

mar 23/24 2022 shelat

Max flow

Min Cut

"Consider a rail network connecting two cities by way of a number of intermediate cities, where each link of the network has a number assigned to it representing its capacity. Assuming a steady state condition, find a maximal flow from one given city to the other."

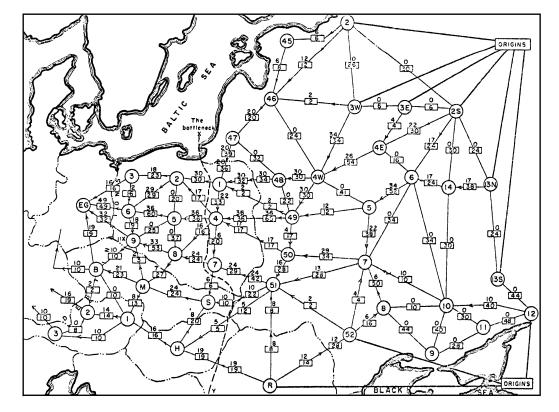


Figure 4 From Harris and Ross [3]: Schematic diagram of the railway network of the Western Soviet Union and East European countries, with a maximum flow of value 163,000 tons from Russia to Eastern Europe and a cut of capacity 163,000 tons indicated as 'The bottleneck'

courtesy Alexander Schrijver

flow networks

$$G = (V, E) \qquad C: E \to \mathbb{N} \qquad \text{capacities}$$

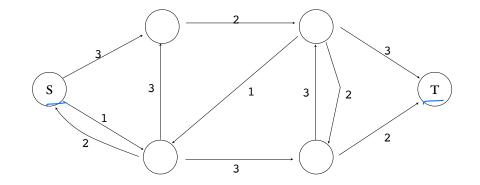
source + sink: source SEV sink teV.

flow networks

G = (V, E)

source + sink: node s, and t

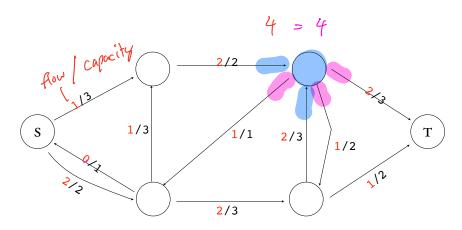
 $C(\mathcal{U}, \mathcal{O})$ assumed to be 0 if no (u,v) edge capacities:



flow
$$\mathbb{R}^{t}$$

A flow is a map from edges to numbers: $f: \in \mathbb{R}$

 $f(e) \leq c(e)$ for every $e \in E$ CAPACITY CONSTRAINT: for every node JEV-ESt} FLOW CONSTRAINT: $= \sum_{\substack{v \in V}} f(v_1 v) = \sum_{\substack{v \in V}} f(v_1 w)$ $= \sum_{\substack{v \in V}} f(s_1 v) - \sum_{\substack{v \in V}} f(v_1 s)$ $= \sum_{\substack{v \in V}} f(s_1 v) - \sum_{\substack{v \in V}} f(v_1 s)$ (inflow = out flow) Netflow vatil



 $|f|=(|t^2)-0=3.$

max flow problem

Given a graph G = (V, E) and capacities $c : E \to \mathbb{N}$, compute

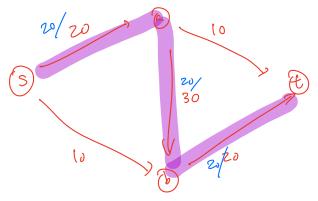
max flow problem

Given a graph G = (V, E) and capacities $c : E \to \mathbb{N}$, compute

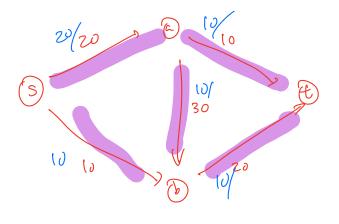
 $\operatorname{argmax}_{f}|f|$

i.e., the maximum flow over all valid flows.

greedy solution?



 $\left| f(=z) \right|$



\f[= 30

hundreds of applications

bipartite matching edge-disjoint paths node-disjoint paths scheduling baseball elimination resource allocations

will discuss many of these applications soon

Algorithms for max flow

(v,e) Residual graphs
given a graph G, and a flow f, we will define

$$G_f = (V, E_f)$$
, the residual graph.
 C_f
 $E_f : \cdot include$ the edge $e \in E$
Set the view capacity to be $C_f(e) = c(e) - f(e)$
 $\cdot if e = (u,v)^{eE}$ and $f(e) \ge 0$, then add
the edge
 (v,u) with $C_f(v,u) = f(e)$.

Residual graphs

 $G_f = (V, E_f)$ A graph derived from G and a valid flow f.

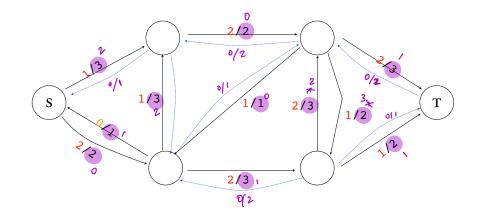
Residual graphs

 $G_f = (V, E_f)$

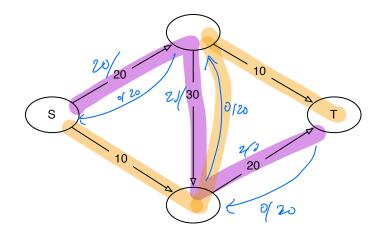
A graph derived from G and a valid flow f.

Same vertices, but difference edges:

example residual graph



why residual graphs ?



augmenting paths

DEF: any path from s to t in the residual graph

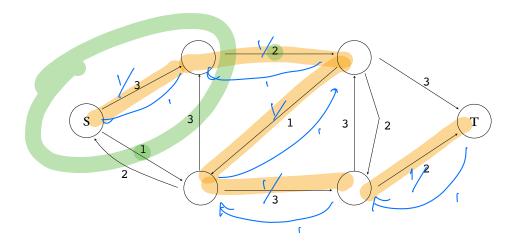
augmenting paths

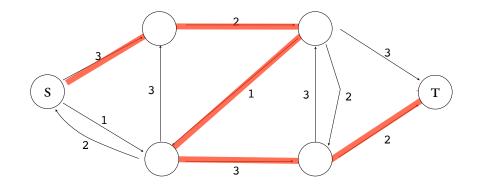
DEF: A path from s to t in the residual graph G_{f}

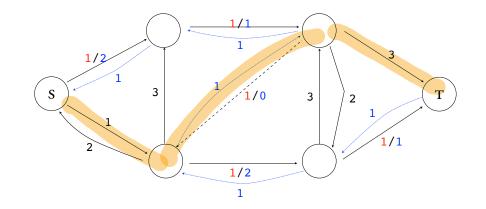
Ford-Fulkerson

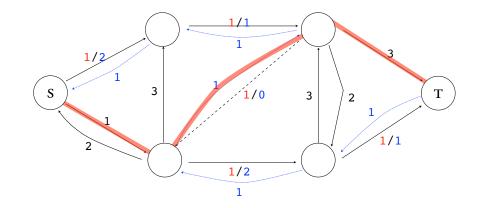
 $\begin{array}{ll} (\mathcal{G} \in (\mathcal{V}_{1} \boldsymbol{\boxtimes}), \ \mathcal{C} \\ \\ \text{INITIALIZE} & f(u,v) \leftarrow 0 \ \forall u,v \\ \\ \text{WHILE EXISTS AN AUGMENTING PATH } p \text{ in } & G_{f} \\ \\ \text{AUGMENT } f \text{WITH} & c_{f}(p) = \min_{(u,v) \in p} c_{f}(u,v) \end{array}$

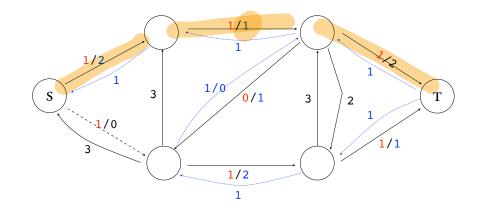
First augmenting parth.

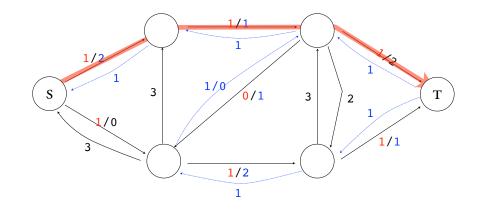


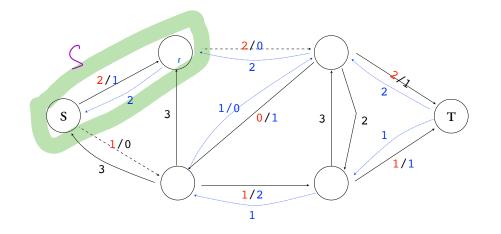












|f| = 3

FORD-FULKERSON

 $\begin{array}{ll} \text{INITIALIZE} & f(u,v) \leftarrow 0 \ \forall u,v \\ \hline \\ \text{WHILE EXISTS AN AUGMENTING PATH p in G_f \\ & \text{AUGMENT } f \text{ with } & c_f(p) = \min_{(u,v) \in p} c_f(u,v) \end{array}$

TIME TO FIND AN AUGMENTING PATH:
$$\Theta \left(\vDash \forall V \right)$$

BPS, PPS

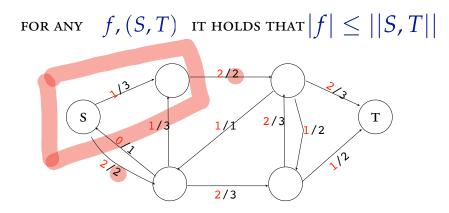
NUMBER OF ITERATIONS OF WHILE LOOP:

0(B.V) . [f]

Cuts
S-test
Deforacut: partition of V into
$$(S,V-S)$$
 such that
 $S\in S$ $t\in V-S$
cost of a cut:
 $||S,T|| = \frac{\text{sum of the capacities of the}}{\text{edges that coss the cut:}}$
 $\sum_{v\in S} \sum_{v\in T} c(u,v)$

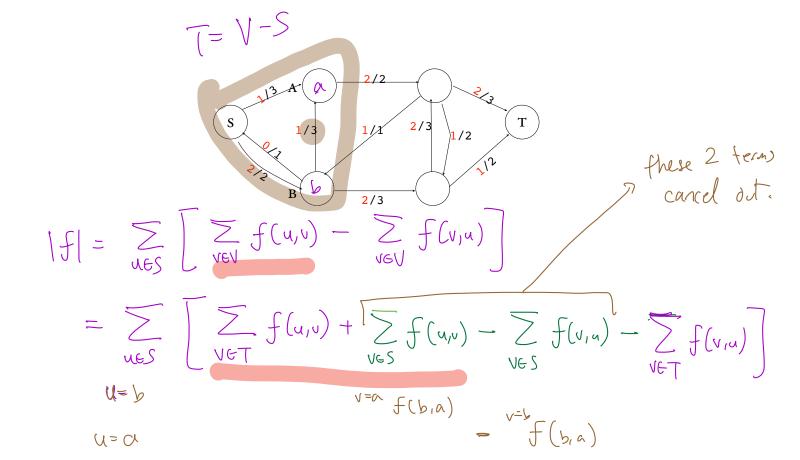
Iemma: [min cut] for any
$$f, (S, T)$$

 $f_{low} \leq cort of cut$
 $f_{low} = cort of cut$
 $f_{low} \leq cort of cut$



EXAMPLE:

A property to remember
FOR ANY
$$f, (S, T)$$
 IT HOLDS THAT $|f| \le ||S, T||$
PROOF: Considur some flow f .
 $|f| = \sum_{v \in V} f(s_{v}v) - \sum_{v \in V} f(v_{v}s)$ Consider the set $S = \frac{2}{5}s, c_{v}b, ..., \frac{3}{5}$
 $(3) |f| = \sum_{v \in V} f(s_{v}v) - \sum_{v \in V} f(v_{v}s) + \sum_{v \in V} f(v_{v}v) - \sum_{v \in V} f(v_{v}u) = 0$
 $\sum_{v \in V} (\sum_{v \in V} f(u_{v}v) - \sum_{v \in V} f(v_{v}u))$ by flow constrained
 $\frac{2}{5}s$
 $(4) |f| = \sum_{v \in V} f(u_{v}v) - \sum_{v \in V} f(v_{v}u)$



For any f, (S, T) it holds that $|f| \le ||S, T||$

(FINISHING PROOF)

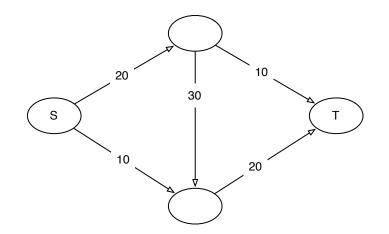
$$= \sum_{u \in S} \left[\sum_{v \in T} f(u,v) + \sum_{v \in S} f(u,v) - \sum_{v \in T} f(v,u) - \sum_{v \in T} f(v,u) \right]$$

$$\begin{split} |f| &= \sum_{u \in S} \left[\sum_{v \in T} f(u, v) - \sum_{v \in T} f(v, u) \right] \\ &\leq \sum_{u \in S} \sum_{v \in T} f(u, v) = \sum_{v \in S} \sum_{v \in T} c(u, v) = \left[\left| S_{t} T \right| \right] \end{split}$$

CAPACITY CONSTRACT

-

why residual graphs ?



augmenting paths

DEF:

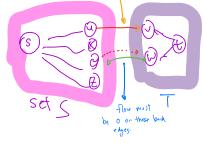
Thm: max flow = min cut

 $\max_{f} |f| = \min_{S,T} ||S,T||$

If f is a max flow, then Gf has no augmenting paths.

the set S= Zv [] a path from s ~>v in Gif with Gr(p) 20 } Define T = V - S. () ses, and teT. (S,T) is therefore a cut.

e_{current} thm: max flow = min cut

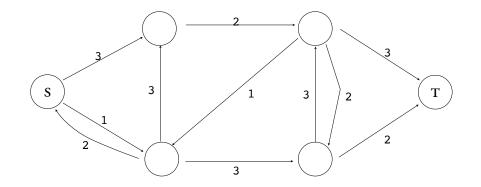


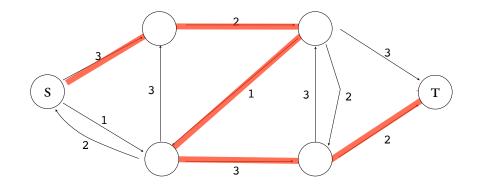
 $F(NALLY), \qquad \textcircled{O} F$ $|f| = \sum_{u \in S} \left[\sum_{v \in T} f(u,v) - \sum_{v \in T} f(v,u) \right]$ $= \sum_{v \in T} \left[f(u,v) - \sum_{v \in T} f(v,u) \right]$ $= \sum_{v \in T} \left[f(u,v) - \sum_{v \in T} f(v,u) \right]$ $= \sum_{v \in T} \left[f(u,v) - \sum_{v \in T} f(v,u) \right]$

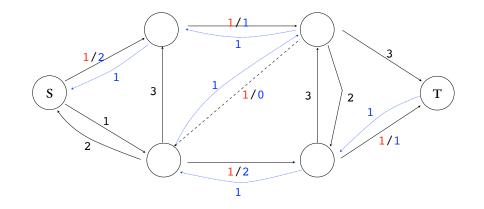
 $\max_{f} |f| = \min_{S,T} ||S,T||$ O Consider some ues and NET. $f(u_1v) = c(u_1v)$. If not, then $C_f(u_1v) > 0$ and so VES. [®] F(w, y) = 0 for any w∈ 7 y∈ S If it were positive, then there would be a residual edge from you with (F(y,w)70. So w would be in S!!

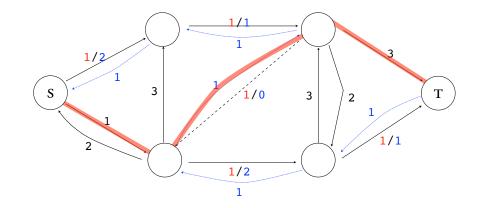
ford-fulkerson

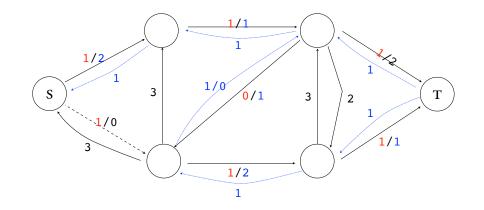
INITIALIZE $f(u, v) \leftarrow 0 \forall u, v$ while exists an augmenting path p in G_f augment f with $c_f(p) = \min_{(u,v) \in p} c_f(u, v)$

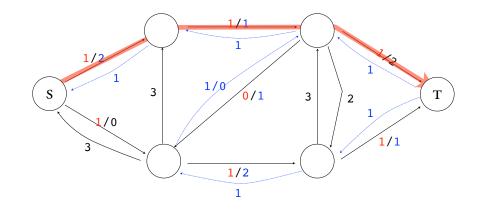


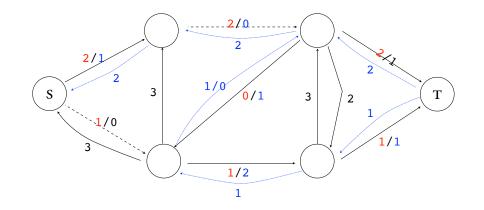










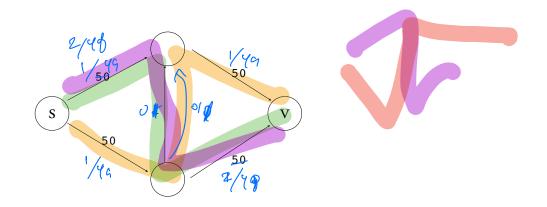


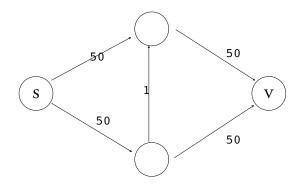
FORD-FULKERSON

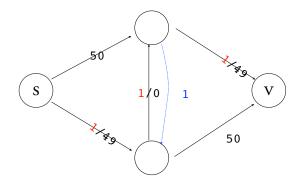
 $\begin{array}{ll} \text{INITIALIZE} & f(u,v) \leftarrow 0 \ \forall u,v \\ \text{WHILE EXISTS AN AUGMENTING PATH } p \ \text{In } G_f \\ \text{AUGMENT} f \text{with} & c_f(p) = \min_{(u,v) \in p} c_f(u,v) \end{array}$

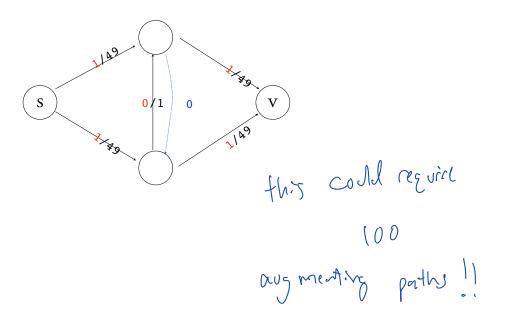
TIME TO FIND AN AUGMENTING PATH:

NUMBER OF ITERATIONS OF WHILE LOOP:

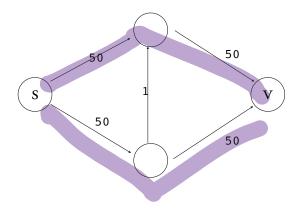




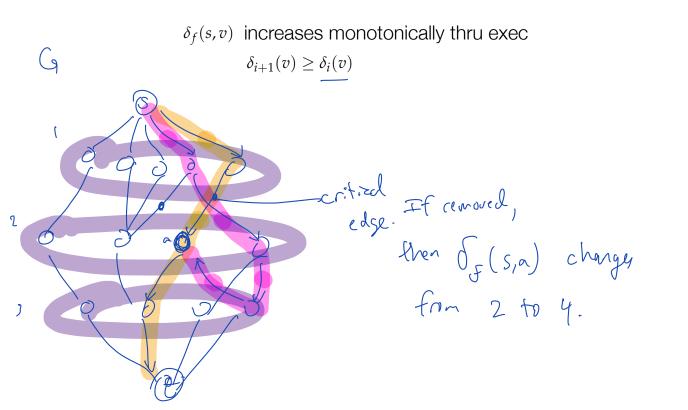


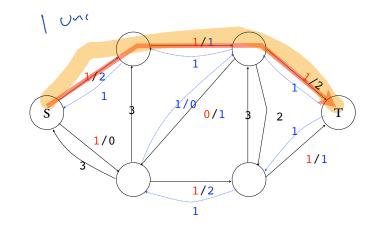


root of the problem

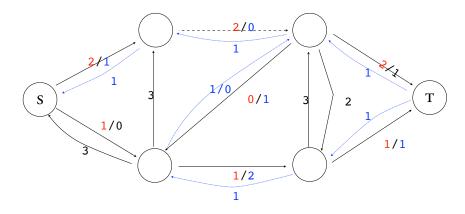


G=CV(E) ~ jreh Edmonds-Karp 2 $f \sim f_{low} \sim G_{low}$ choose path with fewest edges first. (BFS) $\delta_f(s,v)$: fewest number of edges on a path from s to v in Gf Can be compited in O(VIE) time USING BFS.

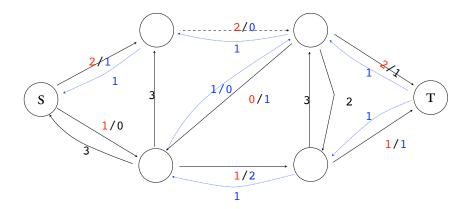




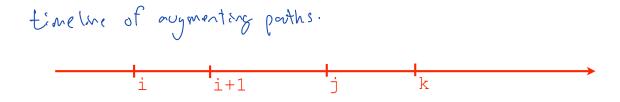
for every augmenting path, some edge is critical.

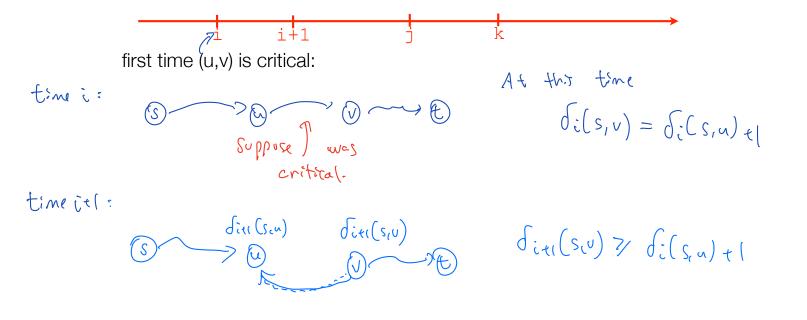


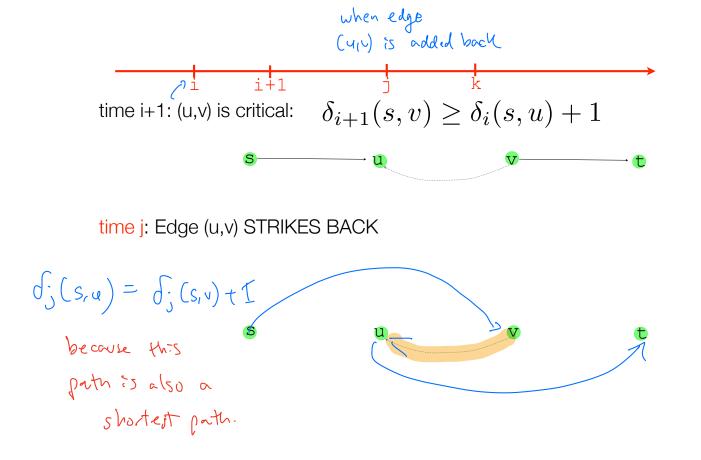
critical edges are removed in next residual graph.

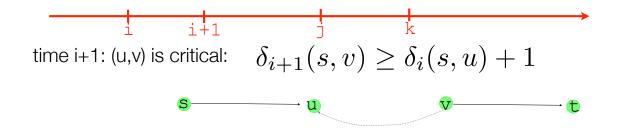


key idea: how many times can an edge be critical?

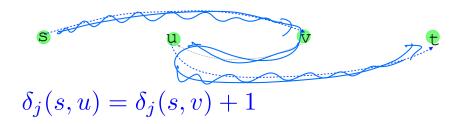


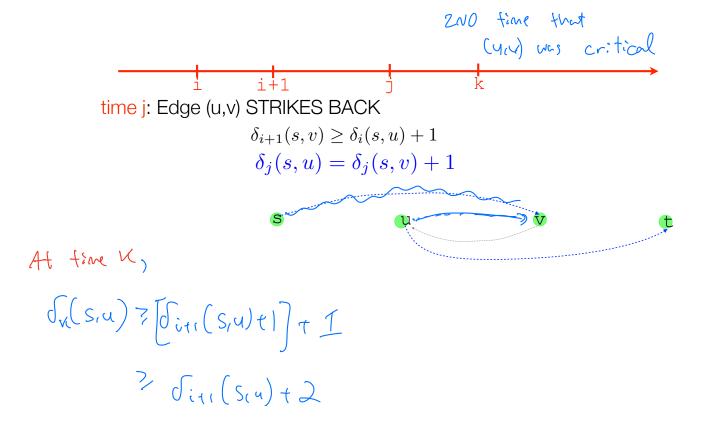


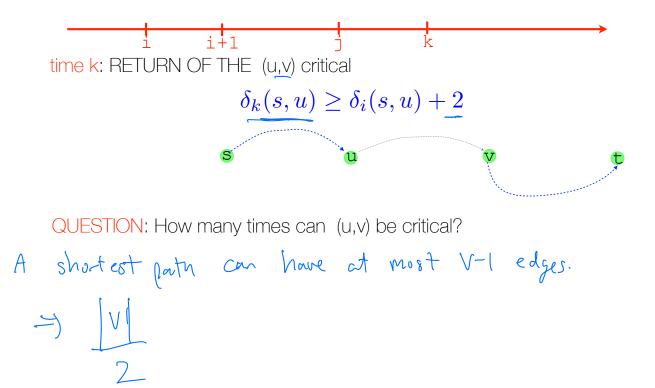


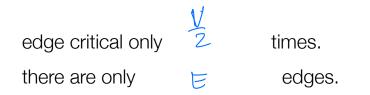


time j: Edge (u,v) STRIKES BACK







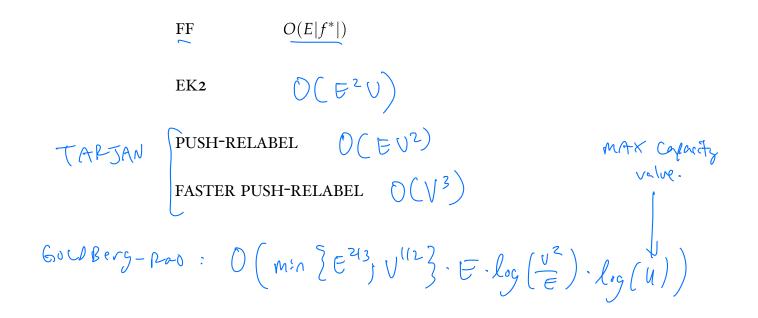


ergo, total # of augmenting paths: $\partial (\vDash)$

time to find an augmenting path: \bigcirc (\triangleright)

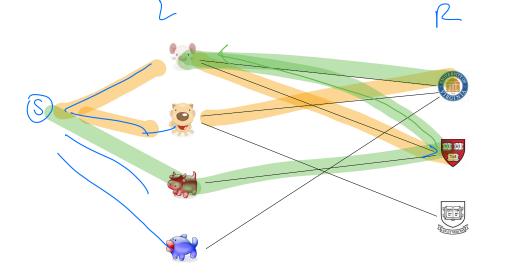
total running time of E-K algorithm:

 $O(E^2V)$



Bipartite Matchings

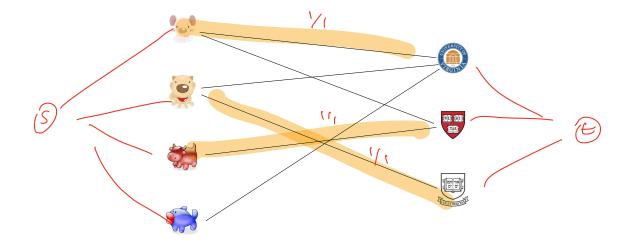
maximum bipartite matching



(E) Orly 2 Students can match

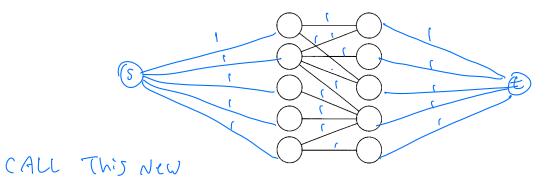
all edge, So between L to R

maximum bipartite matching

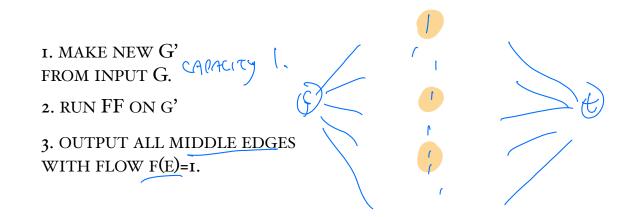


bipartite matching

algorithm



Bipontote Matching (G) algorithm



correctness

IF G HAS A MATCHING OF SIZE K, THEN G' has a flow f, [f] = K.Proof : Let Mt be a matching for G w/ [M]=K. Construct a flow f for G' s.t. IfI=K. f(e) = 1 if $e = (u, v) \in M$. () This flow satisfies $f(s, y) = (if e > Cu, v) \in M$ the capacity t flour constraints f(V,t)=(if e>(4,0) €M (2) |f|=Vi by inspection.

correctness

IF G' HAS A FLOW OF K, THEN G has a notching of site K. Proof iden: add all of the edges from L for that have f(e)=1 to the MATCHING. By Flow constraint, each node on the left can only have influen I, and thus can only have I unit of outflow.

FF integrality theorem

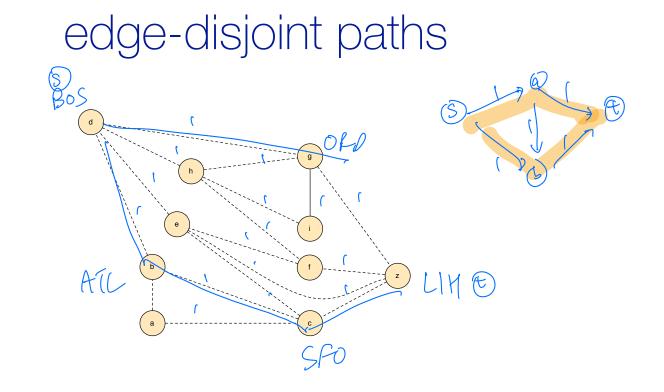
IF CAPACITIES ARE ALL INTEGRAL, THEN the FF max flow will have integral values. Prof: By induction. At the start of FF, the flow fis 0 and therefore integral: Suppose the flow was integral after i steps. [TODO at home: argue why on the inlat step, the flow will still be integral].

correctness

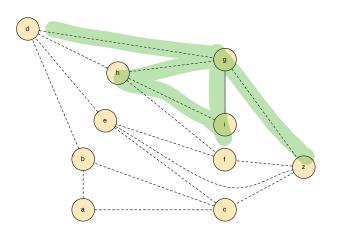
IF G' has a flow of K, then G has K-matching.

OAt and of FF, the max flow for - the graph G' is integral. Define the set M= Se | f(e) = | and e=(x,y), xtl, yER3 . Because C(e)=1, by the capacity constraint $f(e) \leq c(e)$, and so by integrality, f(e) = 0 or 1. Thus for all VEL, v is incident to at most one edge in M. By the min cut, | m |= K. by defing \$, T as we did before.

running time $O(E \cdot [f()) \text{ bot we know that } (f(= O(V)))$ $O(E \cdot V)$



algorithm



- 1. Compute max flow
- 2. Remove all edges with f(e) = 0.
- 3. Walk from s.
 - 1. If you reach a node you have visited before, erase flow along path
 - 2. If you reach t, add this path to your set, erase flow along path.

IF G HAS K DISJOINT PATHS, THEN

IF G' HAS A FLOW OF K, THEN

