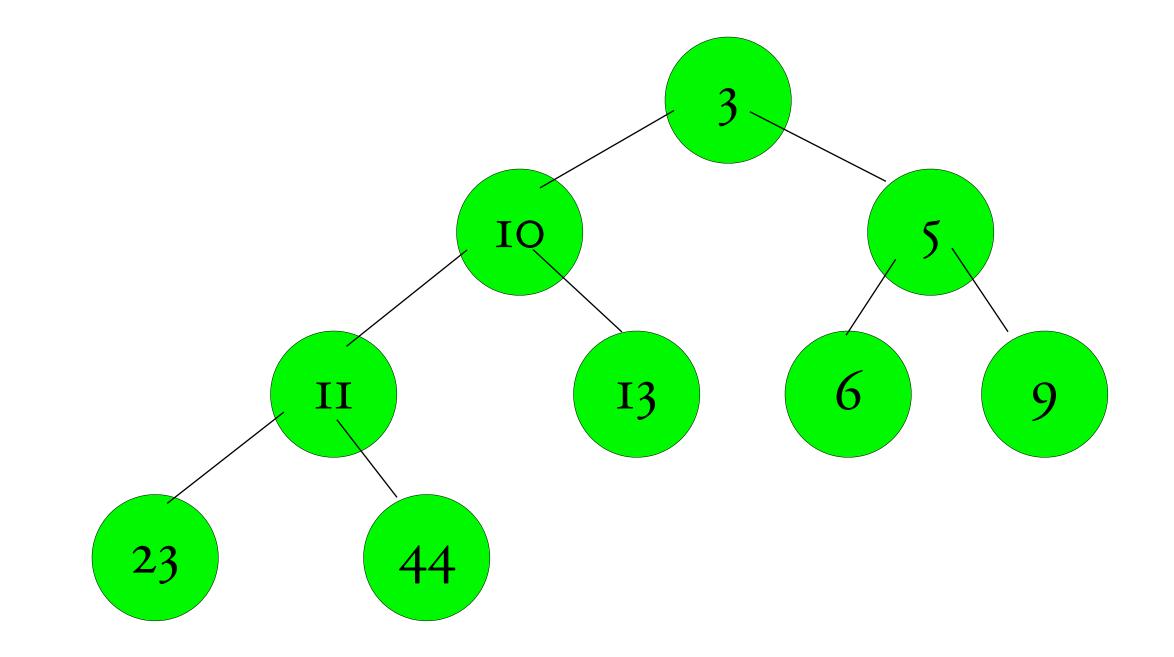
new data structure

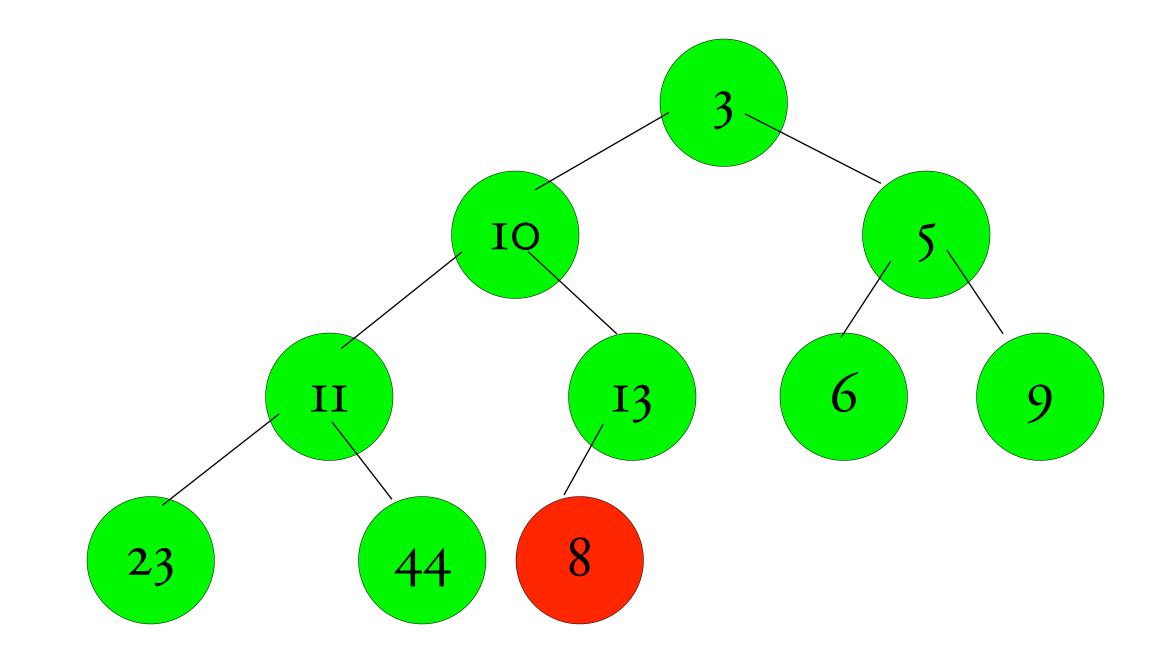
A priority queue is a data structure with 3 operations:

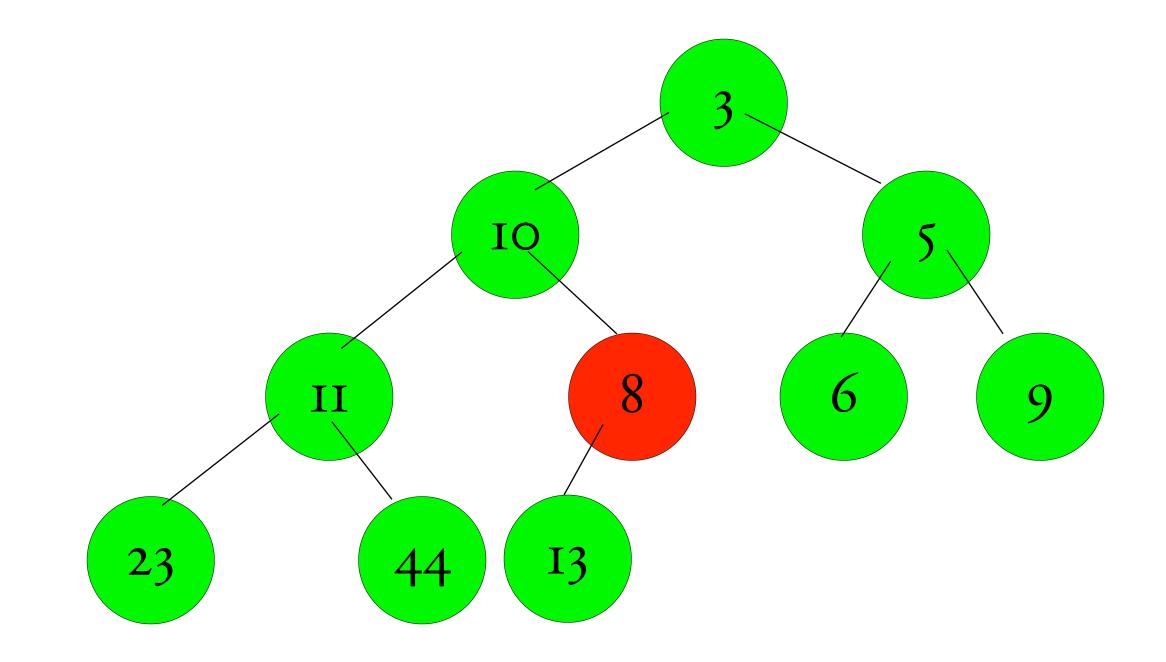
Make:

ExtractMin:

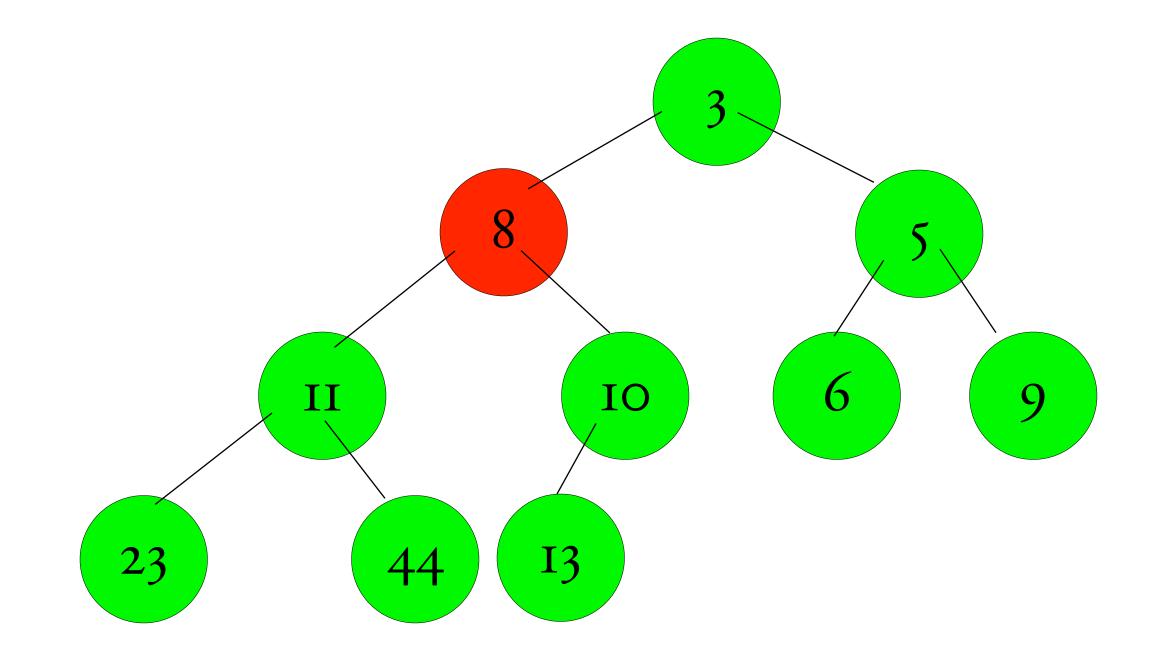
DecreaseKey:



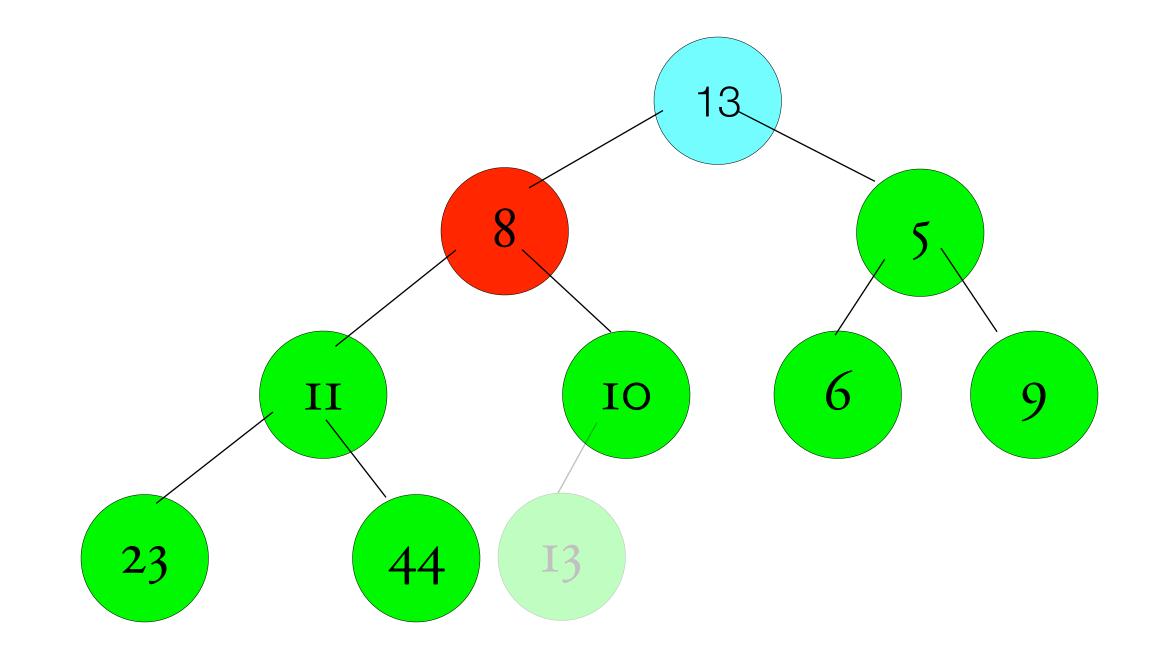




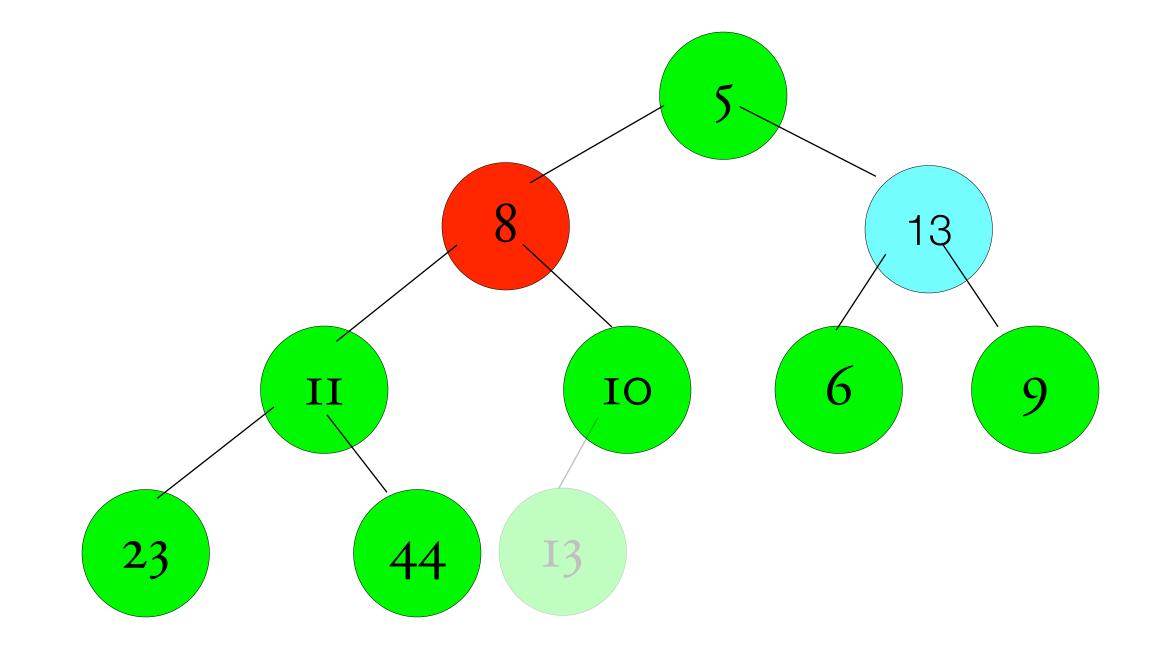
binary heap full tree, key value <= to key of children how to extractmin?



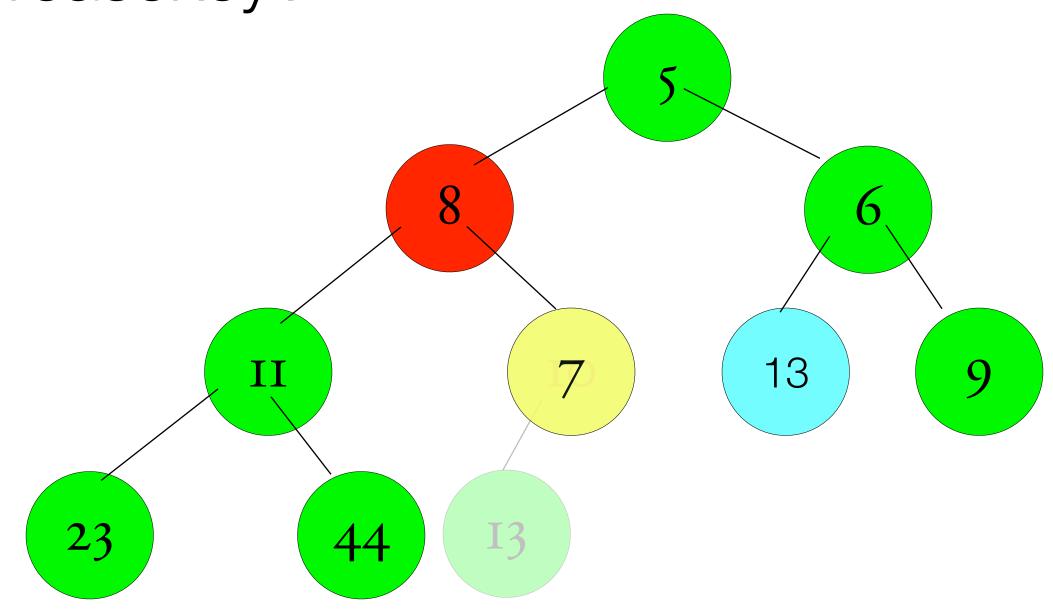
binary heap full tree, key value <= to key of children how to extractmin?



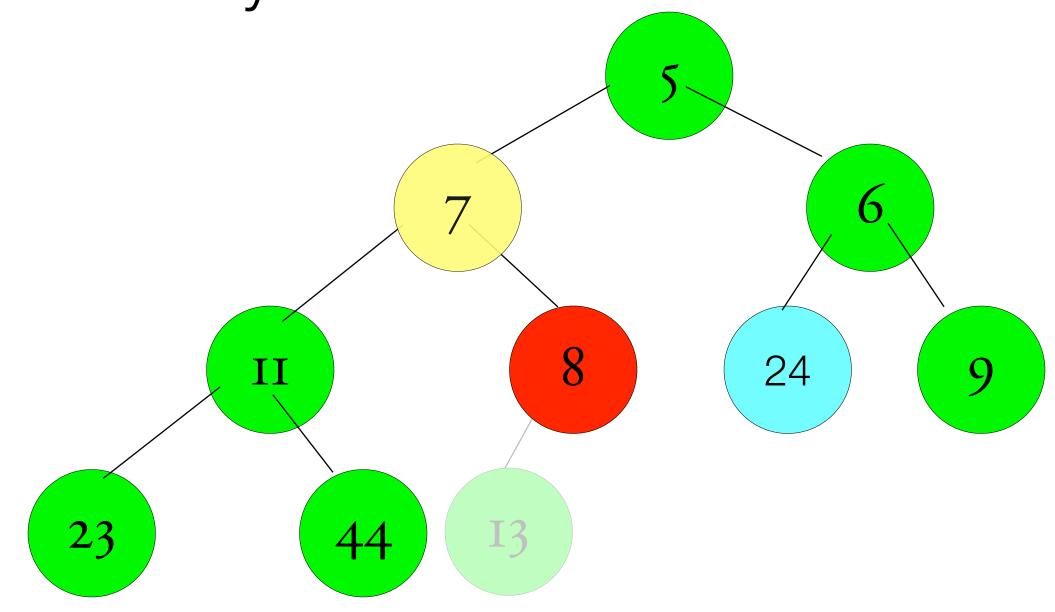
binary heap



binary heap full tree, key value <= to key of children how to extractmin? how to decreasekey?



binary heap full tree, key value <= to key of children how to extractmin? how to decreasekey?



implementation

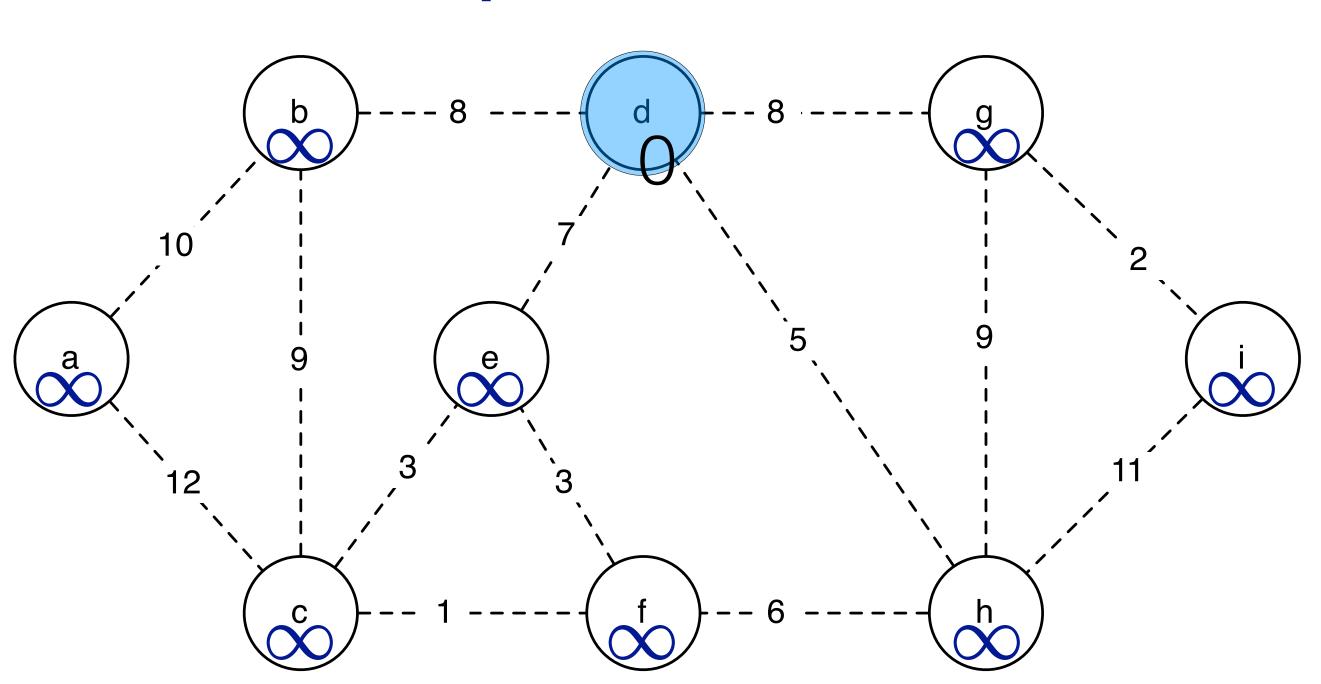
use a priority queue to keep track of light edges

insert: makequeue: extractmin: decreasekey:

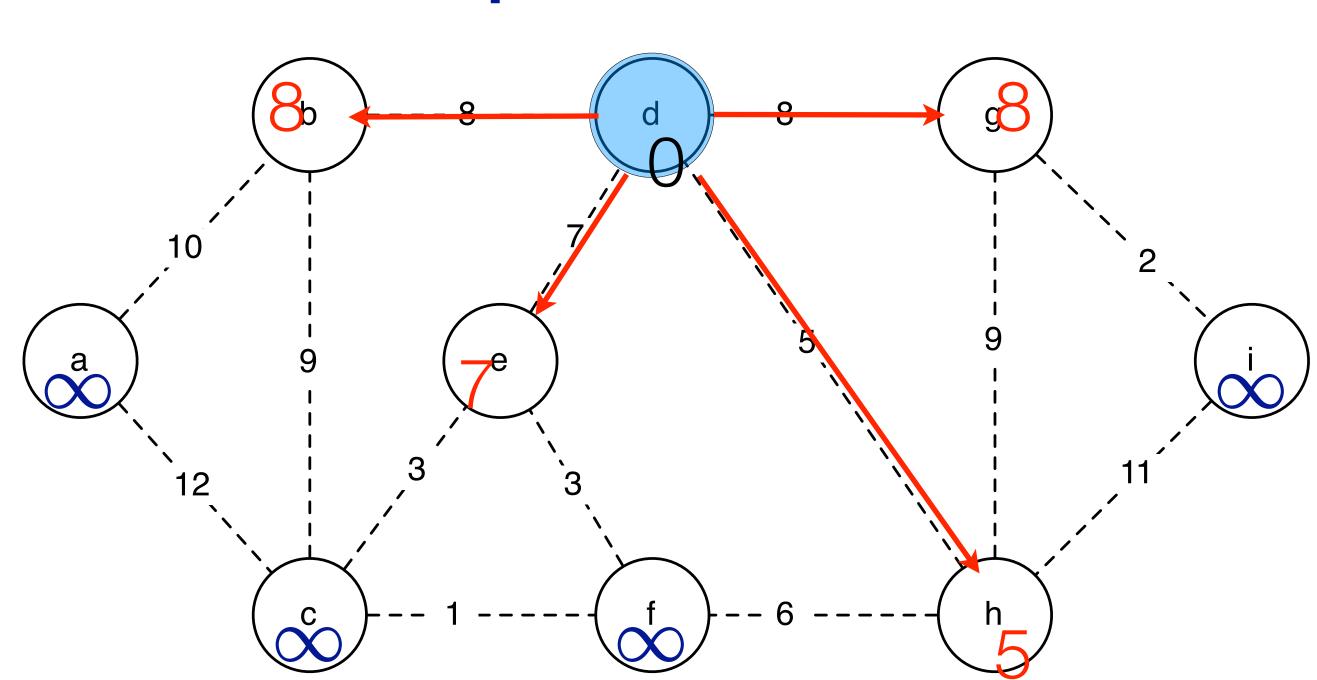
Prim's algorithm

implementation

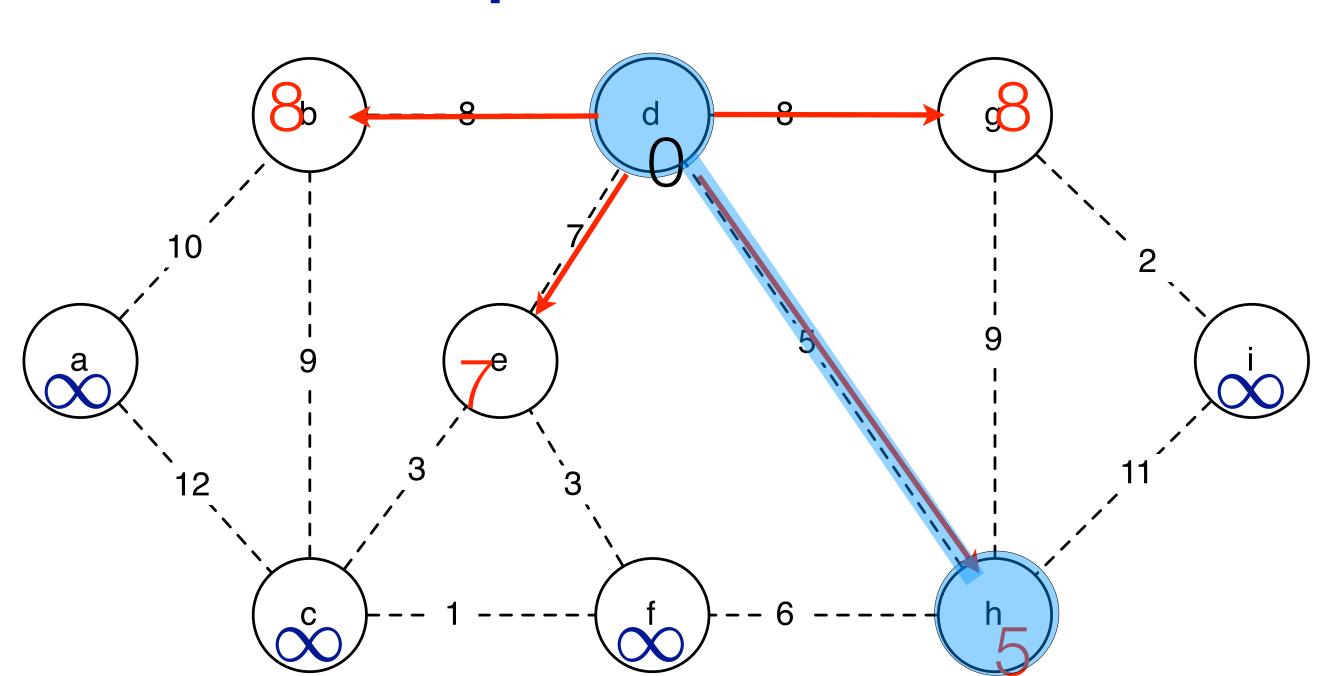
PRIM(G = (V, E))1 $Q \leftarrow \emptyset$ \triangleright Q is a Priority Queue Initialize each $v \in V$ with key $k_v \leftarrow \infty, \pi_v \leftarrow \text{NIL}$ 2 Pick a starting node r and set $k_r \leftarrow 0$ 3 Insert all nodes into Q with key k_v . 4 while $Q \neq \emptyset$ 5 6 do $u \leftarrow \text{EXTRACT-MIN}(Q)$ for each $v \in Adj(u)$ 7 do if $v \in Q$ and $w(u, v) < k_v$ 8 9 then $\pi_v \leftarrow u$ DECREASE-KEY(Q, v, w(u, v)) \triangleright Sets $k_v \leftarrow w(u, v)$ 10



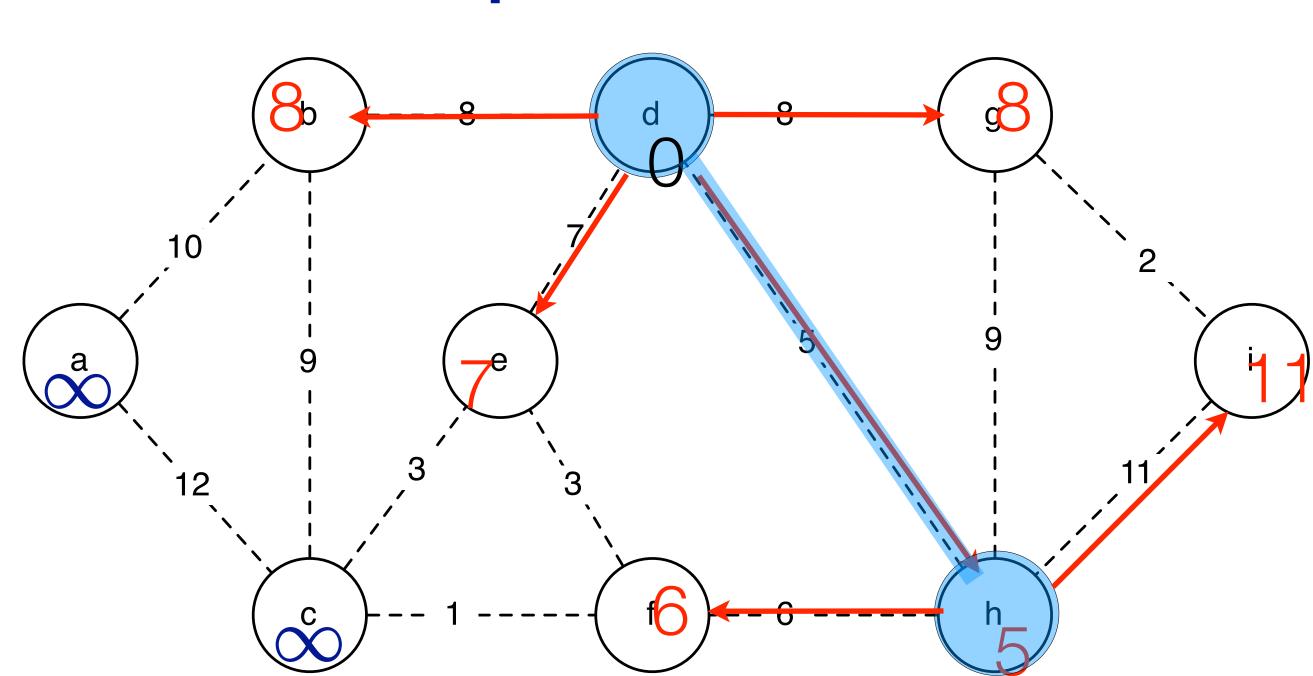
$$(v)) \quad \rhd \text{ Sets } k_v \leftarrow w(u,v)$$



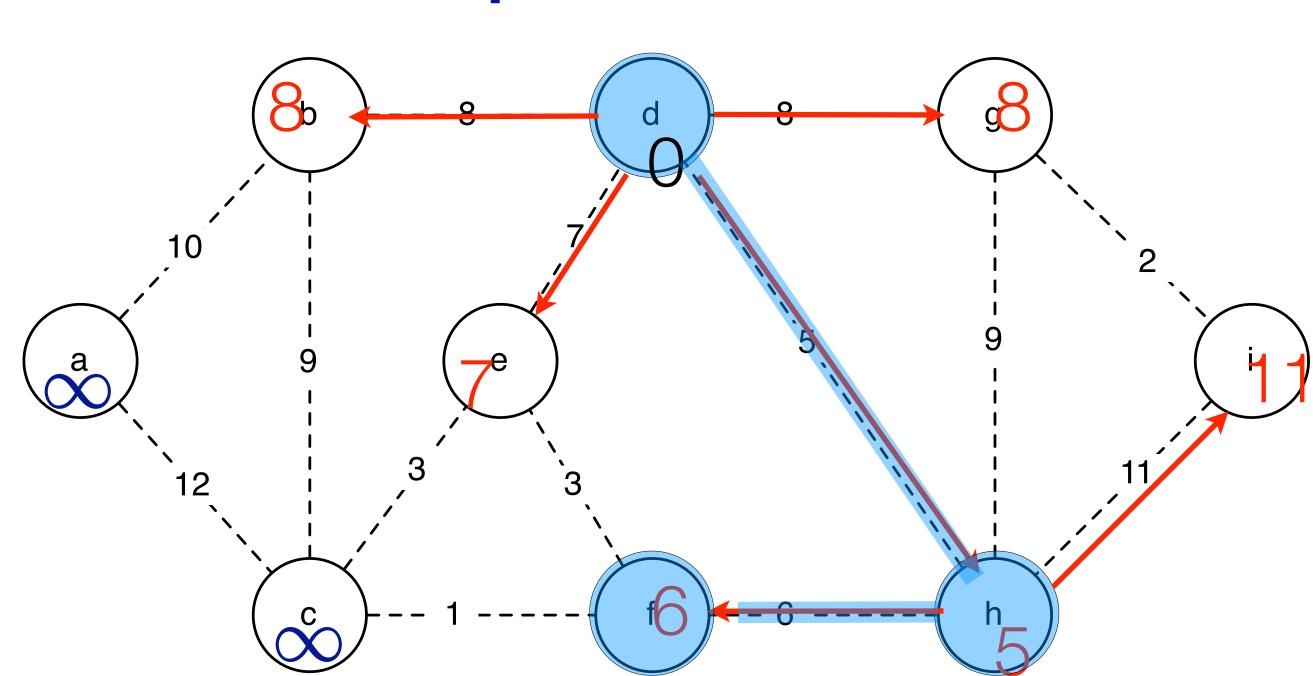
$$(v)) \triangleright \text{Sets } k_v \leftarrow w(u,v)$$



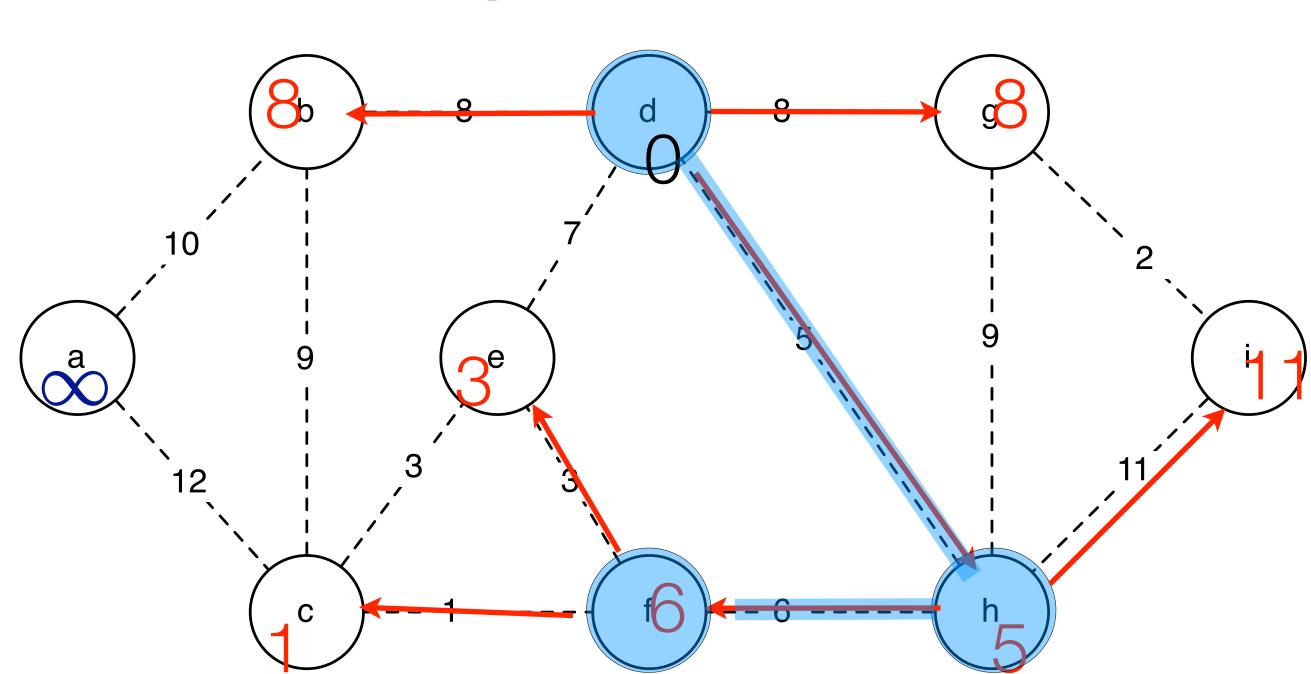
$$(v)) \triangleright \text{Sets } k_v \leftarrow w(u,v)$$



$$(v)) \triangleright \text{Sets } k_v \leftarrow w(u,v)$$



$$(v)) \triangleright \text{Sets } k_v \leftarrow w(u,v)$$



$$(v)) \triangleright \text{Sets } k_v \leftarrow w(u,v)$$

running time

 $\operatorname{PRIM}(G = (V, E))$ 1 $Q \leftarrow \emptyset$ \triangleright Q is a Priority Queu Initialize each $v \in V$ with key k_v 2L Pick a starting node r and set k_r 3 Insert all nodes into Q with key k4 while $Q \neq \emptyset$ 56 **do** $u \leftarrow \text{EXTRACT-MIN}(Q)$ for each $v \in Adj(u)$ 7 do if $v \in Q$ and $w(u, v) < k_v$ 8 9 then $\pi_v \leftarrow u$ DECREASE-KEY(Q, v, w(u, v)) \triangleright Sets $k_v \leftarrow w(u, v)$ 10

$$\substack{\leftarrow \infty, \pi_v \leftarrow \text{NII}} \leftarrow 0$$

implementation

 $\operatorname{PRIM}(G = (V, E))$ 1 $Q \leftarrow \emptyset$ \triangleright Q is a Priority Queue 2 Initialize each $v \in V$ with key $k_v \leftarrow \infty, \pi_v \leftarrow \text{NIL}$ 3 Pick a starting node r and set $k_r \leftarrow 0$ 4 Insert all nodes into Q with key k_v . while $Q \neq \emptyset$ 5 **do** $u \leftarrow \text{EXTRACT-MIN}(Q)$ 6 for each $v \in Adj(u)$ 7do if $v \in Q$ and $w(u, v) < k_v$ 8 9 then $\pi_v \leftarrow u$ 10DECREASE-KEY(Q, v, w(u, v)) \triangleright Sets $k_v \leftarrow w(u, v)$

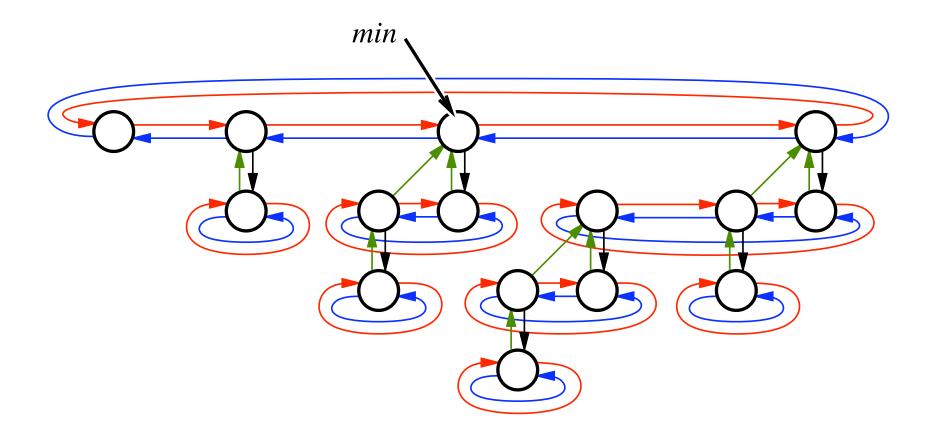
$O(V \log V + E \log V) = O(E \log V)$

implementation

priority queue O(log n) insert: makequeue: n extractmin: $O(\log n)$ O(log n) decreasekey:

- use a priority queue to keep track of light edges
 - fibonacci heap log n n amortized log n O(1)amortized

fibonacci heap



faster implementation

 $\operatorname{PRIM}(G = (V, E))$ 1 $Q \leftarrow \emptyset \qquad \vartriangleright \ Q$ is a Priority Queue 2 Initialize each $v \in V$ with key $k_v \leftarrow \infty, \pi_v \leftarrow \text{NIL}$ 3 Pick a starting node r and set $k_r \leftarrow 0$ 4 Insert all nodes into Q with key k_v . while $Q \neq \emptyset$ 5 **do** $u \leftarrow \text{EXTRACT-MIN}(Q)$ 6 for each $v \in Adj(u)$ 78 do if $v \in Q$ and $w(u, v) < k_v$ 9 then $\pi_v \leftarrow u$ 10 DECREASE-KEY(Q, v, w(u, v)) \triangleright Sets $k_v \leftarrow w(u, v)$

$O(E + V \log V)$

Research in mst

FREDMAN-TARJAN 84: GABOW-GALIL-SPENCER-TARJAN 86: CHAZELLE 97 CHAZELLE 00 PETTIE-RAMACHANDRAN 02: KARGER-KLEIN-TARJAN 95: (randomized)

Euclidean mst:

 $E + V \log V$ $E \log(\log^* V)$ $E\alpha(V)\log\alpha(V)$ $E\alpha(V)$ (optimal) E

 $V \log V$

Ackerman function

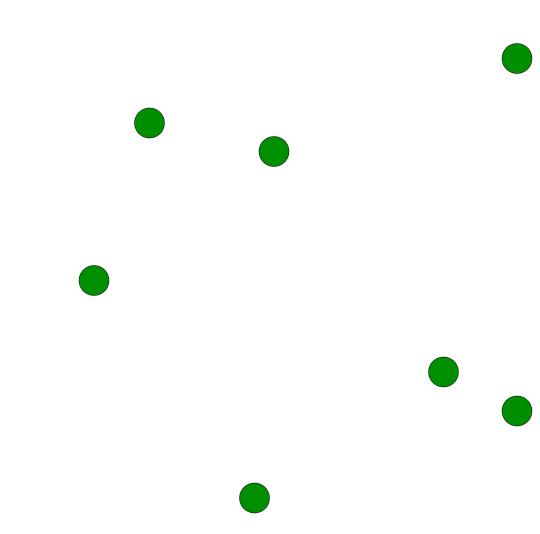
$$A(m,n) = \begin{cases} n+1 & m=0\\ A(m-1,1) & m>0, n=0\\ A(m-1,A(m,n-1)) & m,n>0 \end{cases}$$

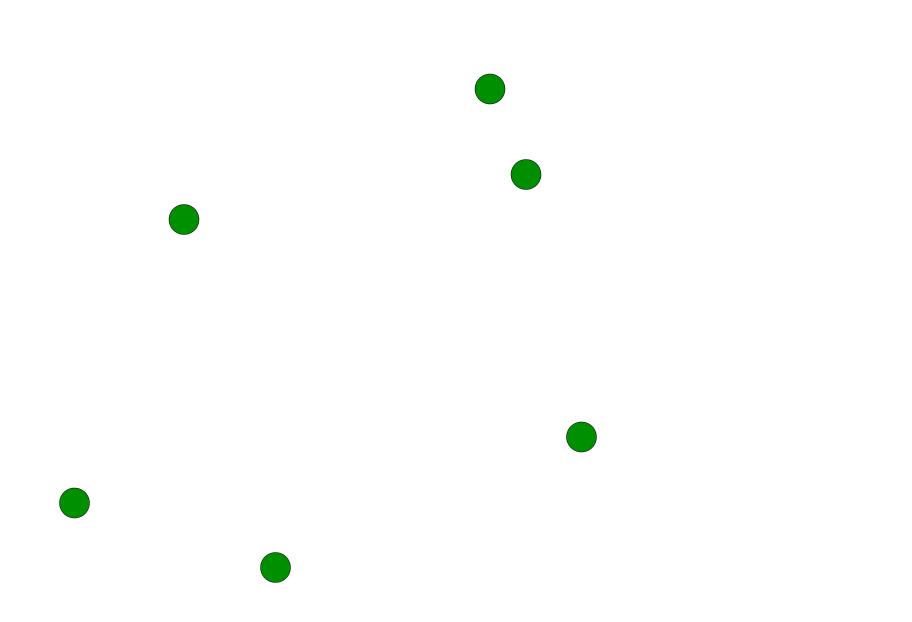
A(4,2) =

$\alpha(n) =$

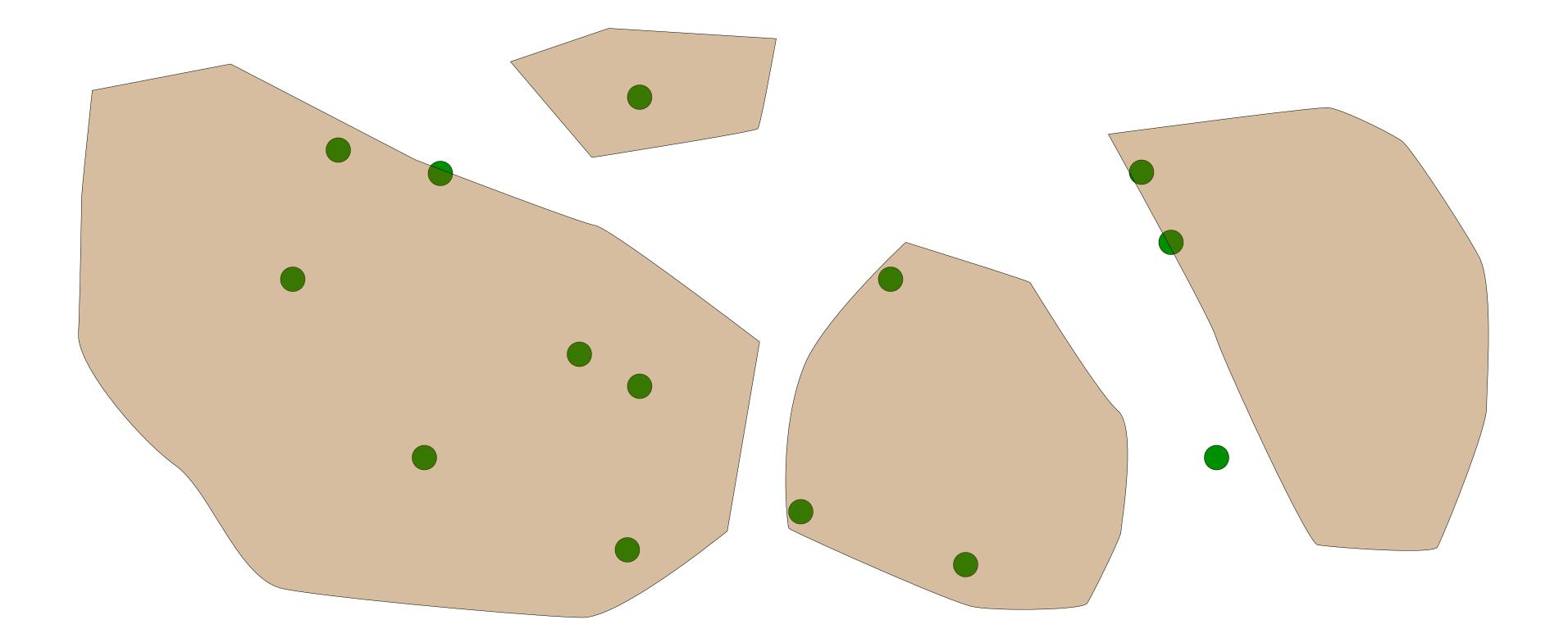
inverse ackerman

application of mst





application of mst



Use Kruskal's algorithm to perform k-clustering.

application of mst

