5800

Shortest paths

mar 8/10 2022
shelat

simple graph questions

WHAT IS THE LENGTH OF THE PATH FROM A TO E?
shortest path property

DEFINITION:
$\delta(s, v)=$ length of the shortest path from
s using edger in G to r.
sum of the weight along the edges on the path
\rightarrow By converilian, we set th. s to es if there is so path from stow v.

shortest path property

DEFINITION:
$\delta(s, v)$ Length of the shortest path from s to v , set to ∞ if there is no path from s to v

shortest paths from a

Algorithm
$\operatorname{Dij} \operatorname{kstra}(G, w, s) \quad s \in V$.
(1) initialize $d_{v}=\infty$ for $v \in S, \quad d_{s} \in 0$.
(2) Add all nodes to Q
(3) while Q is Nor empty
$u \in$ extraction (Q)
for each neighbor v of u : (io. $\exists e=(u, v) \in E)$

$$
\text { if } \begin{array}{r}
d u+w(u, v)<d v \\
d_{v}=d u+w(u, v)
\end{array}
$$

decrease Vie $(v, d v)$

```
Dijkstra \((G=(V, E), s)\)
    \(1 \quad\) for all \(v \in V\)
    \(2 \quad\) do \(d_{u} \leftarrow \infty\)
    3
        \(\pi_{u} \leftarrow\) NIL
    \(d_{s} \leftarrow 0\)
    \(Q \leftarrow \operatorname{MAKEQUEUE}(V) \quad \triangleright\) use \(d_{u}\) as key
    while \(Q \neq \emptyset\)
        do \(u \leftarrow \operatorname{Extractmin}(Q)\)
        for each \(v \in \operatorname{Adj}(u)\)
        do if \(d_{v}>d_{u}+w(u, v)\)
            then \(d_{v} \leftarrow d_{u}+w(u, v)\)
            \(\pi_{v} \longleftarrow u\)
                        DECREASEKEY \((Q, v)\)
```


Very similar structure

```
DiJkstra \((G=(V, E), s)\)
for all \(v \in V\)
        do \(d_{u} \leftarrow \infty\)
        \(\pi_{u} \leftarrow\) NIL
\(d_{s} \leftarrow 0\)
\(Q \leftarrow \operatorname{MakEQUEUE}(V) \quad \triangleright\) use \(d_{u}\) as key
while \(Q \neq \emptyset\)
        do \(u \leftarrow \operatorname{Extractmin}(Q)\)
        for each \(v \in \operatorname{Adj}(u)\)
                do if \(d_{v}>d_{u}+w(u, v)\)
                    then \(d_{v} \leftarrow d_{u}+w(u, v)\)
                        \(\pi_{v} \leftarrow u\)
                        \(\operatorname{DECREASEKEY}(Q, v)\)
```

$\operatorname{PRIM}(G=(V, E))$
$Q \leftarrow \emptyset \quad \triangleright Q$ is a Priority Queue
2 Initialize each $v \in V$ with key $k_{v} \leftarrow \infty, \pi_{v} \leftarrow$ NIL
3 Pick a starting node r and set $k_{r} \leftarrow 0$
4 Insert all nodes into Q with key k_{v}.
while $Q \neq \emptyset$
do $u \leftarrow \operatorname{EXTRACT}-\operatorname{Min}(Q)$
for each $v \in \operatorname{Adj}(u)$
do if $v \in Q$ and $w(u, v)<k_{v}$
then $\pi_{v} \leftarrow u$
$\operatorname{DECREASE-KEY}(Q, v, w(u, v$
$\theta(E \operatorname{lig}(U)) \quad$ or
$\theta(E+V \cdot \log V)$

running time

```
\(\operatorname{DiJkstra}(G=(V, E), s)\)
    1 for all \(v \in V\)
    2
3 \(\quad\) do \(\frac{d_{u} \leftarrow \infty}{\pi_{u} \leftarrow \mathrm{NIL}}\)
    \(d_{s} \leftarrow 0\)
    \(Q \leftarrow \operatorname{MakEQUEUE}(V) \quad \triangleright\) use \(d_{u}\) as key
    while \(Q \neq \emptyset\)
                do \(u \leftarrow \operatorname{Extractmin}(Q)\)
        for each \(v \in \operatorname{Adj}(u)\)
        do if \(d_{v}>d_{u}+w(u, v)\)
                        then \(d_{v} \leftarrow d_{u}+w(u, v)\)
                            \(\operatorname{DECREASEKEY}(Q, v)\)
```

The running time is $\Theta(E \log V)$ because each DecreaseKey operation is called at most once on each edge.
why does Dijkstra work?
sp from stor spfrom stow u.
triangle inequality:

$$
\rightarrow \quad \forall(u, v) \in E, \delta(s, v) \leq \delta(s, u)+w(u, v)
$$

Def of the shortest path

UPPER BOUND: $\quad \underline{d_{v}} \geq \delta(s, v)$
du begins at D^{0}. So this is true at the start. And, we only update du in the algorithm in line 10 if we have identified a node u sit. $d_{u}+w(u, v)$ is smaller.

Theorem
Given any weighted directed graph $G=(V, E)$ with non-negative weights, and a source , Dijkstra (G, s) terminates with $d_{\psi}=\delta(s, v)$ for all $v \in V$.
Prob: Let S be the set if nudes not in Q.
At lie $5, S$ is empty.
Prputy 1: for all $v \in S, d_{v}=\delta(s, v)$
At line 5, th. 3 grouty hods

Theorem

Given any weighted directed graph $G=(V, E)$ with non-negative weights, and a source e, $\operatorname{Dijkstra}(G, s)$ terminates with $d_{u}=\delta(s, v)$ for all $v \in V$.

Let S be the set of elements not in Q . At the beginning, this set is empty.

Theorem

Given any weighted directed graph $G=(V, E)$ with non-negative weights, and a source e, Dijkstra(G, s) terminates with $d_{u}=\delta(s, v)$ for all $v \in V$.

Let S be the set of elements not in Q .
At the beginning, this set is empty.
Property 1: For all $v \in S, d_{v}=\delta(s, v)$.

PrOOf (cont) suppose this property holds for the first i iterations of the loop. Now considu the $(i i 1)^{\text {st }}$ iteration of loop at line 6.
In line 7 , the node u is removal from the Q.
$\Rightarrow u$ is added to s. FACC1. At this print $d u=d z+w(z, u)$ for
Considu any path ρ four $S \leadsto u$. Some node in V. Since $Z \in S$ at that Let $e>(x, y)$ be the first edge on point, by the inductive hypthesi, the path ρ to cross the cut $(S, V-S) . \quad d u=\delta(s, z)+w(z, u)$.

$$
\begin{aligned}
& w(p)= w(s \sim x)+w(x, y)+w(y, u) \\
& \delta(s, x)+w(x, y)
\end{aligned}
$$

$$
\begin{aligned}
& w(p)=w(s \sim x)+w(x, y)+w(y, u) . \\
& (b y I-H) \rightarrow \xrightarrow{\delta(s, x)+w(x, y)}
\end{aligned}
$$

Because $x \in S$, then $d y \leq \delta(s, x)+w(x, y)$
Since $x \in S_{;}$

This implies

$$
w(p) \geqslant d y+\delta(y, \varphi)
$$

Because we used extractmin in dive 7; we know

$$
\begin{aligned}
& d u \leq d y \\
& \Rightarrow \quad w(p) \geqslant d u+\delta(y, u)
\end{aligned}
$$

But $\delta(y, y) \geqslant 0$, and therefore we know that every path from (s, u) has weight at least du.

Thus, $d_{u}=\delta(s, u)$.

Proof
 Suppose this property holds for the first i iterations of the loop.

Let u be the node extracted on line 7. By lines, $9,10,11$, it follows that $d_{u}=$ $d_{z}+w(z, u)$ for some node $z \in S$. By the hypothesis, $d_{u}=\delta(s, z)+w(z, u)$.

Consider any path p from s to u. Let $e=(x, y)$ be the first edge on path p that crosses cut $(S, V-S)$. By lines 9,10,11 and the inductive hypothesis, $d_{y} \leq$ $\delta(s, x)+w(x, y)$. We now analyze the weight of path p :

$$
\begin{aligned}
w(p) & =w(s \leadsto x)+w(x, y)+w(y \leadsto u) \\
& \geq \delta(s, x)+w(x, y)+\delta(y, u)
\end{aligned}
$$

Substituting from above, we have that

$$
w(p) \geq d_{y}+\delta(y, u)
$$

However, by line $6, d_{u} \leq d_{y}$, and so

$$
w(p) \geq d_{u}+\delta(y, u)
$$

Since all edges have non-negative weight, $\delta(y, u) \geq 0$ and so

$$
w(p) \geq d_{u}
$$

which implies that $d_{u}=\delta(s, u)$.

