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Figure 1 Figure from Tolstŏı [7] to illustrate a negative cycle

In their basic paper Maximal Flow through a
Network (published in 1954), Ford and Fulker-
son [1] mention that the maximum flow prob-
lem was formulated to them by T.E. Harris as
follows:

“Consider a rail network connecting two cities
by way of a number of intermediate cities,
where each link of the network has a number
assigned to it representing its capacity. As-
suming a steady state condition, find a maxi-
mal flow from one given city to the other.”

It inspired Ford and Fulkerson to their fa-
mous Max-Flow Min-Cut Theorem: The maxi-
mum amount of flow that can be sent along
a network from a set of sources to a set of
destinations, subject to a given capacity up-
per bound, is equal to the minimum capacity
of the cuts of the network that separate all
sources from all destinations.

In their 1962 book Flows in Networks, Ford
and Fulkerson [2] give a more precise refer-
ence to the origin of the problem:

“It was posed to the authors in the spring of

1955 by T. E. Harris, who, in conjunction with
General F. S. Ross (Ret.), had formulated a
simplified model of railway traffic flow, and
pinpointed this particular problem as the cen-
tral one suggested by the model [11].”

Ford-Fulkerson’s reference 11 is a secret re-
port by Harris and Ross [3] entitled Funda-
mentals of a Method for Evaluating Rail Net
Capacities, dated 24 October 1955 and writ-
ten for the US Air Force. At our request, the
Pentagon downgraded it to ‘unclassified’ on
21 May 1999.

In fact, the Harris-Ross report solves a
relatively large-scale maximum flow problem
coming from the railway network in the West-
ern Soviet Union and Eastern Europe (‘satel-
lite countries’). And the interest of Harris and
Ross was not to find a maximum flow but
rather a minimum cut (‘interdiction’) of the
Soviet railway system. (Recall that the report
was written for the Air Force.) We quote:

“Air power is an effective means of interdict-
ing an enemy’s rail system, and such usage is
a logical and important mission for this Arm.

As in many military operations, however, the
success of interdiction depends largely on
how complete, accurate, and timely is the
commander’s information, particularly con-
cerning the effect of his interdiction-program
efforts on the enemy’s capability to move men
and supplies. This information should be
available at the time the results are being
achieved.

The present paper describes the funda-
mentals of a method intended to help the
specialist who is engaged in estimating rail-
way capabilities, so that he might more read-
ily accomplish this purpose and thus assist
the commander and his staff with greater ef-
ficiency than is possible at present.”

The Harris-Ross report stresses that spe-
cialists remain needed to make up the mod-
el (which is always a good tactic to get new
methods accepted):

“The ability to estimate with relative accuracy
the capacity of single railway lines is large-
ly an art. Specialists in this field have no
authoritative text (insofar as the authors are
informed) to guide their efforts, and very few
individuals have either the experience or tal-
ent for this type of work. The authors assume
that this job will continue to be done by the
specialist.”‘

Whereas experts are needed to set up the
model, to solve it is routine (when having the
‘work sheets’, which were added to the re-
port).

The Harris-Ross report describes an appli-
cation to the Soviet and East European rail-
ways. For the data it refers to several se-
cret reports of the Central Intelligence Agency
(CIA) on sections of the Soviet and East Euro-
pean railway networks. After the aggregation
of railway divisions to vertices, the network
has 44 vertices and 105 (undirected) edges.

The report applies flow techniques to ob-
tain a maximum flow from sources in the So-
viet Union to destinations in East European
‘satellite’ countries (Poland, Czechoslovakia,
Austria and East Germany) but the main objec-
tive was to find the corresponding minimum
cut separating the sources from the destina-
tions. In the report, the minimum cut is indi-
cated as ‘The bottleneck’ (see Figure 4).

While Tolstŏı and Harris-Ross had the
same railway network as object, their objec-
tives were dual.

Figure 2 A ‘koploper’
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Figure 3 Timetable Amsterdam-Vlissingen and Vlissingen-Amsterdam

Rolling stock circulation in the Netherlands
We will finally describe a more recent (and
more peaceful) application of flow methods
to railways, as used by Nederlandse Spoor-
wegen for Timetable 2007.

NS runs an hourly train service on its route
Amsterdam-Rotterdam-Roosendaal-Vlissingen
and vice versa, with the timetable shown
above.

The trains have more stops but for our pur-
poses only those given in the table are of inter-
est since at the stations given train sections
can be coupled or separated. For each of the
stages of any scheduled train, NS has esti-
mated the number of passengers, as given in
the table on the next page (all data concerns
weekdays and 2nd class seats).

The problem to be solved is:

What is the minimum amount of train stock
necessary to perform this train service in such
a way that at each stage there are enough
seats?

In order to answer this question, one
should know a number of further character-
istics and constraints. In a first version of the
problem considered, the train stock consist-
ed of one type of two-way train units (‘koplop-
ers’), each consisting of three carriages. Each
unit has 163 seats.

Each unit has at both ends an engineer’s
cabin and units can be coupled together up to
a certain maximum length (often 15 carriages,
meaning in this case 5 train units).

The train length can be changed, by cou-
pling or decoupling units, at the terminal sta-
tions of the line, that is at Amsterdam and
Vlissingen and en route at the intermediate
stations Rotterdam and Roosendaal. Any
train unit decoupled from a train arriving at
place p at time t can be linked up to any
other train departing from p at any time later
than t (the Amsterdam-Vlissingen schedule is

such that in practice this gives enough time
to make the necessary switchings).

A last condition is that for each place
p � {Amsterdam, Rotterdam, Roosendaal,
Vlissingen}, the number of train units stay-
ing overnight at p should be constant during
the week (but may vary for different places).
This requirement is made to facilitate survey-
ing the stock and to equalize at any place
the load of overnight cleaning and mainte-
nance throughout the week. It is not re-
quired that the same train unit, after a night
in Roosendaal, for example, should return to
Roosendaal at the end of the day. Only the
number of units is of importance.

Given these problem data and characteris-

Figure 4 From Harris and Ross [3]: Schematic diagram of the railway network of the Western Soviet Union and East Euro-
pean countries, with a maximum flow of value 163,000 tons from Russia to Eastern Europe and a cut of capacity 163,000 tons
indicated as ‘The bottleneck’

tics, one may ask for the minimum number of
train units that should be available to perform
the daily cycle of train rides required.

It is assumed that if there is sufficient stock
for Monday till Friday then this should also
be enough for the weekend services since at
the weekend a few early trains are cancelled
and on the remaining trains there is a smaller
expected number of passengers. Moreover, it
is not taken into consideration that stock can
be exchanged during the day with other lines
of the network. In practice this will happen
but initially this possibility is ignored.

A network model
If only one type of railway stock is used, clas-
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flow networks

capacities:

source + sink: node s, and t
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max flow problem

Given a graph  and capacities , computeG = (V, E) c : E → ℕ

ARGMAX If I
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max flow problem

Given a graph  and capacities , computeG = (V, E) c : E → ℕ

argmaxf | f |
i.e., the maximum flow over all valid flows.
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hundreds of applications

bipartite matching 
edge-disjoint paths 
node-disjoint paths 
scheduling 
baseball elimination 
resource allocations

will discuss many of these applications soon



Algorithms for max flow



Residual graphs
given a graphÉ and a flow f we will define
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Residual graphs
A graph derived from G and a valid flow f.



Residual graphs
A graph derived from G and a valid flow f.

Same vertices, but di!erence edges:
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augmenting paths
def:
any path from s to t in the residualgraph



augmenting paths
def: A path from  to  in the residual graph .s t Gf



Ford-Fulkerson

initialize
while exists an augmenting path p in 

augment f with  
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ford-fulkerson

initialize
while exists an augmenting path p in 

augment f with  

time to find an augmenting path:

number of iterations of while loop:
BFSPFS
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Cuts
Def of a cut:

cost of a cut:
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A property to remember
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augmenting paths
def:



Thm: max flow = min cut

If f is a max flow, then Gf has no augmenting paths.
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ford-fulkerson

initialize
while exists an augmenting path p in 

augment f with  
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ford-fulkerson

initialize
while exists an augmenting path p in 

augment f with  

time to find an augmenting path:

number of iterations of while loop:
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Edmonds-Karp 2
choose path with fewest edges first.

� f (s, v) :

GeCViel a graph
f a flow on G BFS

fewest number of edges on a path
from s to u in Gf
Can be computed in OCVT E time

using BFS
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i i+1 j k
time j: Edge (u,v) STRIKES BACK
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i i+1 j k
time k: RETURN OF THE  (u,v) critical 

s u v t

�k(s, u) � �i(s, u) + 2

QUESTION: How many times can  (u,v) be critical? 

A shortestpath can have at most V l edges
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edge critical only                    times.

there are only                           edges.

ergo, total # of augmenting paths: 

time to find an augmenting path: 

total running time of E-K algorithm:
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maximum bipartite matching

go between L to R

only 2

Student's

Tatch



maximum bipartite matching

y



bipartite matching

problem: Given a grift G Curie find the
largest set M E E such that each

Ivel or ver is incident to
at most one edge in M



Chapter 7 Network Flow

& The Problem

One of our original goals i a developing the Maximum-Flow Problem was to

be able to solve the Bipartite Matching Problem, and we now show how to

do this. Recall that a bipartite graph G = (V, E) is an undirected graph whose

node set can be partitioned as V = X U Y, with the property that every edge

e E E has one end in X anJ the other end in Y. A matching M in G is a subset

of the edges M C E such that each node appears in at most one edge in M.

The Bipartite Matching Prcblem is that of finding a matching in G of largest

possible size.

0 Designing the Algorithm

The graph defining a matching problem is undirected, while flow networks are

directed; but it is actually riot difficult to use an algorithm for the Maximum-

Flow Problem to find a ma imum matching.

Beginning with the graph G in an instance of the Bipartite Matching

Problem, we construct a flow network G' as shown in Figure 7.9. First we

direct all edges in G from X to Y. We then add a node s, and an edge (s, x)

from s to each node in X. We add a node t, and an edge (y, t) from each node

in Y to t. Finally, we give each edge in G' a capacity of 1.

We now compute a maximum s-t flow in this network G'. We will discover

that the value of this maxn mum is equal to the size of the maximum matching

in G. Moreover, our analysis will show how one can use the flow itself to

recover the matching.

(a) (b)

Figure 7.9 (a) A bipartite graph. (b) The corresponding flow network, with all capacities
equal to 1.
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algorithm
1. MAKE NEW G’
FROM INPUT G.
2. RUN FF ON G’

3. OUTPUT ALL MIDDLE EDGES
WITH FLOW F(E)=1.

BipartiteMatchingCG

I

FY e



correctness
IF G HAS A MATCHING OF SIZE K, THEN G has a flow f Ifl K

Proof fet Mk be a matching forG w Inkle
construct a flow f for G sit Ifkk
Fe l if e Cup em This flow satisfies
f soul l if e can em the capacity t

flat I if e cu yen flow constraints

Ifl k by inspection



correctness
IF G’ HAS A FLOW OF K, THEN G has a matching of site K

Proofiden add all of the edges from L for
that have fee 4 to the matching
By flow constraint each node on
the left can only have inflow
I and thus can only have
I unit of outflow



integrality theorem
IF CAPACITIES ARE ALL INTEGRAL, THEN 

FF
the Ff maxflow will have

integral values

Prf By induction At the start of ff the flow f is o
and therefore integral
Suppose the flow was integral after i steps

ToDo at home argue why on the aelst step the
flow will still be integral



correctness
IF G’ HAS A FLOW OF K, THEN G HAS K-MATCHING.

At end of Ff the matflow for a graph G is integral

Define the set Me e I feel4 and etx.gl xel yer
Because Cle l bythe capacity constraint

Fle Ecce and sobyintegrality feel d or I
Thus for all rel u is incident to atmost oneedge inM

Bythe mincut In k bydefing S T as we did before
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O E Ifl but we down that If OC

O EV



f

c

d

h

b

a

e
i

g

z

edge-disjoint paths
Bos

p stiff
a on to

Sfo



algorithm

f

c

d

h

b

a

e
i

g

z



1. Compute max flow 
2. Remove all edges with f(e) = 0. 
3. Walk from s. 

1. If you reach a node you have visited before, 
erase flow along path 

2. If you reach t, add this path to your set, erase 
flow along path.



analysis
IF G HAS K DISJOINT PATHS, THEN 



analysis
IF G’ HAS A FLOW OF K, THEN 
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