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A village begins with just a single home.
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At some point, a neighbor moves in.
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And with human nature, they build a road to connect each other.
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Soon others follow, and each wants a way to reach their neighbors.

What is the best way to build such a network?
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The best way to represent the input to this problem is a graph.



graphs 
clrs [ch 22]



A graph is a pair of two sets,  
A set of vertices, and a set of edges. 

Edges may have annotations, such 
as weights, w(e).



G = (V,E)
representation

adjacency list

space:
time list neighbors:
time check an edge:

The first way to represent a graph is via its adjacancy list. 
For the edges, each vertex maintains a list of its neighbors.



G = (V,E)
representation

adjacency list

space:
time list neighbors:
time check an edge:

The first way to represent a graph is via its adjacancy list. 
For the edges, each vertex maintains a list of its neighbors.

a {b,c,d}
b {d}
c {d,e}
d {e}
e {}



G = (V,E)
representation

adjacency list

space:
time list neighbors:
time check an edge:

The first way to represent a graph is via its adjacancy list. 
For the edges, each vertex maintains a list of its neighbors.

a {b,c,d}
b {d}
c {d,e}
d {e}
e {}

O(degree(v))
O(|E|)

O(V)



representation
adjacency matrix

space:
time list neighbors:
time check an edge:

G = (V,E)

The second way to represent a graph is via its adjacancy matrix. 



representation
adjacency matrix

space:
time list neighbors:
time check an edge:

G = (V,E)

The second way to represent a graph is via its adjacancy matrix. 



representation
adjacency matrix

space:
time list neighbors:
time check an edge:

G = (V,E)

O(V)
O(| |)V2

O(1)

The second way to represent a graph is via its adjacancy matrix. 



definition: path
a sequence of nodes 
with the property that 

simple path:
cycle:
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simple path:
cycle:

Path in which each vertex appears at most once.



definition: path
a sequence of nodes 
with the property that 

simple path:
cycle:

Path in which each vertex appears at most once.
Path with the same start and end vertex.



definition:tree

a tree is 

connected graph:



definition:tree

a tree is 

connected graph: A graph G in which for each pair of vertices, 
(u,v), there exists a path from u to v.



definition:tree

a tree is 

connected graph: A graph G in which for each pair of vertices, 
(u,v), there exists a path from u to v.

A connected graph with no cycles
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We want to connect all nodes in G in the cheapest way. 
We want a tree in G with the minimum sum of edge costs.



minimum spanning tree

min
�

(u,v)�T

w(u, v)

T � Elooking for a set of edges that 
(a) connects all vertices 
(b) has the least cost



minimum spanning tree

min
�

(u,v)�T

w(u, v)

T � Elooking for a set of edges that 
(a) connects all vertices 
(b) has the least cost

This object is called a minimum spanning tree.
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facts

how many edges does solution have ?

does solution have a cycle?

min
�

(u,v)�T

w(u, v)

T � Elooking for a set of edges that 
(a) connects all vertices 
(b) has the least cost

V-1

No. Because removing 
the cycle leads to a 
cheaper solution.



Greedy strategy

 add lightest edge that does not create a cycle

start with an empty set of edges A
repeat for v-1 times: 
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1 T ⇥ ⌅
2 repeat V � 1 times:
3 add to T the lightest edge e ⇤ E that does not create a cycle

4

why does this work?



definition: cut



definition: cut

A cut is a partition of V into two sets.
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This is an example of 1 cut, a graph has  many cuts.2V



definition: crossing a cut

A edge  crosses a cut  if  and .e = (x, y) (S, V − S) x ∈ S y ∈ V − S



u � S v ⇥ V � S

definition: crossing a cut
an edge                   crosses a graph cut (S,V-S) ife = (u, v)
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example of a crossing
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Edge  crosses the cut .(b, d) {a, b, h, i}, {c, d, e, f, g}



definition: respect

A set of edges  respects a cut  if no edge in  crosses the cut.A S A



Cut theorem



Cut theorem

Let edge     be the min-weight edge across     
Let                   be any cut that         respects    .

ASuppose the set of edges      is part of an m.s.t.
(S, V ⇤ S) A

(S, V ⇤ S)e

A � {e}Then: is part of an m.s.t.
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Consider these two edges as part of some MST.
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We can redraw the 
graph to identify 
this cut. 

The min cost edge 
that crosses this cut 
is part of some MST.



proof of cut theorem

1 Minimum Spanning Tree Algorithm

Kruskal-pseudocode(G)
1 A ⌅ �
2 repeat V � 1 times:
3 add to A the lightest edge e ⌃ E that does not create a cycle

Theorem 2 Suppose the set of edges A is part of a minimum spanning tree of G =
(V, E). Let (S, V � S) be any cut that respects A and let e be the edge with the minimum
weight that crosses (S, V � S). Then the set A� {e} is part of a minimum spanning tree.

Proof. By assumption, A ⇥ T for some minimum spanning tree T of G.
Case 1 If A � {e} ⇥ T, then the theorem is true already.
Case 2 Suppose A � {e} ⌥⇥ T. Let e = (u, v). We shall construct a new tree T⇧ that
contains A � {e} by changing only a few edges of T. First, draw a picture of the
situation:

Now consider adding edge e to T. This creates a cycle from u to v to u. (why?)
Let e⇧ ⌥= e be the edge on this cycle that crosses (S, V � S). (why must such an

edge e⇧ exist?)
Let T⇧ = T � {e⇧} + {e}. Since T⇧ has V � 1 edges (why?) and since T⇧ is

connected, then T⇧ is also a spanning tree. Now we shall argue that T⇧ is also a
minimum spanning tree. This follows because:

w(T⇧) = w(T) + w(e)� w(e⇧)

Since w(e) ⇤ w(e⇧) (why?), it follows that w(T⇧) ⇤ w(T). Since T is a minimum
spanning tree, this means that the relation must be equality, and therefore T⇧ is
also a minimum spanning tree. �

4
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Kruskal-pseudocode(G)
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2 repeat V � 1 times:
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edge e⇧ exist?)
Let T⇧ = T � {e⇧} + {e}. Since T⇧ has V � 1 edges (why?) and since T⇧ is

connected, then T⇧ is also a spanning tree. Now we shall argue that T⇧ is also a
minimum spanning tree. This follows because:

w(T⇧) = w(T) + w(e)� w(e⇧)
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4

Let .  
If  is already in  then theorem follows.  

Suppose that  is not part of . 
Add  to the tree . 
This creates a cycle. Let  be another edge on this cycle. 
Now consider . 
The weight  since  has min weight. 

e = (u, v)
A ∪ {e} T

A ∪ {e} T
e T

e′ 

T′ = T − {e′ } ∪ {e}
w(T′ ) ≤ w(T) e
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As an example, the set A is in orange. 
The edge e is yellow and T is blue. 
We will construct a T’ which includes A+e.
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proof of cut thm

u

v

As an example, the set A is in orange. 
The edge e is yellow and T is blue. 
We will construct a T’ which includes A+e.

Add e to T, which creates a cycle. 

Let e’ be the first edge on the cycle that 
crosses the cut.



1 Minimum Spanning Tree Algorithm

Kruskal-pseudocode(G)
1 A ⌅ ⌥
2 repeat V � 1 times:
3 add to A the lightest edge e ⇧ E that does not create a cycle

Theorem 2 Suppose the set of edges A is part of a minimum spanning tree of
G = (V,E). Let (S, V � S) be any cut that respects A and let e be the edge with the
minimum weight that crosses (S, V �S). Then the set A�{e} is part of a minimum
spanning tree.

Proof. By assumption, A ⇥ T for some minimum spanning tree T of G.
Case 1 If A � {e} ⇥ T , then the theorem is true already.
Case 2 Suppose A� {e} ⌃⇥ T . Let e = (u, v). We shall construct a new tree T � that
contains A � {e} by changing only a few edges of T . First, draw a picture of the
situation:

Now consider adding edge e to T . This creates a cycle from u to v to u. (why?)
Let e� ⌃= e be the edge on this cycle that crosses (S, V � S). (why must such an

edge e� exist?)
Let T � = T � {e�} + {e}. Since T � has V � 1 edges (why?) and since T � is

connected, then T � is also a spanning tree. Now we shall argue that T � is also a
minimum spanning tree. This follows because:

w(T �) = w(T ) + w(e)� w(e�)

Since w(e) ⇤ w(e�) (why?), it follows that w(T �) ⇤ w(T ). Since T is a minimum
spanning tree, this means that the relation must be equality, and therefore T � is also
a minimum spanning tree. �
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 correctness

Proof: By induction. in step 1, A is part of some MST. 
Suppose that after k steps, A is part of some MST (line 2). 
In line 3, we add an edge e=(u,v). 

Because e does not create a cycle, there are 3 cases to consider:



3 cases for edge e.  
Case 1: e=(u,v) and both u,v are in A.



3 cases for edge e.  
Case 1: e=(u,v) and both u,v are in A.

In this case, set S to be the component that contains {u}



3 cases for edge e.  
Case 1: e=(u,v) and both u,v are in A.

In this case, set S to be the component that contains {u}
The edge e crosses this cut and A respects S. 
By the cut theorem, A+e belongs to an MST.



3 cases for edge e.  
Case 2: e=(u,v) and only u is in A.

The edge e crosses this cut and A respects S.



3 cases for edge e.  
Case 2: e=(u,v) and only u is in A.

The edge e crosses this cut and A respects S.

In this case, set S to be the component that contains {u}



3 cases for edge e.  
Case 3: e=(u,v) and neither u nor v are in A.

In this case, set S to be the component that contains {u}



Theorem 3 The Kruskal algorithm outputs a minimum spanning tree.

Proof. By Induction. At the first step, A is a set of edges that is part of a minimum
spanning tree of G. Suppose this is true by induction for the first i loops of the
algorithm.

Consider the i + 1th iteration and let e = (u, v) be the edge added to A in line
2. By construction, e is the lightest edge in E that does not create a cycle in A.

Since e does not create a cycle in A, e must either connect two connected com-
ponents of A, extend one connected component of A or connect two nodes that are
not covered by A. In the first two cases, let A1 be the connected component in A
that covers u. In the third case, let A1 = {u}.

Consider the graph cut (A1, V � A1). By selection, e is the lightest edge that
crosses this cut: all other edges are either heavier, or they create a cycle in A and
therefore do not cross the cut since they connect nodes in A1 or in V � A1. Thus,
by the previous theorem, A ⌅ {e} must be part of a minimum spanning tree.

During each iteration, line 3 always succeeds. This follows because A is part of
some MST by hypothesis. At the end of the loop, |A| = V � 1. Therefore, A must
be the full spanning tree since it has the correct size. �

2 General Strategy for MST

General-MST-Strategy(G = (V,E))
1 A ⇥ ⇤
2 repeat V � 1 times:
3 Pick a cut (S, V � S) that respects A
4 Let e be min-weight edge over cut (S, V � S)
5 A ⇥ A ⌅ {e}

Question:How does Prim’s algorithm work?

5

S

S

1 Minimum Spanning Tree Algorithm

Kruskal-pseudocode(G)
1 A ⌅ ⌥
2 repeat V � 1 times:
3 add to A the lightest edge e ⇧ E that does not create a cycle

Theorem 2 Suppose the set of edges A is part of a minimum spanning tree of
G = (V,E). Let (S, V � S) be any cut that respects A and let e be the edge with the
minimum weight that crosses (S, V �S). Then the set A�{e} is part of a minimum
spanning tree.

Proof. By assumption, A ⇥ T for some minimum spanning tree T of G.
Case 1 If A � {e} ⇥ T , then the theorem is true already.
Case 2 Suppose A� {e} ⌃⇥ T . Let e = (u, v). We shall construct a new tree T � that
contains A � {e} by changing only a few edges of T . First, draw a picture of the
situation:

Now consider adding edge e to T . This creates a cycle from u to v to u. (why?)
Let e� ⌃= e be the edge on this cycle that crosses (S, V � S). (why must such an

edge e� exist?)
Let T � = T � {e�} + {e}. Since T � has V � 1 edges (why?) and since T � is

connected, then T � is also a spanning tree. Now we shall argue that T � is also a
minimum spanning tree. This follows because:

w(T �) = w(T ) + w(e)� w(e�)

Since w(e) ⇤ w(e�) (why?), it follows that w(T �) ⇤ w(T ). Since T is a minimum
spanning tree, this means that the relation must be equality, and therefore T � is also
a minimum spanning tree. �

4



analysis?1 Minimum Spanning Tree Algorithm

Kruskal-pseudocode(G)
1 A ⌅ ⌥
2 repeat V � 1 times:
3 add to A the lightest edge e ⇧ E that does not create a cycle

Theorem 2 Suppose the set of edges A is part of a minimum spanning tree of
G = (V,E). Let (S, V � S) be any cut that respects A and let e be the edge with the
minimum weight that crosses (S, V �S). Then the set A�{e} is part of a minimum
spanning tree.

Proof. By assumption, A ⇥ T for some minimum spanning tree T of G.
Case 1 If A � {e} ⇥ T , then the theorem is true already.
Case 2 Suppose A� {e} ⌃⇥ T . Let e = (u, v). We shall construct a new tree T � that
contains A � {e} by changing only a few edges of T . First, draw a picture of the
situation:

Now consider adding edge e to T . This creates a cycle from u to v to u. (why?)
Let e� ⌃= e be the edge on this cycle that crosses (S, V � S). (why must such an

edge e� exist?)
Let T � = T � {e�} + {e}. Since T � has V � 1 edges (why?) and since T � is

connected, then T � is also a spanning tree. Now we shall argue that T � is also a
minimum spanning tree. This follows because:

w(T �) = w(T ) + w(e)� w(e�)

Since w(e) ⇤ w(e�) (why?), it follows that w(T �) ⇤ w(T ). Since T is a minimum
spanning tree, this means that the relation must be equality, and therefore T � is also
a minimum spanning tree. �

4



General-MST-Strategy(G = (V,E))
1 A ⇥ ⇤
2 repeat V � 1 times:
3 Pick a cut (S, V � S) that respects A
4 Let e be min-weight edge over cut (S, V � S)
5 A ⇥ A ⌅ {e}

6

In fact, this approach can be generalized into a family of algorithms.



Prim’s algorithm
General-MST-Strategy(G = (V,E))
1 A ⇥ ⇤
2 repeat V � 1 times:
3 Pick a cut (S, V � S) that respects A
4 Let e be min-weight edge over cut (S, V � S)
5 A ⇥ A ⌅ {e}

6

A is a subtree 
edge e is lightest edge that grows the subtree
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implementation

idea: Maintain the set A. Update neighbors of A with weights.

Use a new data structure, priority queue to track light edges.



new data structure
A priority queue is a data structure with 3 operations:

Make:

ExtractMin:

DecreaseKey:



binary heap
full tree, key value <= to key of children
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binary heap
full tree, key value <= to key of children
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binary heap
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full tree, key value <= to key of children
how to extractmin?
how to decreasekey?



implementation
use a priority queue to keep track of light edges

makequeue:
insert:

extractmin:
decreasekey:



Prim’s algorithm



prim(G = (V,E))
1 Q� ⇧ � Q is a Priority Queue
2 Initialize each v ⇤ V with key kv �⇥, �v � nil
3 Pick a starting node r and set kr � 0
4 Insert all nodes into Q with key kv.
5 while Q ⌅= ⇧
6 do u� extract-min(Q)
7 for each v ⇤ Adj (u)
8 do if v ⇤ Q and w(u, v) < kv

9 then �v � u
10 decrease-key(Q, v,w(u, v)) � Sets kv � w(u, v)

6

implementation
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prim(G = (V,E))
1 Q� ⇧ � Q is a Priority Queue
2 Initialize each v ⇤ V with key kv �⇥, �v � nil
3 Pick a starting node r and set kr � 0
4 Insert all nodes into Q with key kv.
5 while Q ⌅= ⇧
6 do u� extract-min(Q)
7 for each v ⇤ Adj (u)
8 do if v ⇤ Q and w(u, v) < kv

9 then �v � u
10 decrease-key(Q, v,w(u, v)) � Sets kv � w(u, v)
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prim(G = (V,E))
1 Q� ⇧ � Q is a Priority Queue
2 Initialize each v ⇤ V with key kv �⇥, �v � nil
3 Pick a starting node r and set kr � 0
4 Insert all nodes into Q with key kv.
5 while Q ⌅= ⇧
6 do u� extract-min(Q)
7 for each v ⇤ Adj (u)
8 do if v ⇤ Q and w(u, v) < kv

9 then �v � u
10 decrease-key(Q, v,w(u, v)) � Sets kv � w(u, v)

6



prim

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

�

�

�

�

0
8

5

8

7

prim(G = (V,E))
1 Q� ⇧ � Q is a Priority Queue
2 Initialize each v ⇤ V with key kv �⇥, �v � nil
3 Pick a starting node r and set kr � 0
4 Insert all nodes into Q with key kv.
5 while Q ⌅= ⇧
6 do u� extract-min(Q)
7 for each v ⇤ Adj (u)
8 do if v ⇤ Q and w(u, v) < kv

9 then �v � u
10 decrease-key(Q, v,w(u, v)) � Sets kv � w(u, v)
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prim(G = (V,E))
1 Q� ⇧ � Q is a Priority Queue
2 Initialize each v ⇤ V with key kv �⇥, �v � nil
3 Pick a starting node r and set kr � 0
4 Insert all nodes into Q with key kv.
5 while Q ⌅= ⇧
6 do u� extract-min(Q)
7 for each v ⇤ Adj (u)
8 do if v ⇤ Q and w(u, v) < kv

9 then �v � u
10 decrease-key(Q, v,w(u, v)) � Sets kv � w(u, v)
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prim(G = (V,E))
1 Q� ⇧ � Q is a Priority Queue
2 Initialize each v ⇤ V with key kv �⇥, �v � nil
3 Pick a starting node r and set kr � 0
4 Insert all nodes into Q with key kv.
5 while Q ⌅= ⇧
6 do u� extract-min(Q)
7 for each v ⇤ Adj (u)
8 do if v ⇤ Q and w(u, v) < kv

9 then �v � u
10 decrease-key(Q, v,w(u, v)) � Sets kv � w(u, v)
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1
prim(G = (V,E))
1 Q� ⇧ � Q is a Priority Queue
2 Initialize each v ⇤ V with key kv �⇥, �v � nil
3 Pick a starting node r and set kr � 0
4 Insert all nodes into Q with key kv.
5 while Q ⌅= ⇧
6 do u� extract-min(Q)
7 for each v ⇤ Adj (u)
8 do if v ⇤ Q and w(u, v) < kv

9 then �v � u
10 decrease-key(Q, v,w(u, v)) � Sets kv � w(u, v)

6



running time
prim(G = (V,E))
1 Q� ⇧ � Q is a Priority Queue
2 Initialize each v ⇤ V with key kv �⇥, �v � nil
3 Pick a starting node r and set kr � 0
4 Insert all nodes into Q with key kv.
5 while Q ⌅= ⇧
6 do u� extract-min(Q)
7 for each v ⇤ Adj (u)
8 do if v ⇤ Q and w(u, v) < kv

9 then �v � u
10 decrease-key(Q, v,w(u, v)) � Sets kv � w(u, v)

6



O(V log V + E log V) = O(E log V)

implementation
prim(G = (V,E))
1 Q� ⇧ � Q is a Priority Queue
2 Initialize each v ⇤ V with key kv �⇥, �v � nil
3 Pick a starting node r and set kr � 0
4 Insert all nodes into Q with key kv.
5 while Q ⌅= ⇧
6 do u� extract-min(Q)
7 for each v ⇤ Adj (u)
8 do if v ⇤ Q and w(u, v) < kv

9 then �v � u
10 decrease-key(Q, v,w(u, v)) � Sets kv � w(u, v)

6



implementation

use a priority queue to keep track of light edges

makequeue:
insert:

extractmin:
decreasekey:

priority queue fibonacci heap
O(log n) 

O(log n )
O(log n )

n 
log n 

log n 
O(1)

n 
amortized

amortized



Algorithms Non-Lecture B: Fibonacci Heaps

A kth order binomial tree, which I’ll abbreviate Bk, is defined recursively. B0 is a single node.
For all k > 0, Bk consists of two copies of Bk�1 that have been linked together, meaning that the
root of one Bk�1 has become a new child of the other root.

B
4

B
4

5
B

Binomial trees of order 0 through 5.

Binomial trees have several useful properties, which are easy to prove by induction (hint, hint).

• The root of Bk has degree k.

• The children of the root of Bk are the roots of B0, B1, . . . , Bk�1.

• Bk has height k.

• Bk has 2k nodes.

• Bk can be obtained from Bk�1 by adding a new child to every node.

• Bk has
�k
d

⇥
nodes at depth d, for all 0 � d � k.

• Bk has 2k�h�1 nodes with height h, for all 0 � h < k, and one node (the root) with height k.

Although we normally don’t care in this class about the low-level details of data structures, we
need to be specific about how Fibonacci heaps are actually implemented, so that we can be sure
that certain operations can be performed quickly. Every node in a Fibonacci heap points to four
other nodes: its parent, its ‘next’ sibling, its ‘previous’ sibling, and one of its children. The sibling
pointers are used to join the roots together into a circular doubly-linked root list. In each binomial
tree, the children of each node are also joined into a circular doubly-linked list using the sibling
pointers.

min
min

A high-level view and a detailed view of the same Fibonacci heap. Null pointers are omitted for clarity.

With this representation, we can add or remove nodes from the root list, merge two root lists
together, link one two binomial tree to another, or merge a node’s list of children with the root list,
in constant time, and we can visit every node in the root list in constant time per node. Having
established that these primitive operations can be performed quickly, we never again need to think
about the low-level representation details.

2

fibonacci heap



O(E + V log V)

faster implementation
prim(G = (V,E))
1 Q� ⇧ � Q is a Priority Queue
2 Initialize each v ⇤ V with key kv �⇥, �v � nil
3 Pick a starting node r and set kr � 0
4 Insert all nodes into Q with key kv.
5 while Q ⌅= ⇧
6 do u� extract-min(Q)
7 for each v ⇤ Adj (u)
8 do if v ⇤ Q and w(u, v) < kv

9 then �v � u
10 decrease-key(Q, v,w(u, v)) � Sets kv � w(u, v)

6



E + V log V

E log(log� V)

E�(V)

E

E�(V) log �(V)

V log V

Research in mst

FREDMAN-TARJAN 84:
GABOW-GALIL-SPENCER-TARJAN 86:
CHAZELLE 97
CHAZELLE 00
PETTIE-RAMACHANDRAN 02:
KARGER-KLEIN-TARJAN 95:

(randomized)

(optimal)

Euclidean mst:



A(m, n) =

�
⇤

⇥

n + 1 m = 0
A(m� 1, 1) m > 0, n = 0
A(m� 1, A(m, n� 1)) m, n > 0

A(4, 2) =

Ackerman function



�(n) =

inverse ackerman



application of mst



application of mst

Use Kruskal’s algorithm to perform k-clustering.



application of mst


