

shelat

Max flow

Min Cut

"Consider a rail network connecting two cities by way of a number of intermediate cities, where each link of the network has a number assigned to it representing its capacity. Assuming a steady state condition, find a maximal flow from one given city to the other."

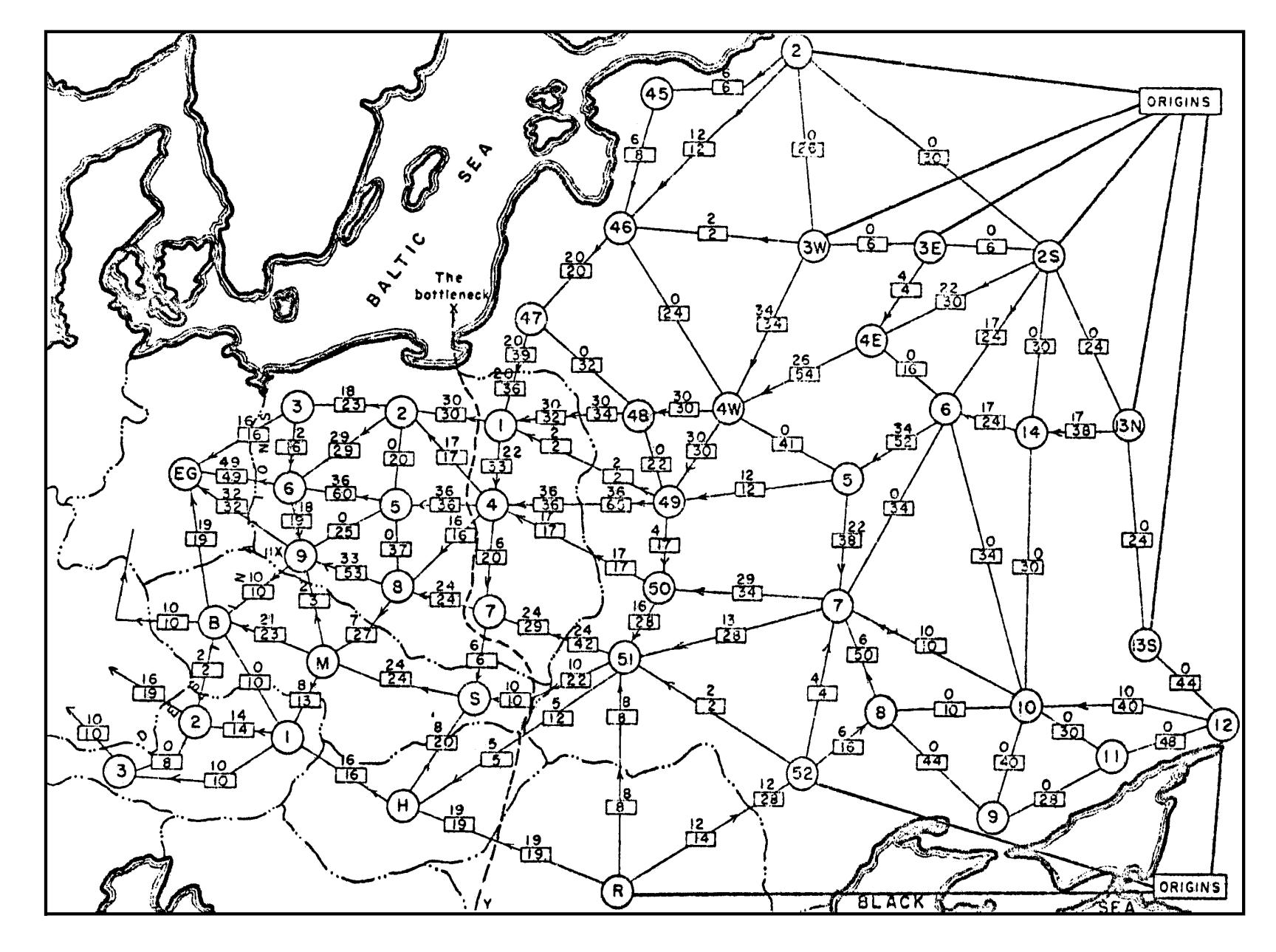


Figure 4 From Harris and Ross [3]: Schematic diagram of the railway network of the Western Soviet Union and East European countries, with a maximum flow of value 163,000 tons from Russia to Eastern Europe and a cut of capacity 163,000 tons indicated as 'The bottleneck'

G = (V, E)

source + sink:

capacities:

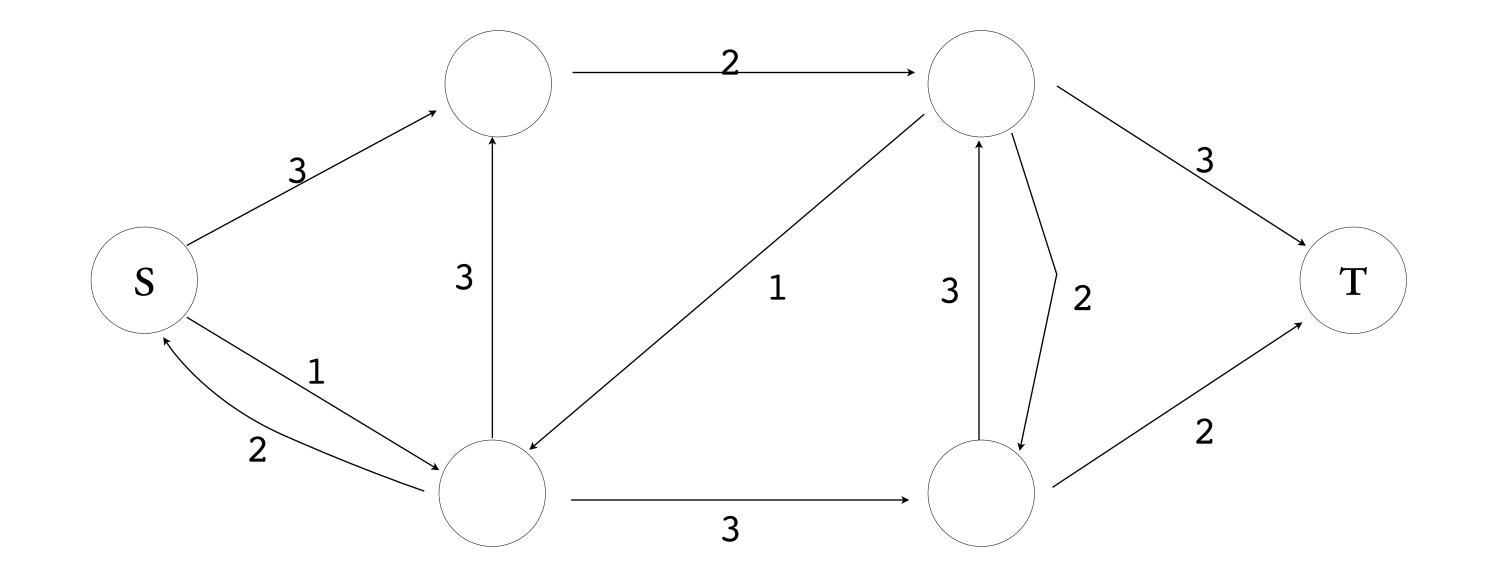
flow networks

G = (V, E)

- source + sink: node s, and t
- capacities:

flow networks

 $C(\mathcal{U}, \mathcal{V})$ assumed to be 0 if no (u,v) edge



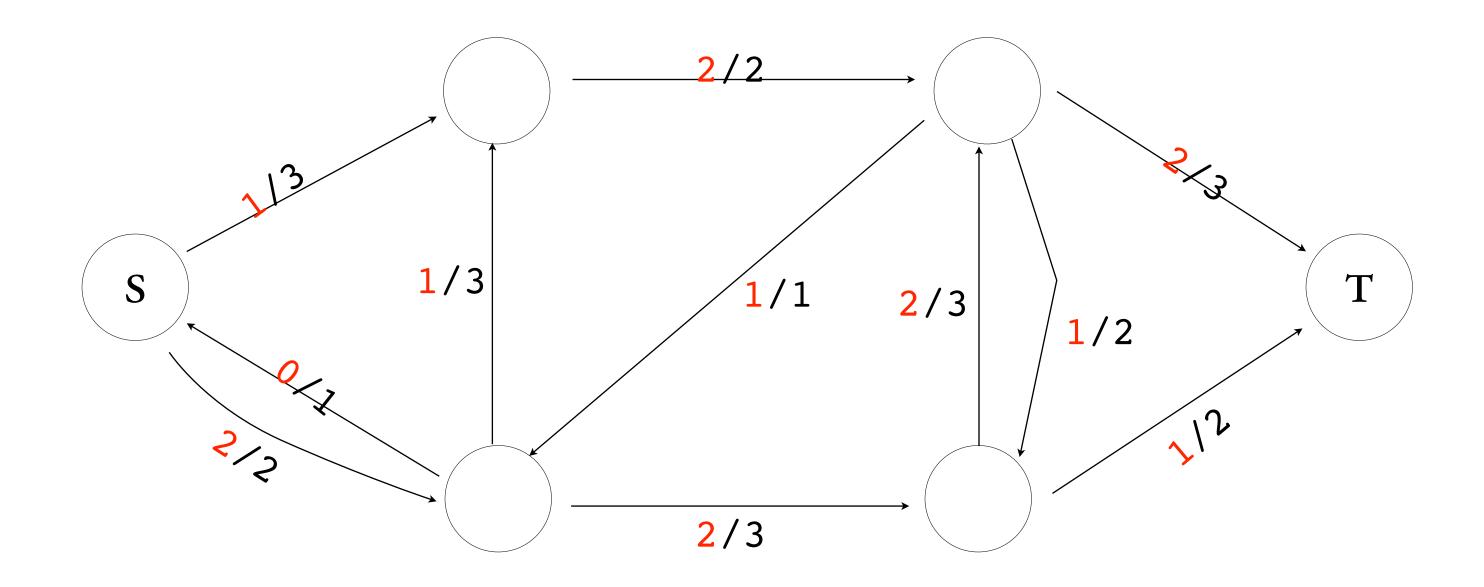
example

A <u>FLOW</u> IS A MAP FROM EDGES TO NUMBERS:

CAPACITY CONSTRAINT:

FLOW CONSTRAINT:

|f| =



example

max flow problem

Given a graph G = (V, E) and capacities $c : E \to \mathbb{N}$, compute

max flow problem

Given a graph G = (V, E) and capacities $c : E \to \mathbb{N}$, compute

$\operatorname{argmax}_{f} | f |$

i.e., the maximum flow over all valid flows.

greedy solution?

hundreds of applications

bipartite matching edge-disjoint paths node-disjoint paths scheduling baseball elimination resource allocations

will discuss many of these applications soon

Algorithms for max flow

Residual graphs

 $G_f = (V, E_f)$

Residual graphs

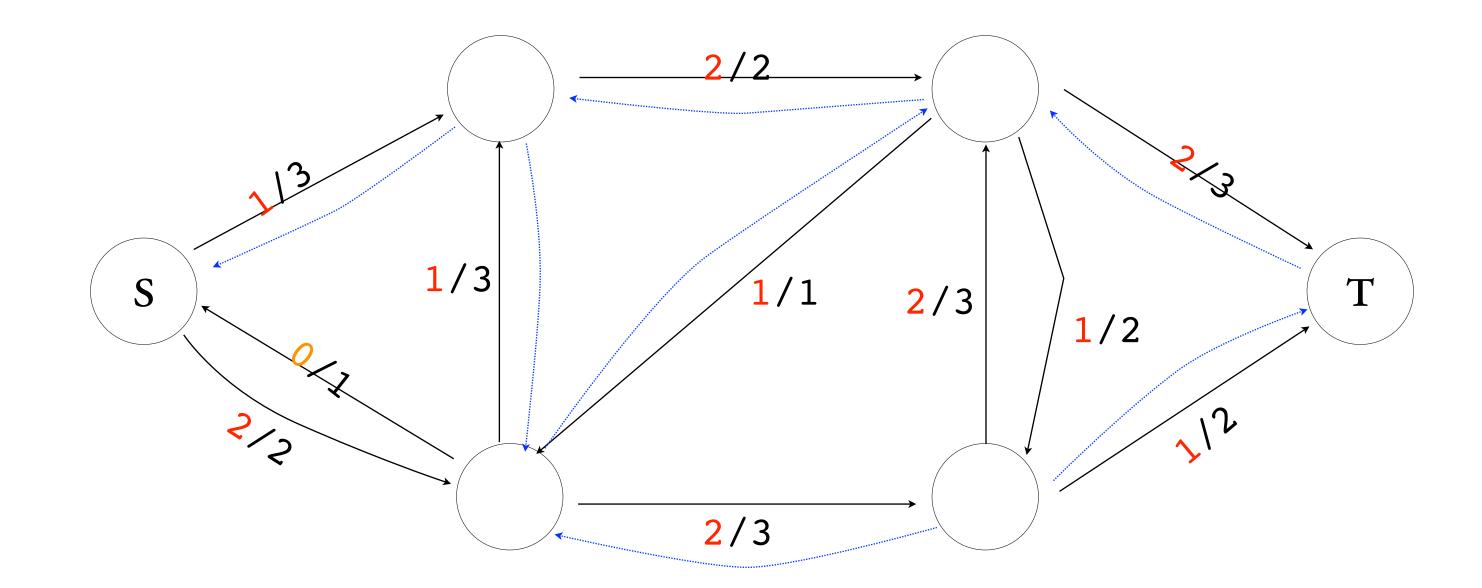
$G_f = (V, E_f)$ A graph derived from G and a valid flow f.

Residual graphs

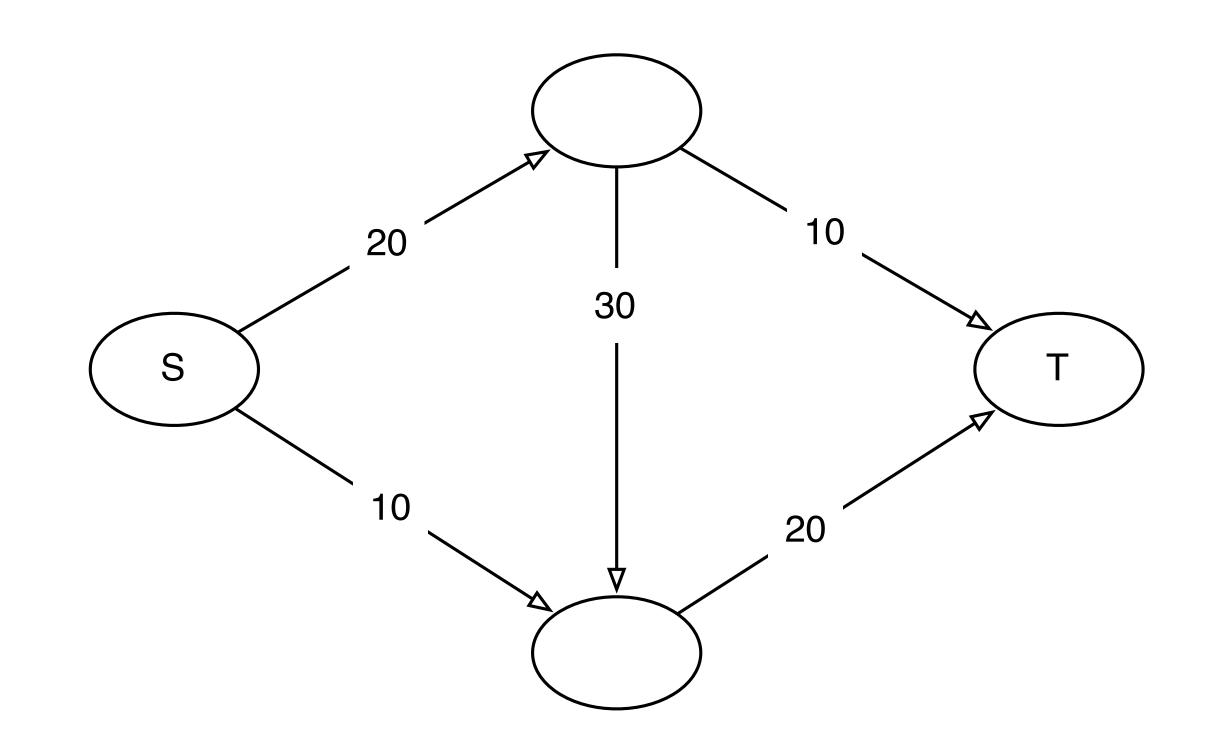
$G_f = (V, E_f)$ A graph derived from G and a valid flow f.

- Same vertices, but difference edges:

example residual graph



why residual graphs ?



augmenting paths

DEF:

augmenting paths

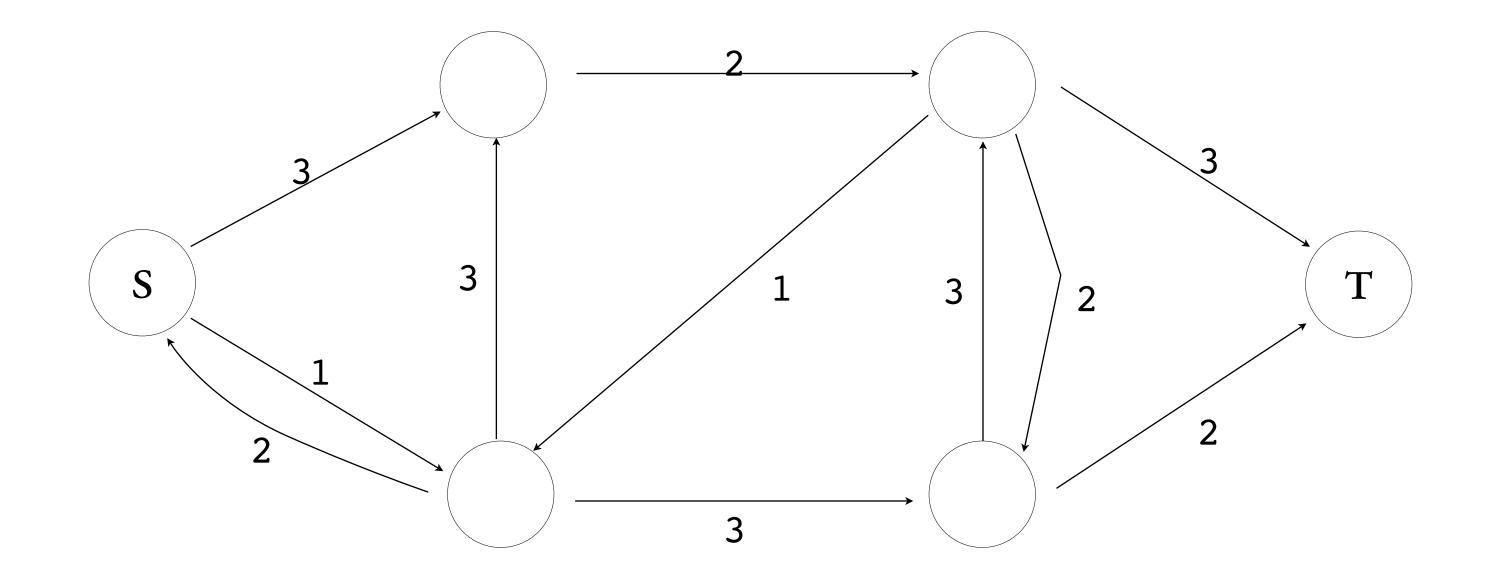
DEF:

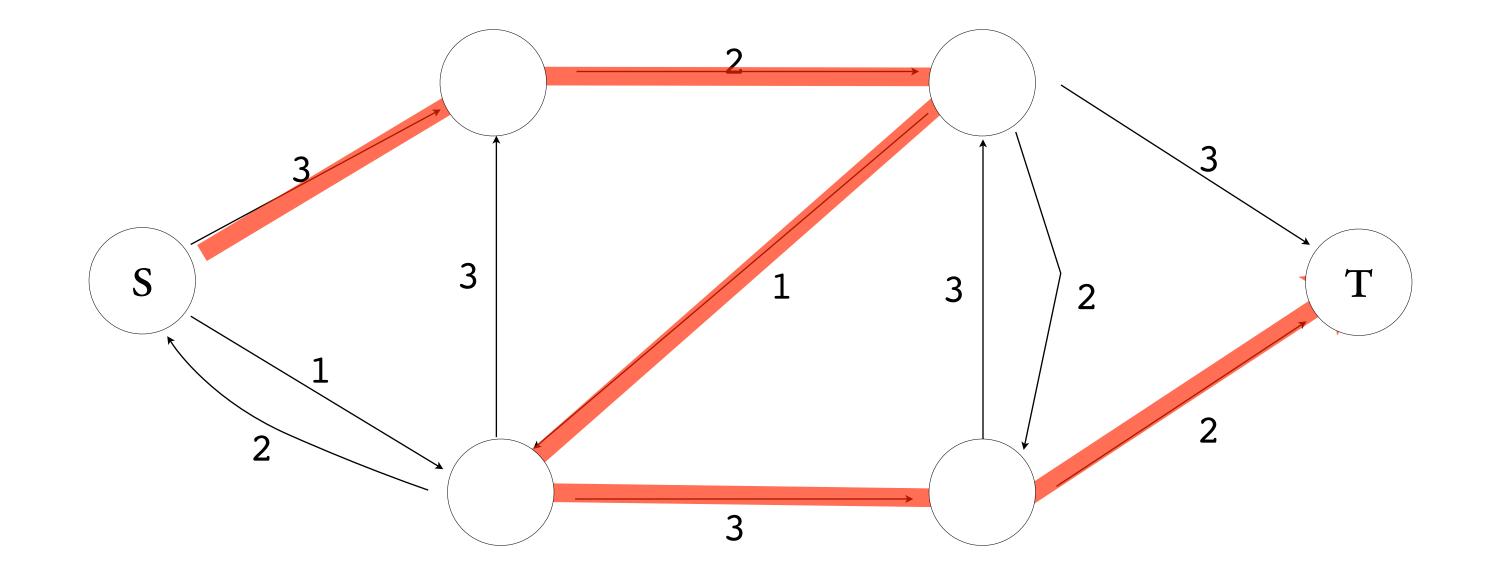
A path from s to t in the residual graph G_{f} .

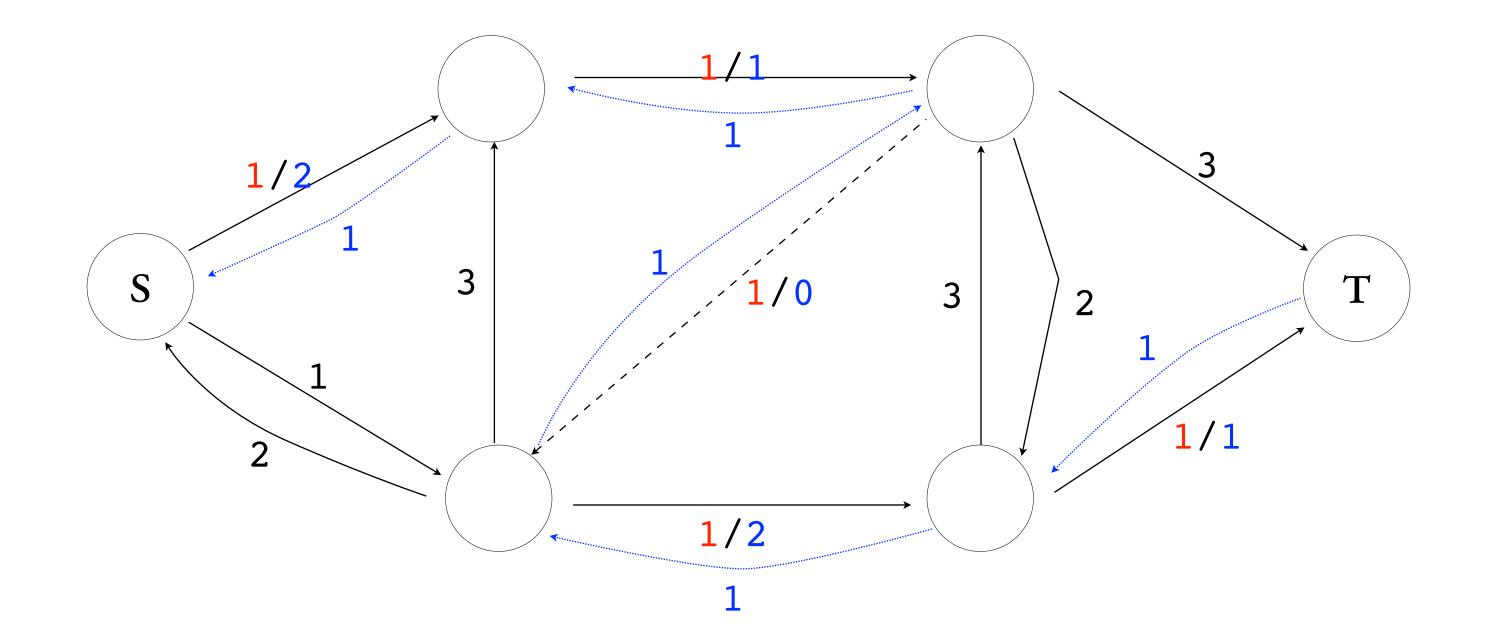
Ford-Fulkerson

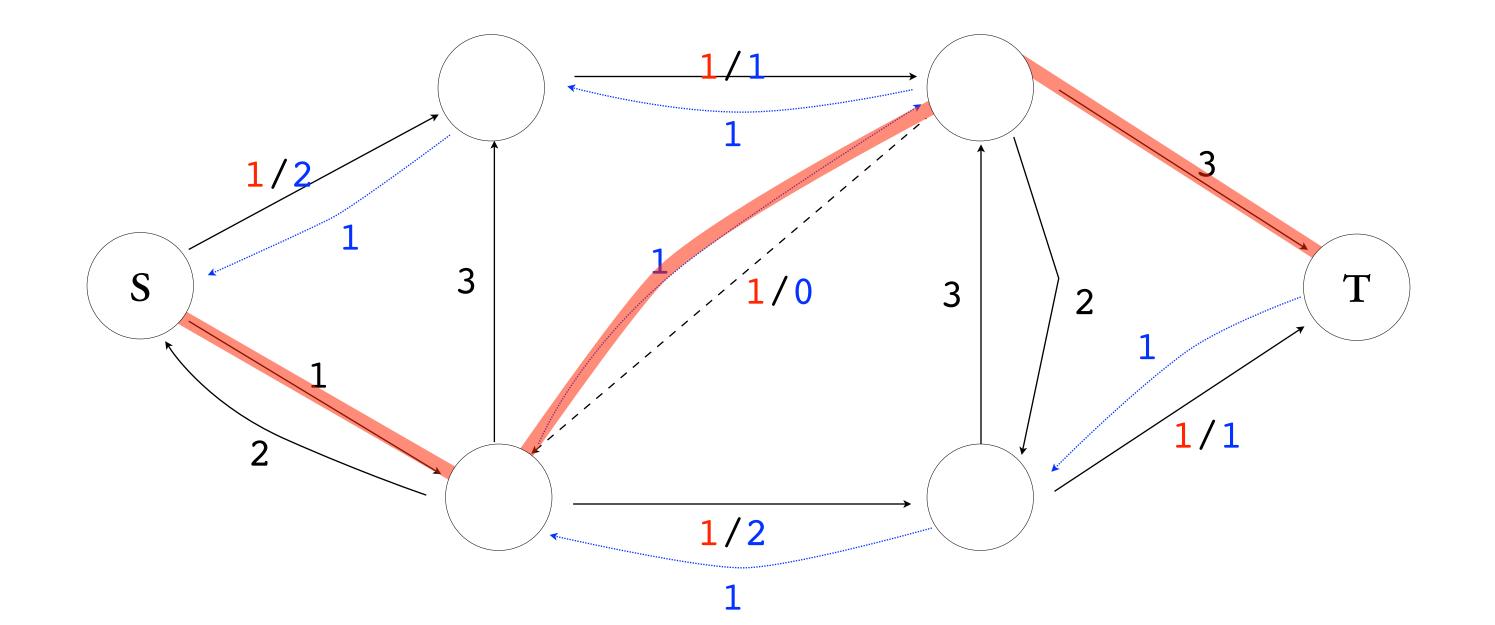
$f(u,v) \leftarrow 0 \; \forall u, v$ INITIALIZE WHILE EXISTS AN AUGMENTING PATH p in

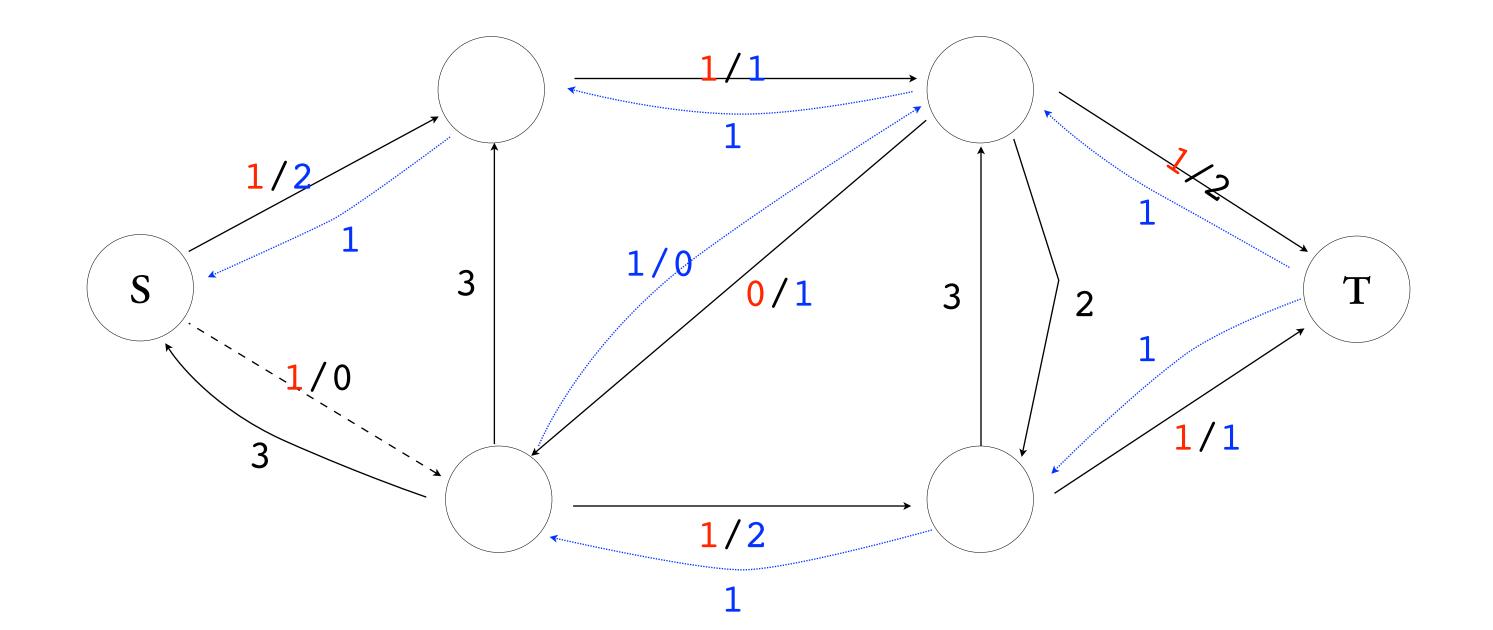
 G_f AUGMENT f with $c_f(p) = \min_{(u,v) \in p} c_f(u,v)$

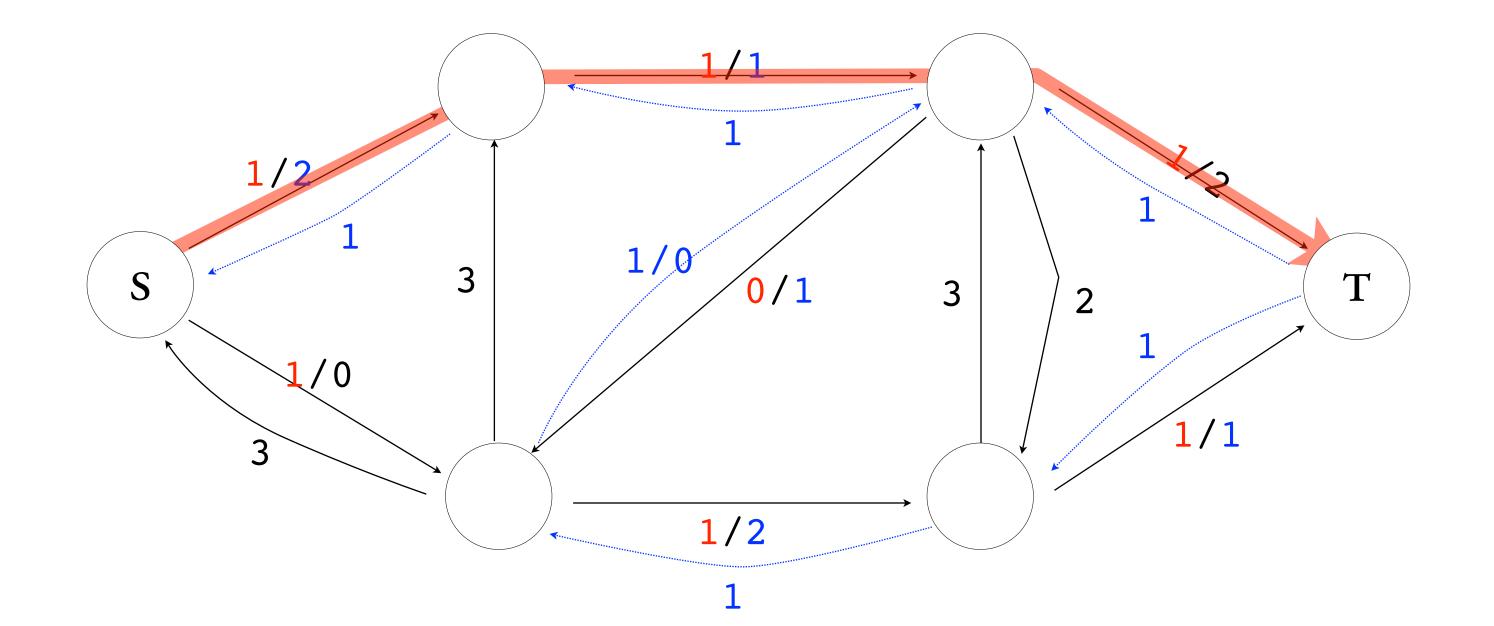


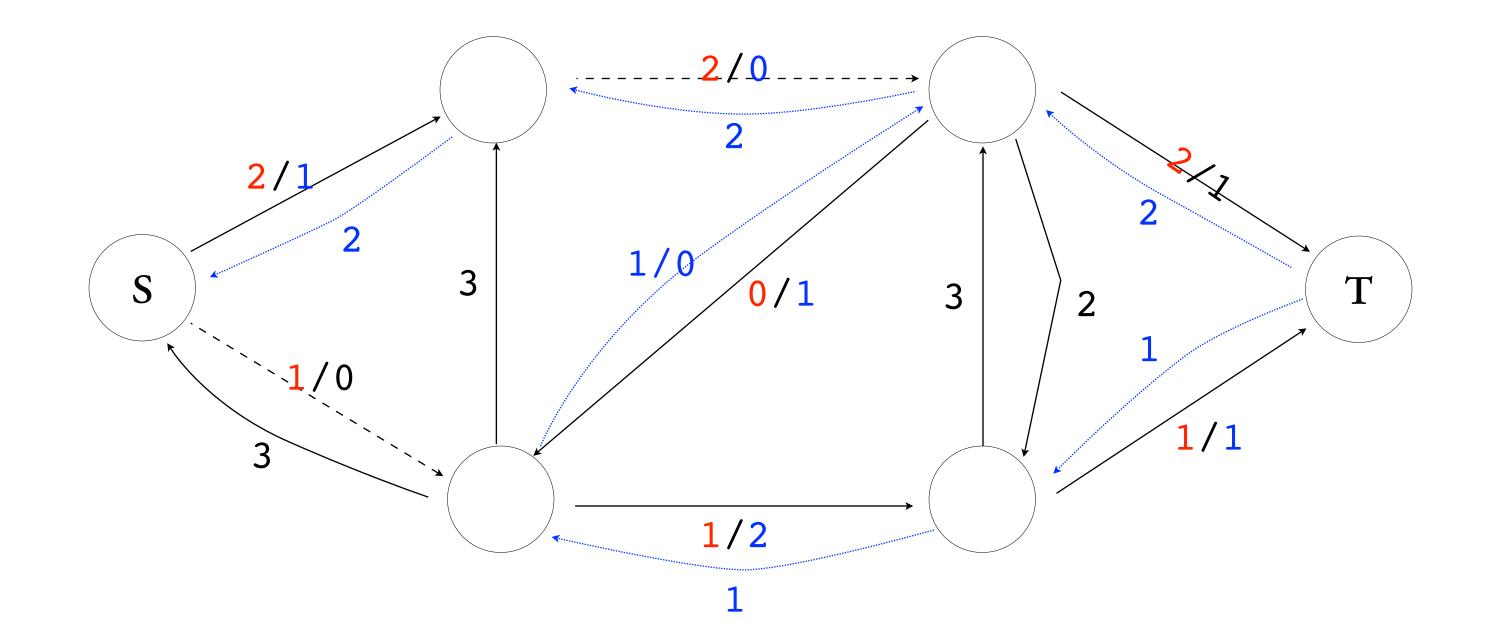












FORD-FULKERSON

 $f(u,v) \leftarrow$ INITIALIZE WHILE EXISTS AN AUGMENT AUGMENT f WITH

TIME TO FIND AN AUGMENTING PATH:

NUMBER OF ITERATIONS OF WHILE LOOP:

$$0 \forall u, v$$

TING PATH p IN G_f
 $c_f(p) = \min_{(u,v) \in p} c_f(u, v)$

Def of a cut:

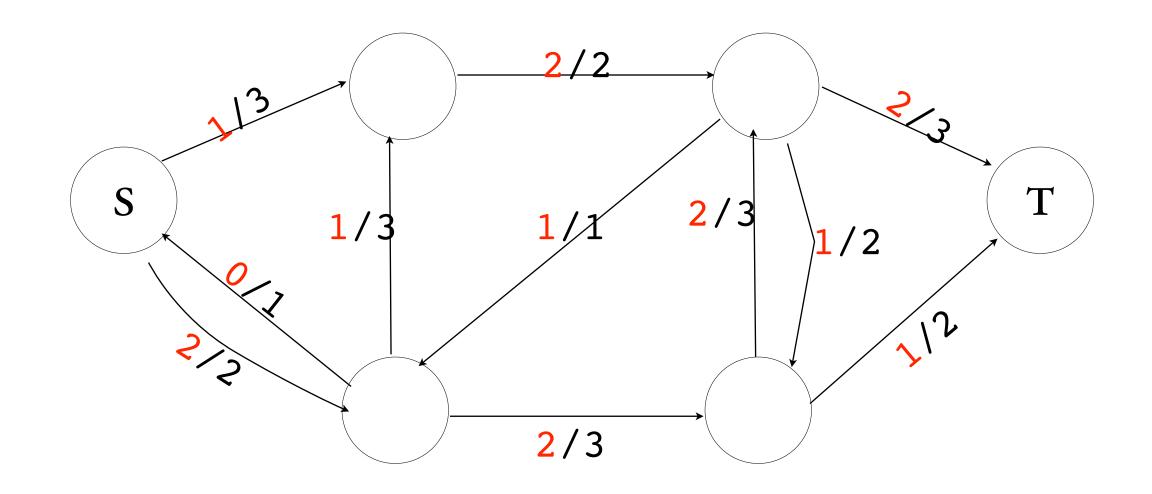
cost of a cut:

||S,T|| =

Cuts

lemma: [min cut] for any f, (S, T)

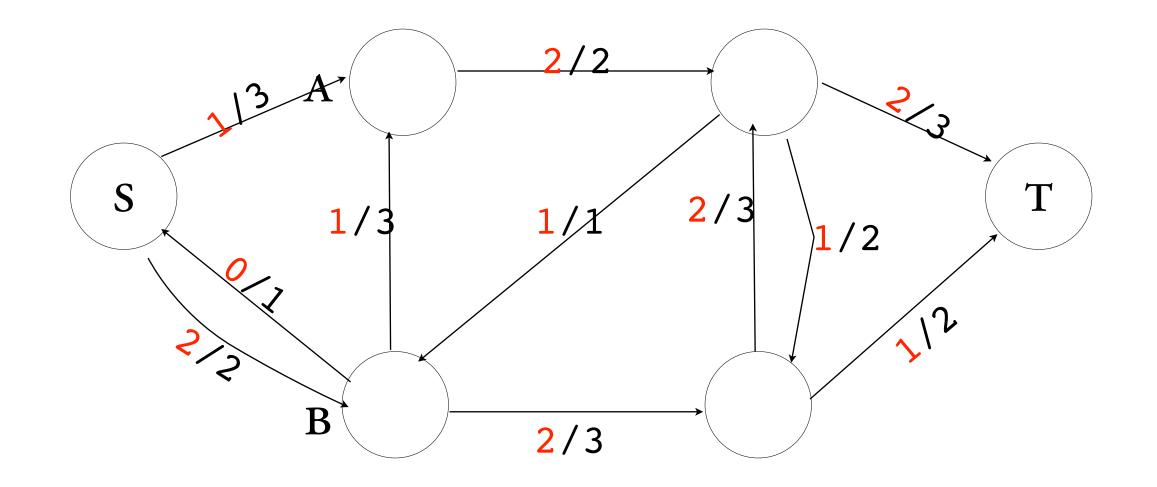
FOR ANY f, (S, T) it holds that $|f| \leq ||S, T||$



EXAMPLE:

A property to remember for any f, (S, T) it holds that $|f| \leq ||S, T||$

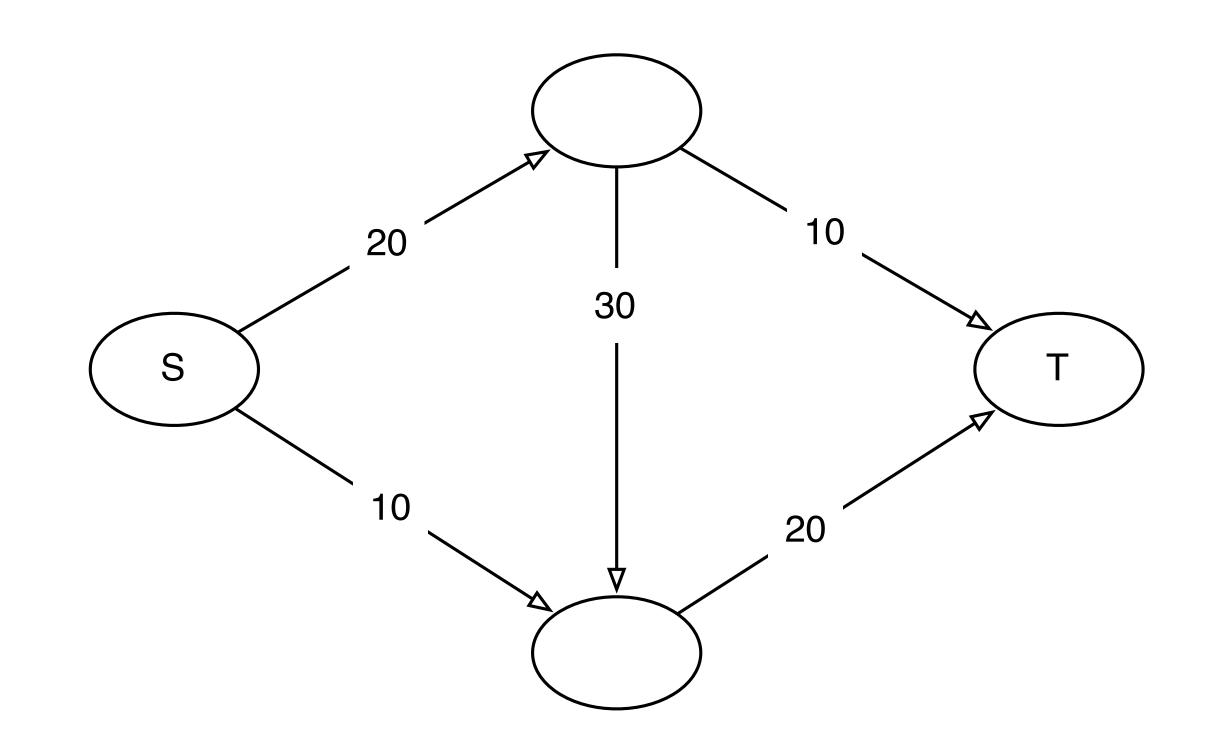
PROOF:



For any f, (S, T) it holds that $|f| \leq ||S, T||$

(FINISHING PROOF)

why residual graphs ?



augmenting paths

DEF:

Thm: max flow = min cut

IF F IS A MAX FLOW, THEN GF HAS NO AUGMENTING PATHS.

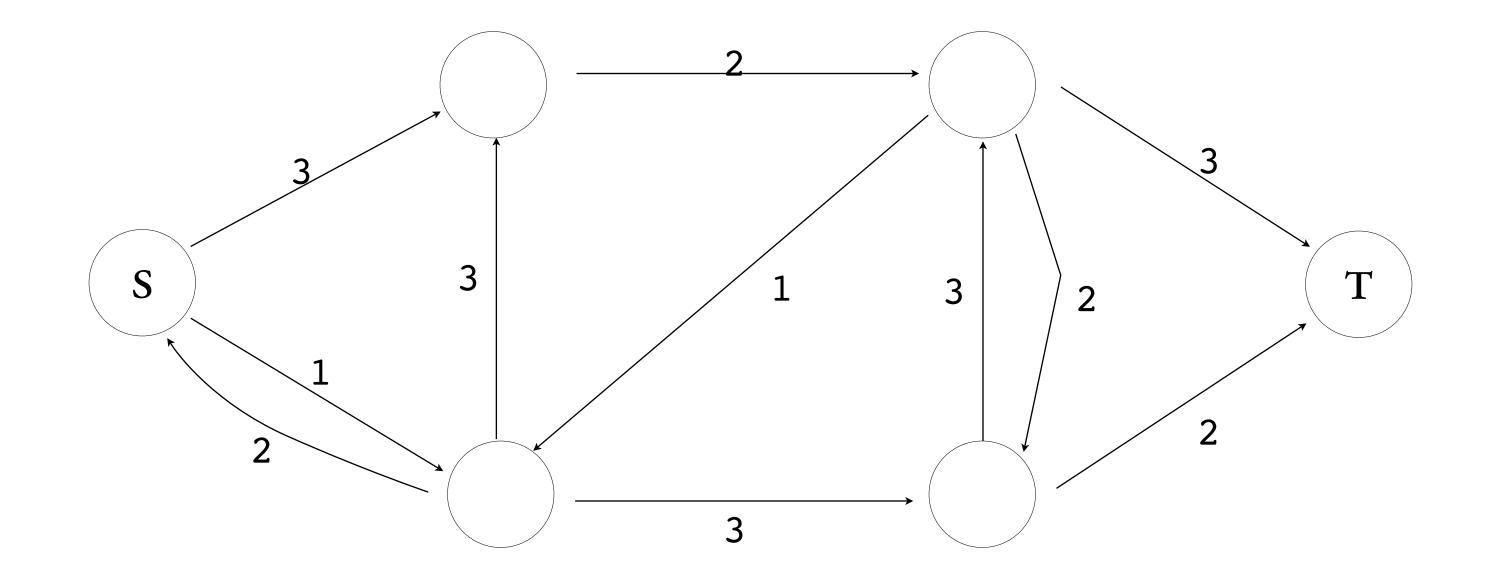
- $\max_{f} |f| = \min_{S,T} ||S,T||$

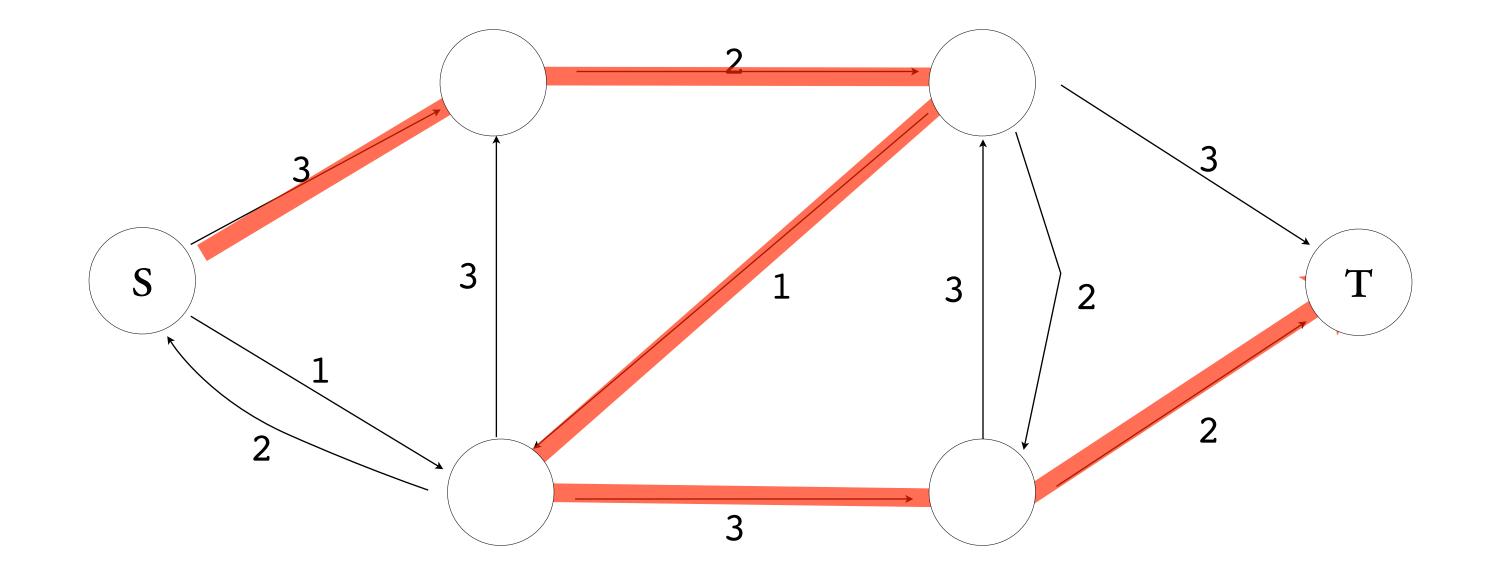
thm: max flow = min cut

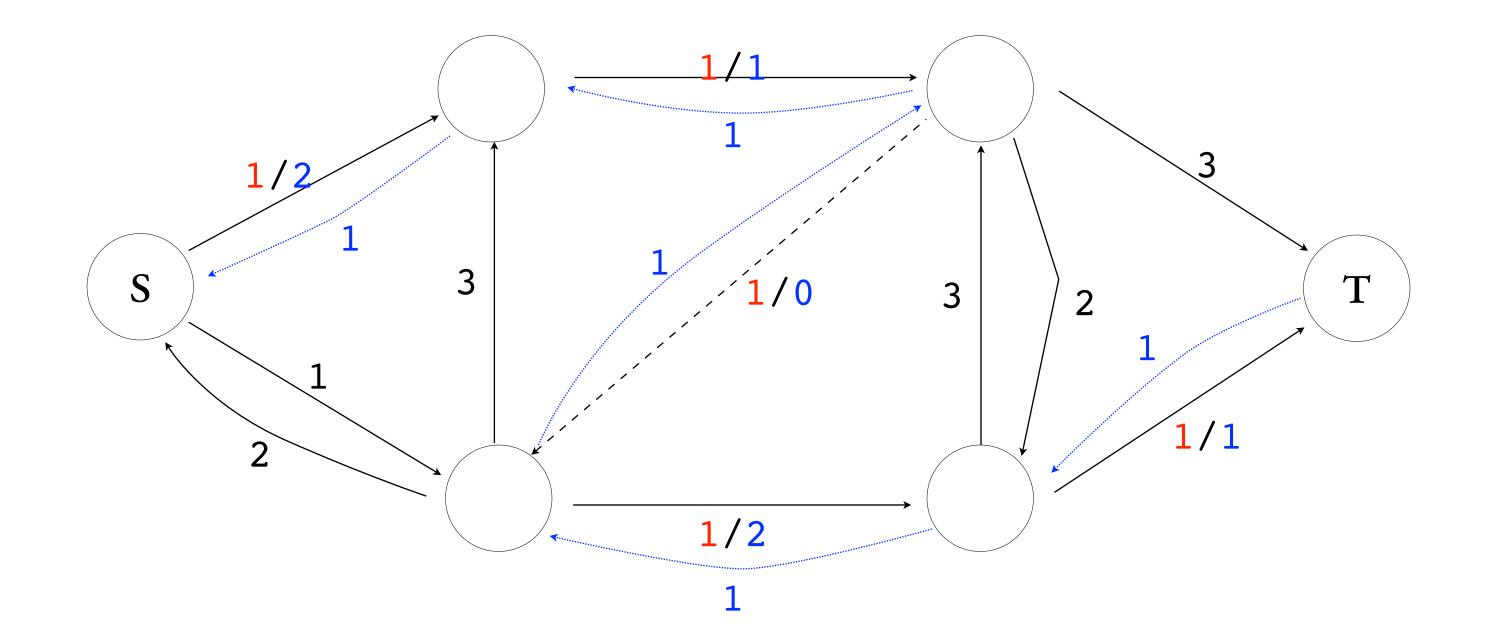
 $\max_{f} |f| = \min_{S,T} ||S,T||$

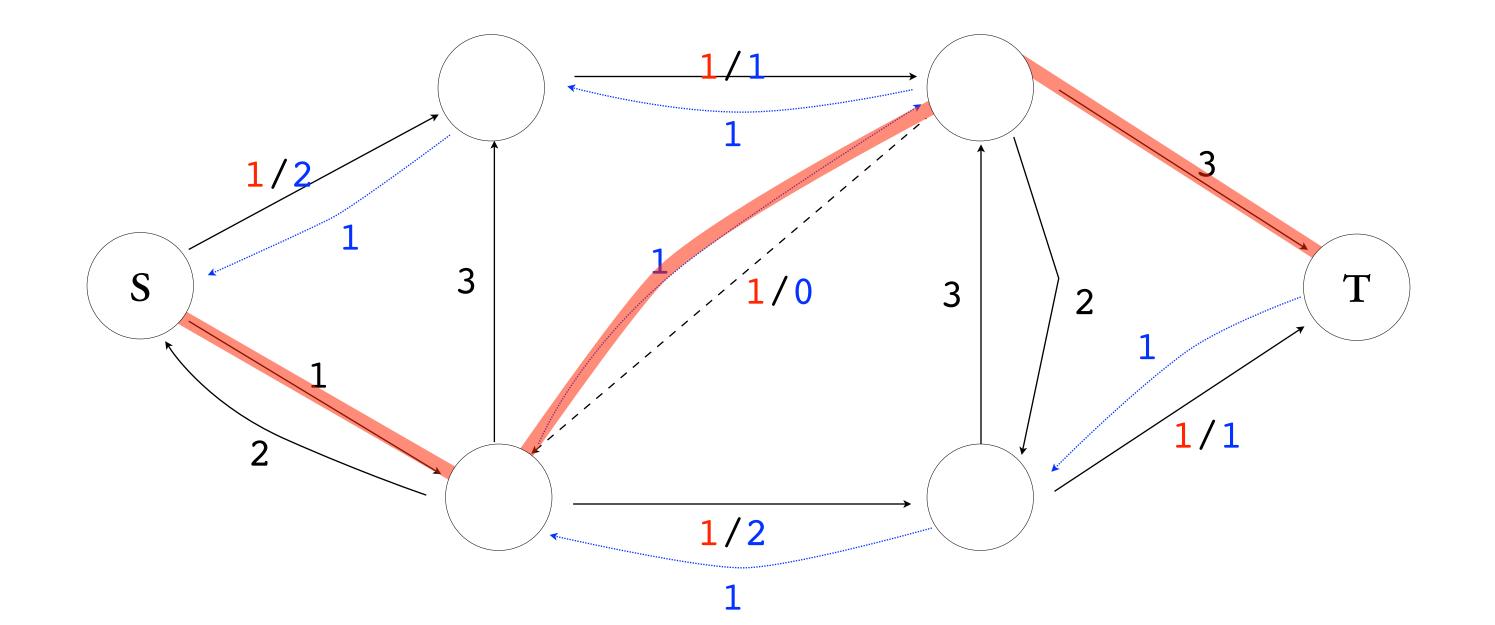
ford-fulkerson

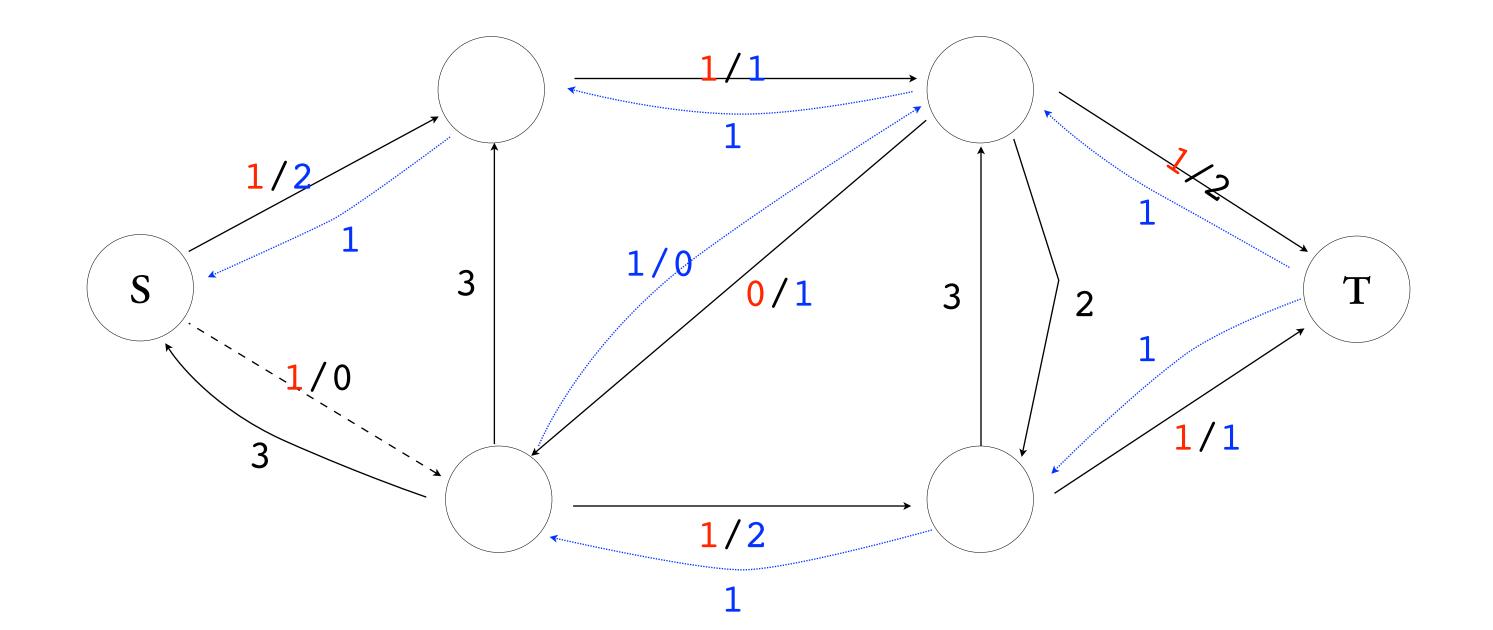
$f(u,v) \leftarrow 0 \; \forall u, v$ INITIALIZE while exists an augmenting path p in G_f augment f with $c_f(p) = \min_{(u,v) \in p} c_f(u,v)$

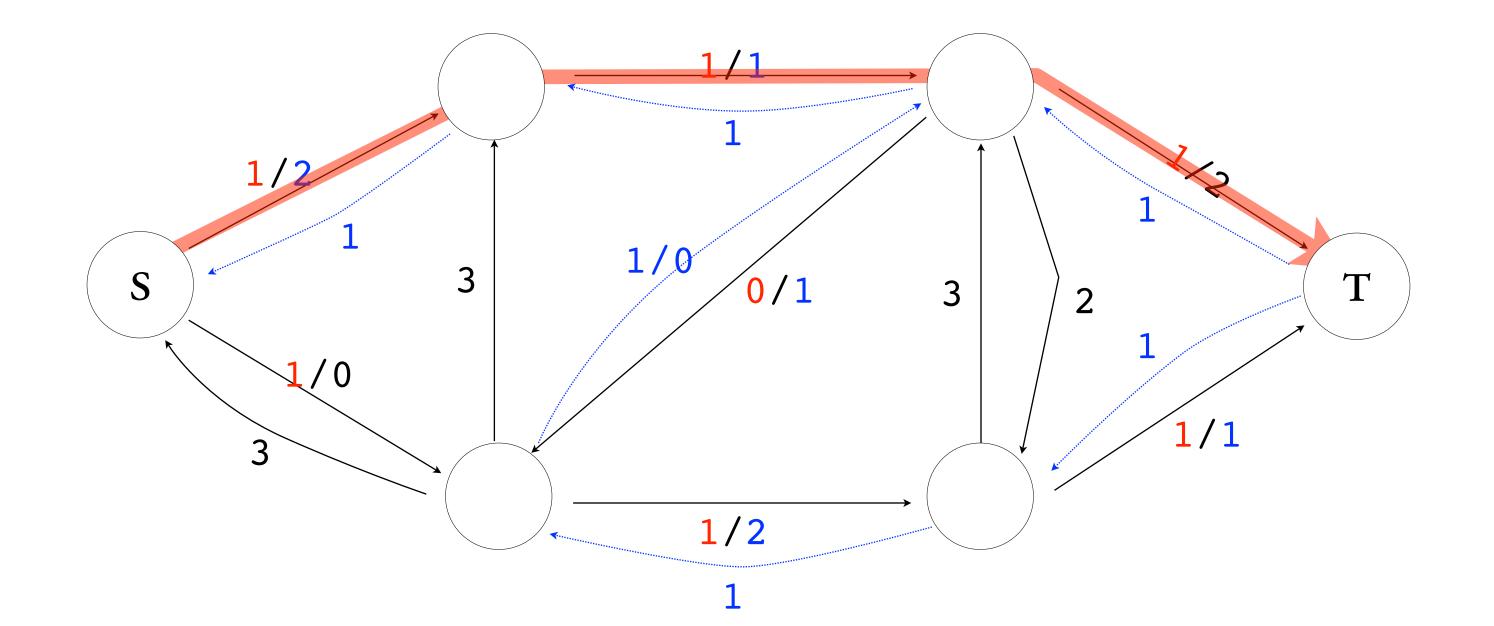


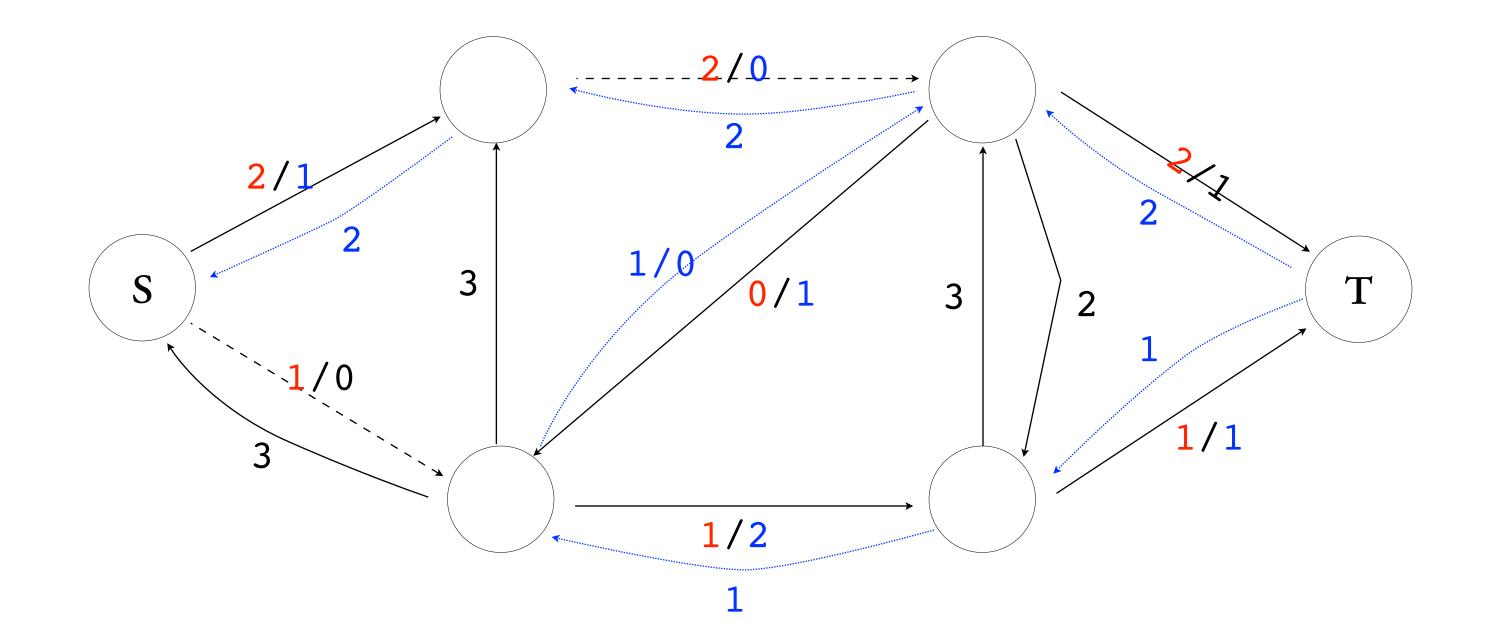












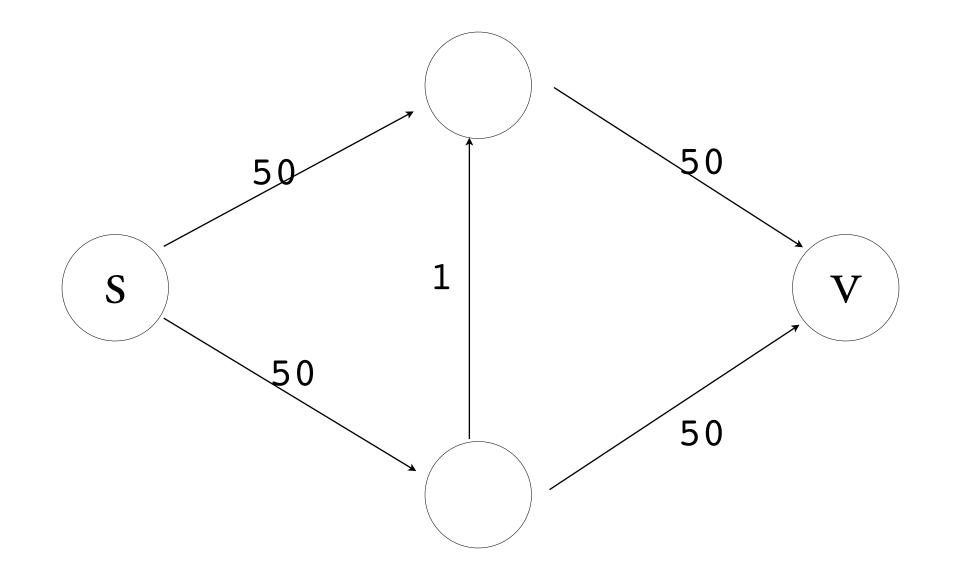
FORD-FULKERSON

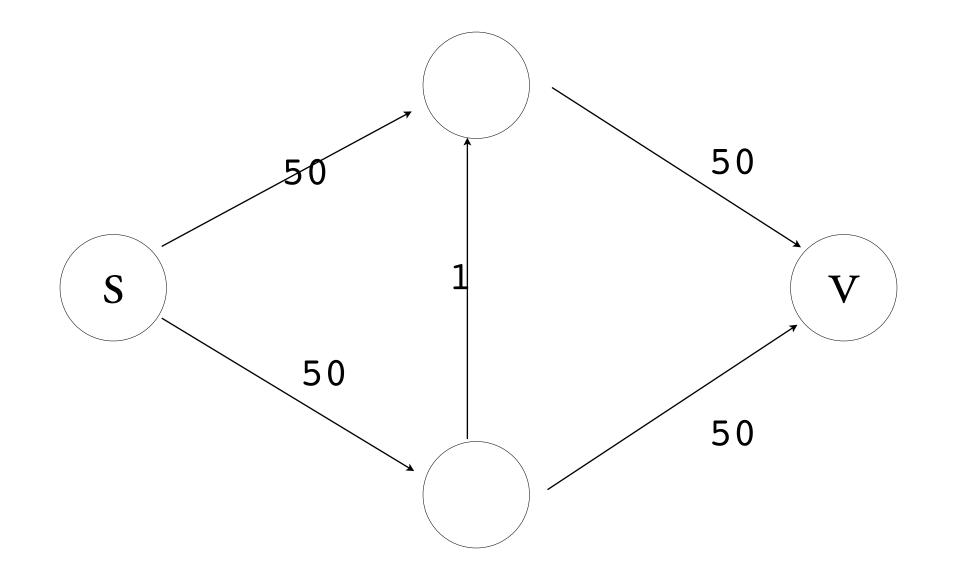
INITIALIZE $f(u,v) \leftarrow 0 \forall u, v$ WHILE EXISTS AN AUGMENTING PATH p in G_f

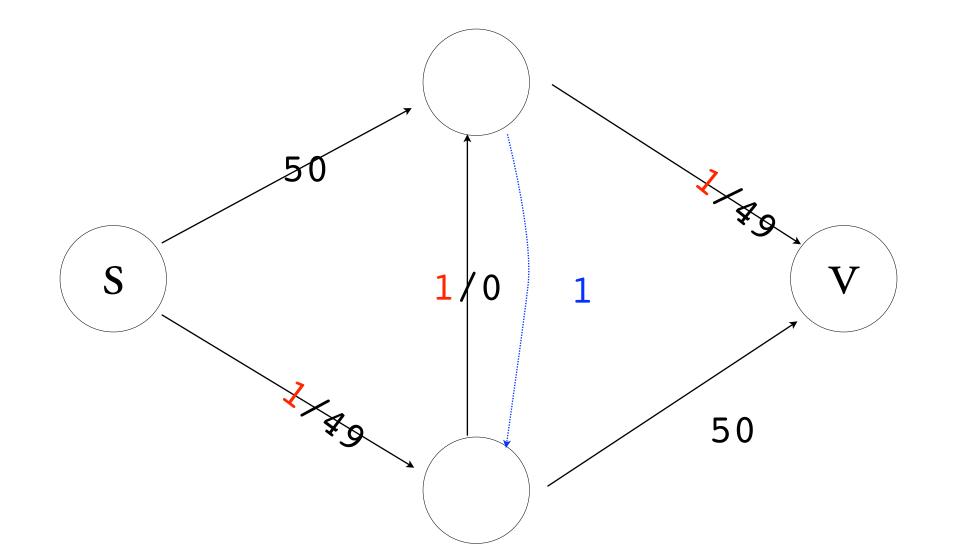
TIME TO FIND AN AUGMENTING PATH:

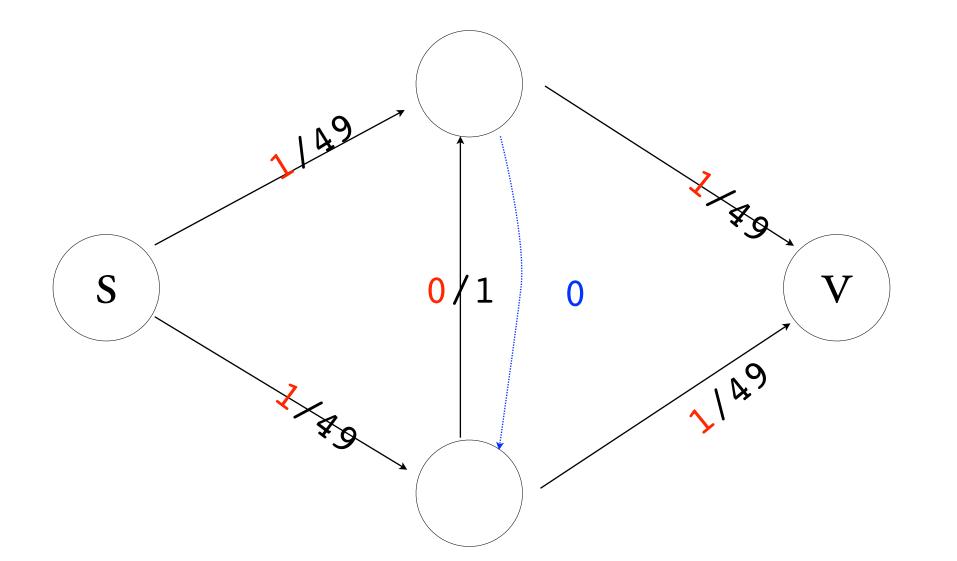
NUMBER OF ITERATIONS OF WHILE LOOP:

AUGMENT f WITH $c_f(p) = \min_{(u,v) \in p} c_f(u,v)$

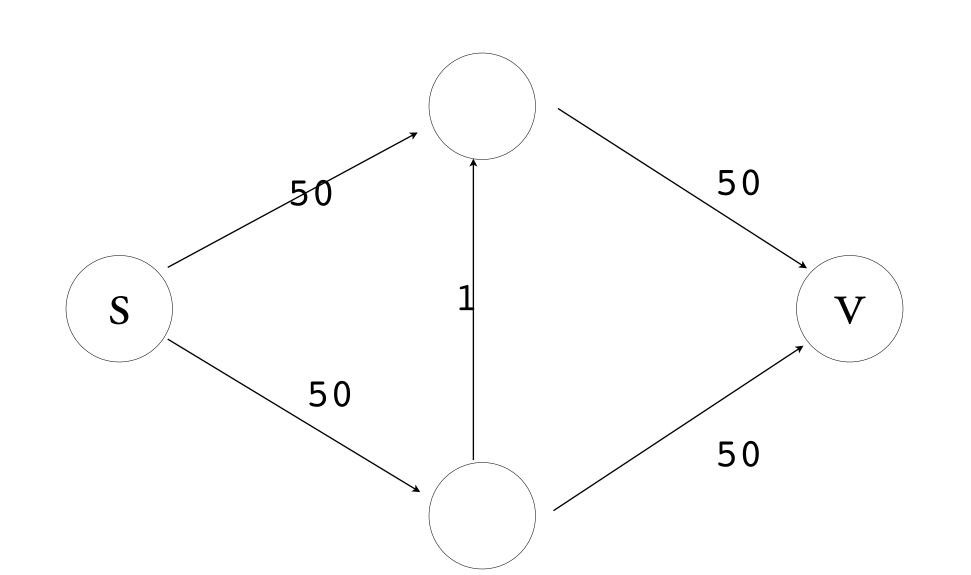








root of the problem

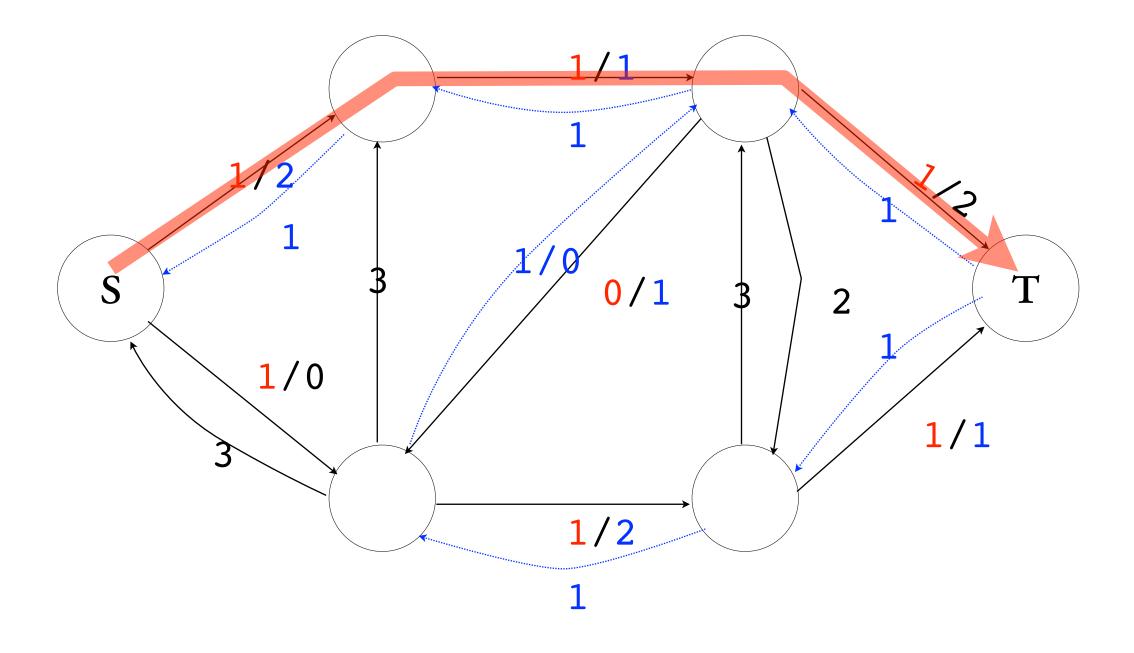


Edmonds-Karp 2

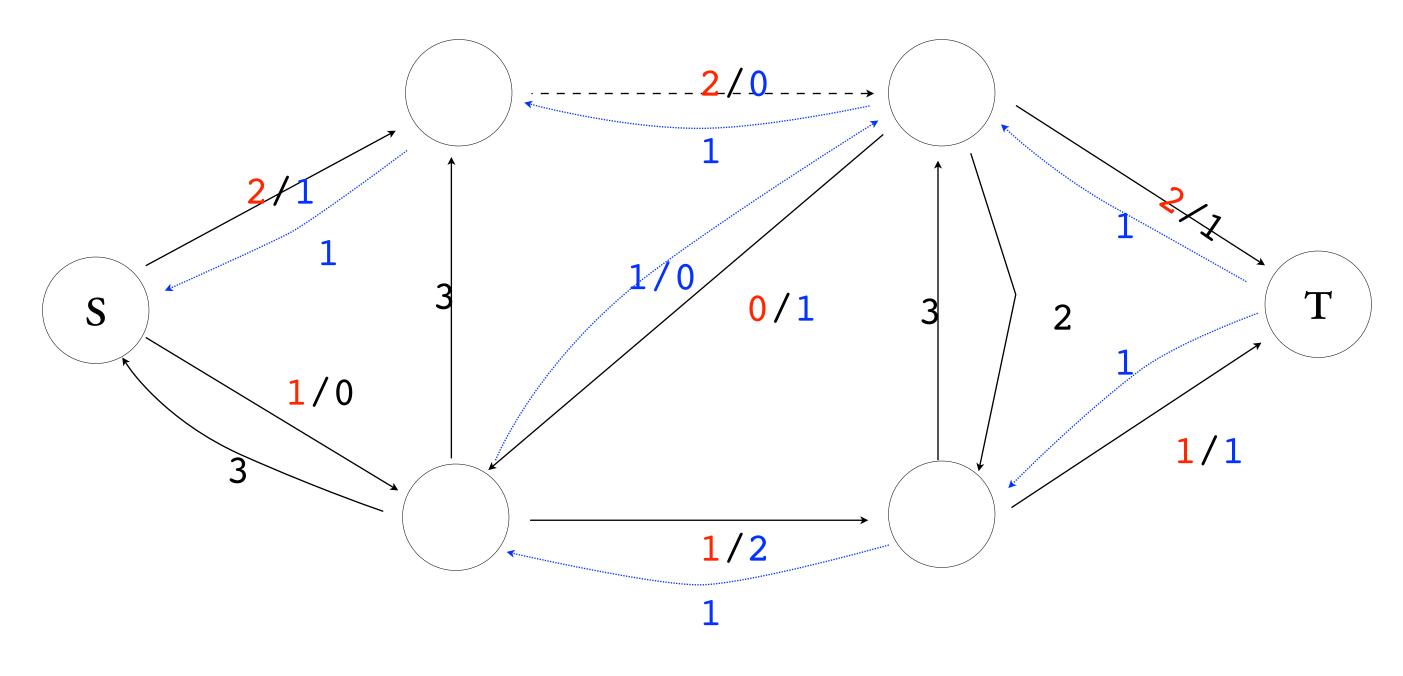
choose path with fewest edges first.

 $\delta_f(S, v)$:

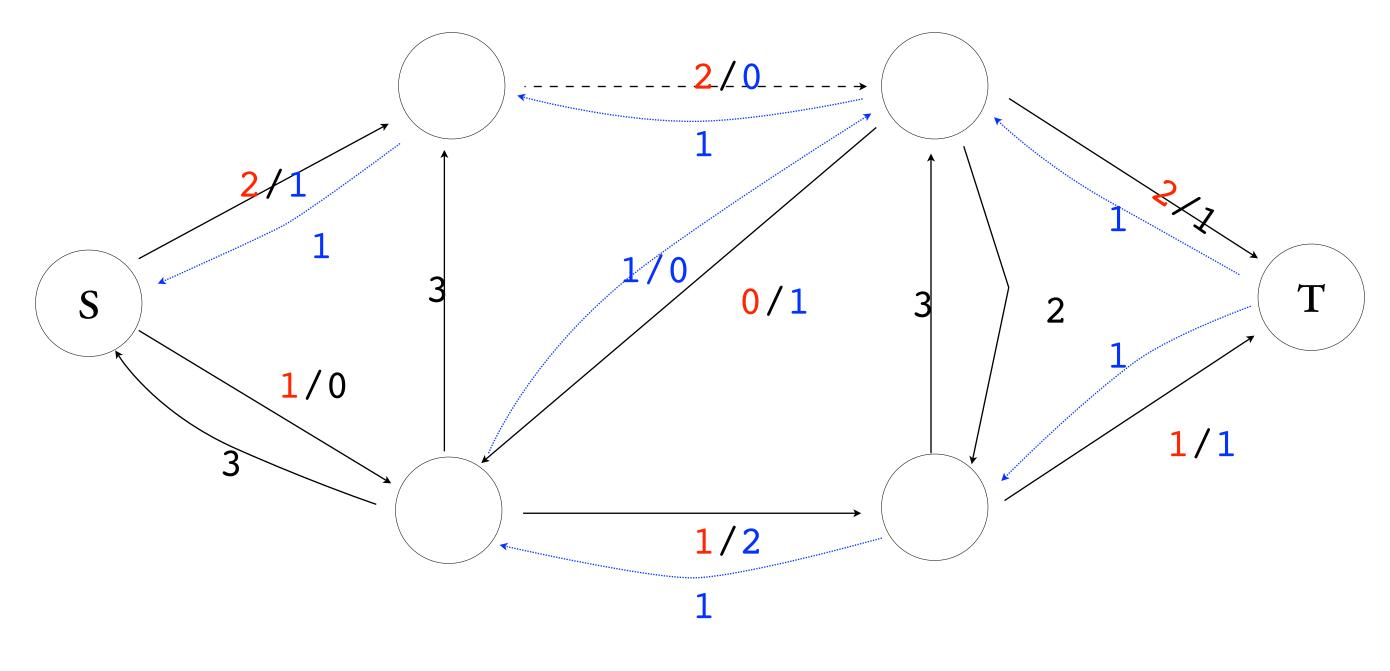
 $\delta_f(s, v)$ increases monotonically thru exec $\delta_{i+1}(v) \ge \delta_i(v)$



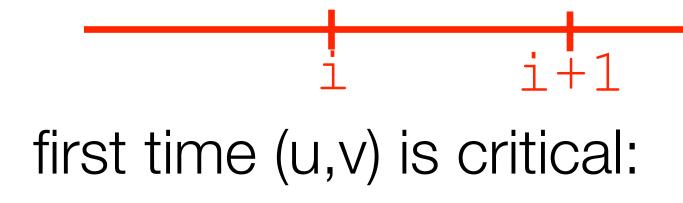
for every augmenting path, some edge is critical.

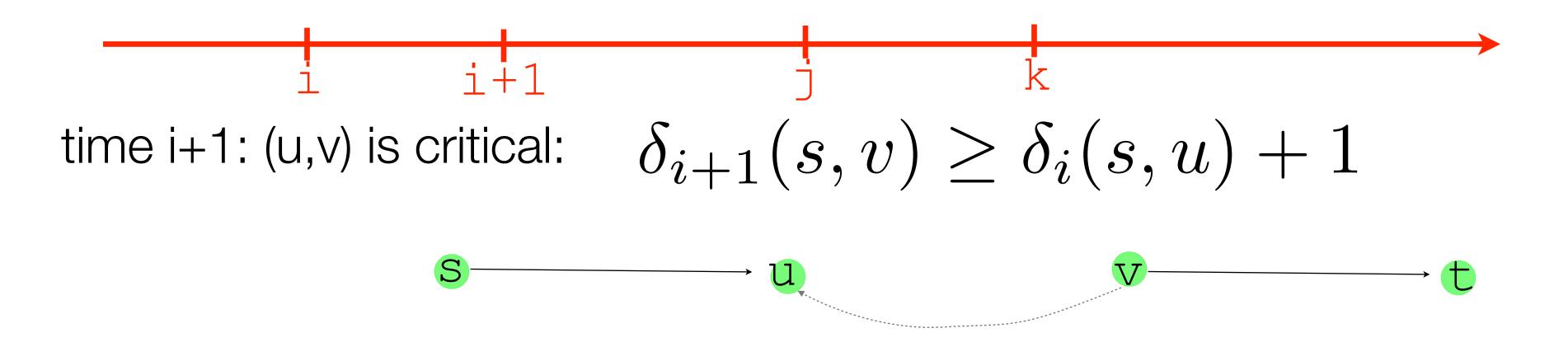


critical edges are removed in next residual graph.



key idea: how many times can an edge be critical?



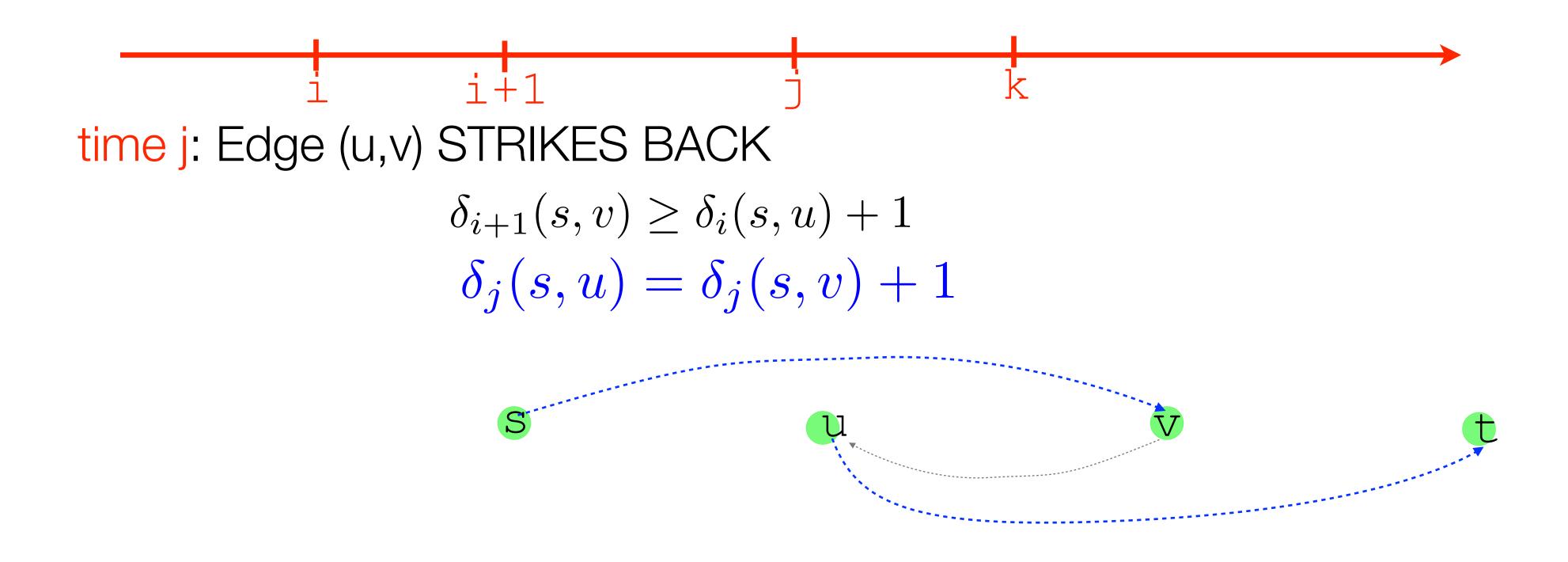


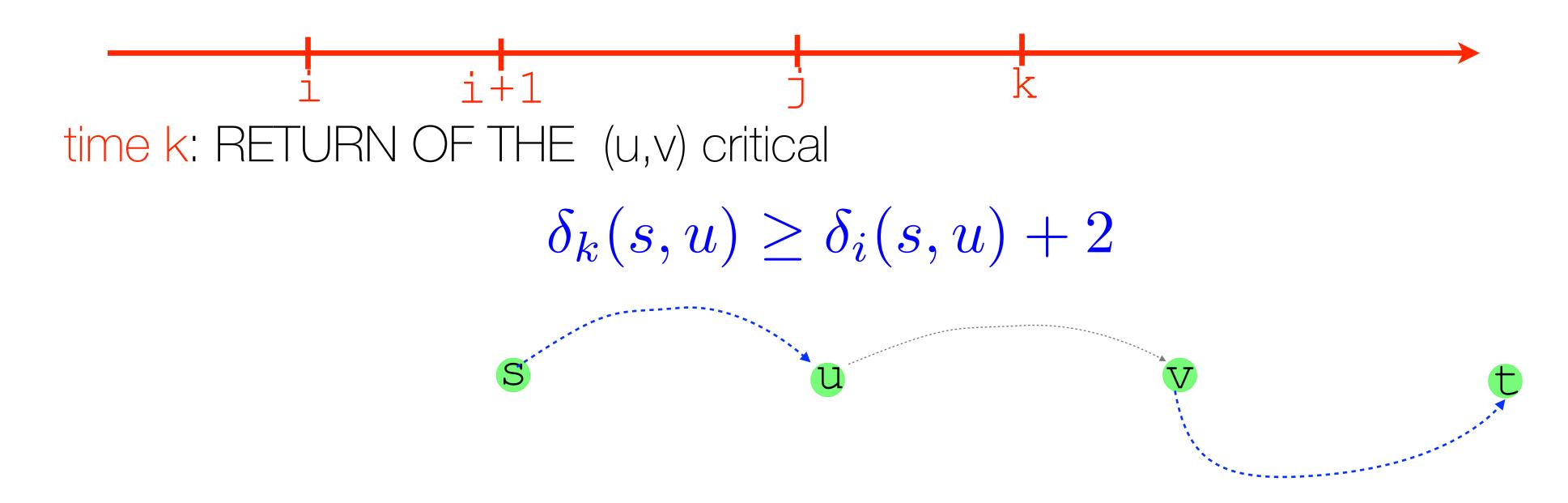
time j: Edge (u,v) STRIKES BACK

S









QUESTION: How many times can (u,v) be critical?

edge critical only there are only

ergo, total # of augmenting paths:

time to find an augmenting path:

total running time of E-K algorithm:

times.

edges.

$O(E|f^*|)$ FF

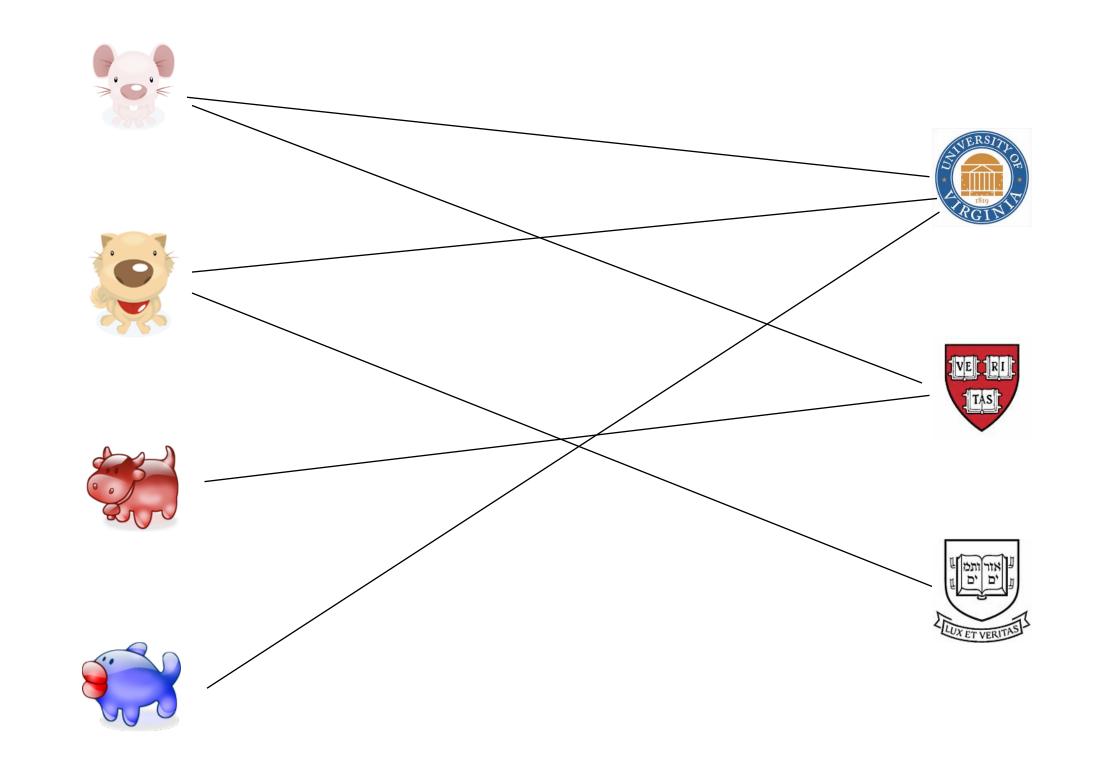
EK2

PUSH-RELABEL

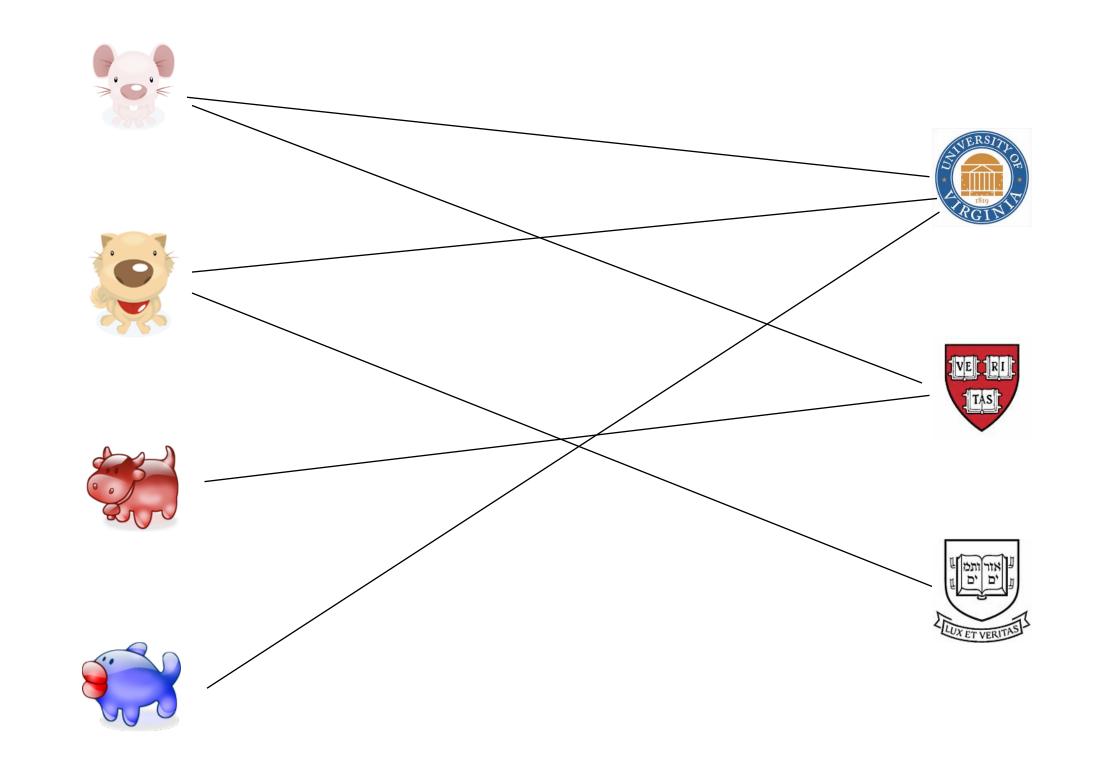
FASTER PUSH-RELABEL

Bipartite Matchings

maximum bipartite matching



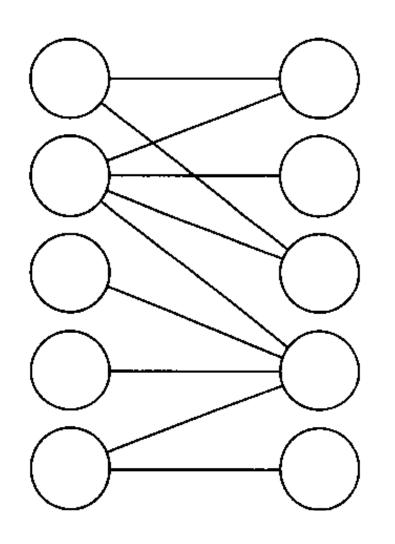
maximum bipartite matching



bipartite matching

PROBLEM:

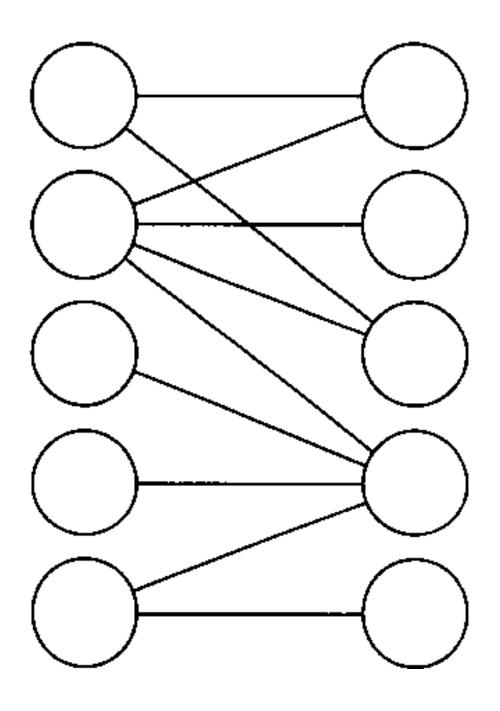
algorithm



I. MAKE NEW G' FROM INPUT G. 2. RUN FF ON G'

3. OUTPUT ALL MIDDLE EDGES WITH FLOW F(E)=I.

algorithm



correctness

IF G HAS A MATCHING OF SIZE K, THEN

correctness IF G' HAS A FLOW OF K, THEN

integrality theorem

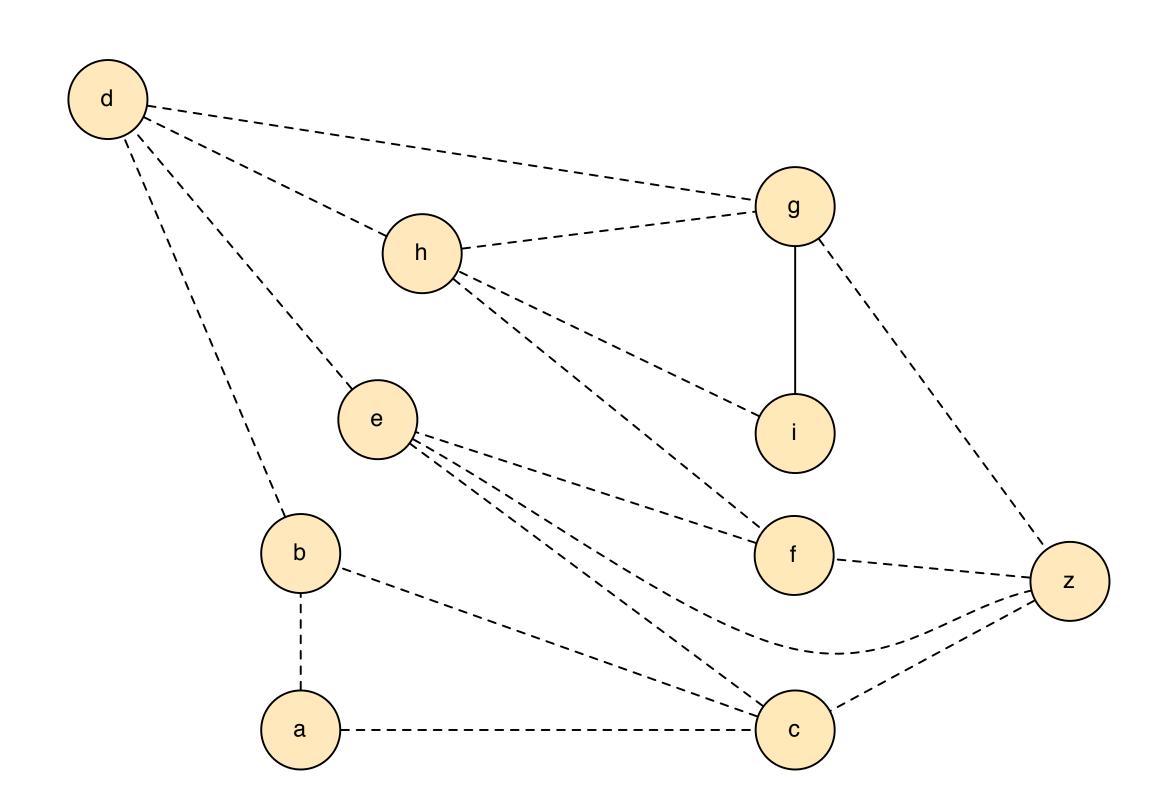
IF CAPACITIES ARE ALL INTEGRAL, THEN

IF G' HAS A FLOW OF K, THEN G HAS K-MATCHING.

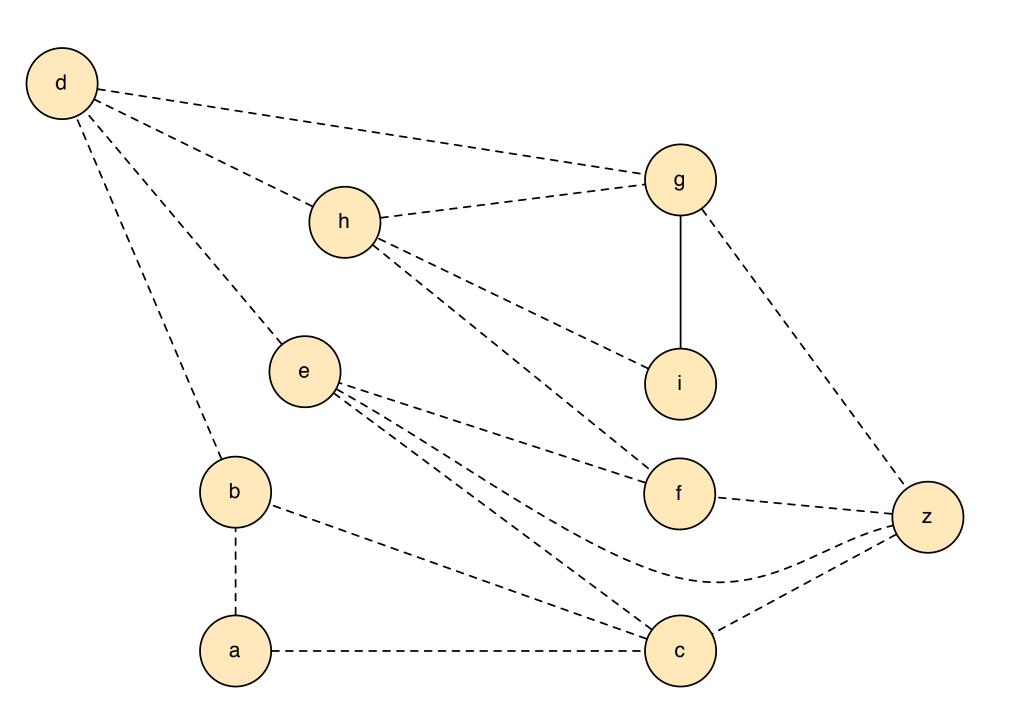
correctness

running time

edge-disjoint paths



algorithm

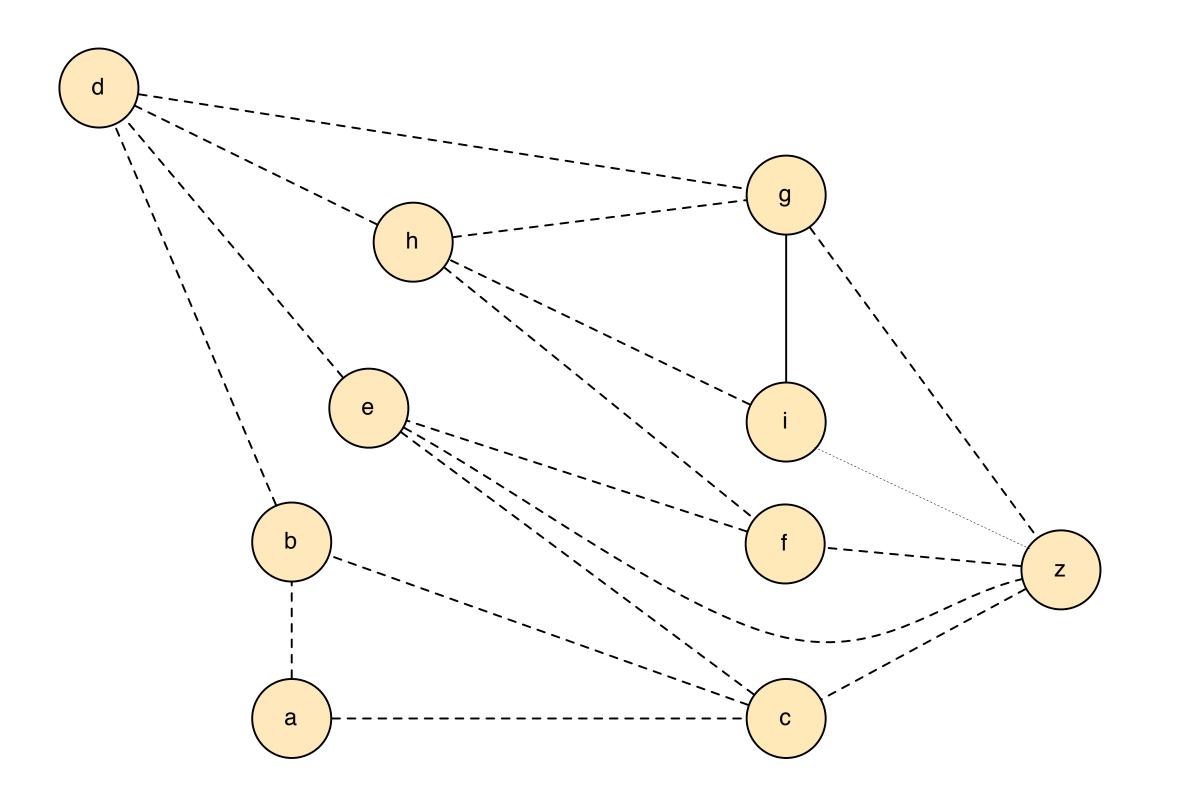


- 1. Compute max flow
- 2. Remove all edges with f(e) = 0.
- 3. Walk from s.
 - 1. If you reach a node you have visited before, erase flow along path
 - 2. If you reach t, add this path to your set, erase flow along path.

IF G HAS K DISJOINT PATHS, THEN

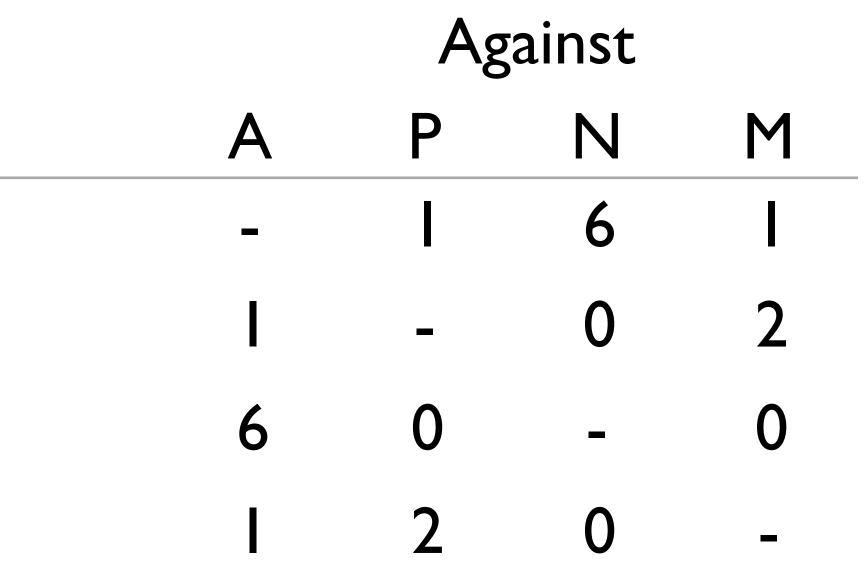
IF G' HAS A FLOW OF K, THEN

vertex-disjoint paths



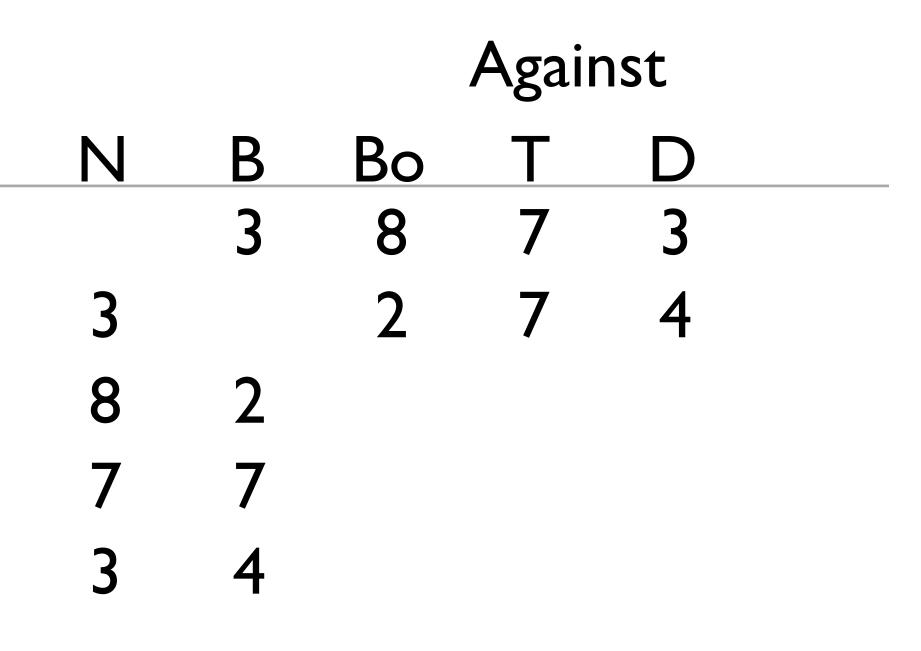
BASEBALL ELIMINATION

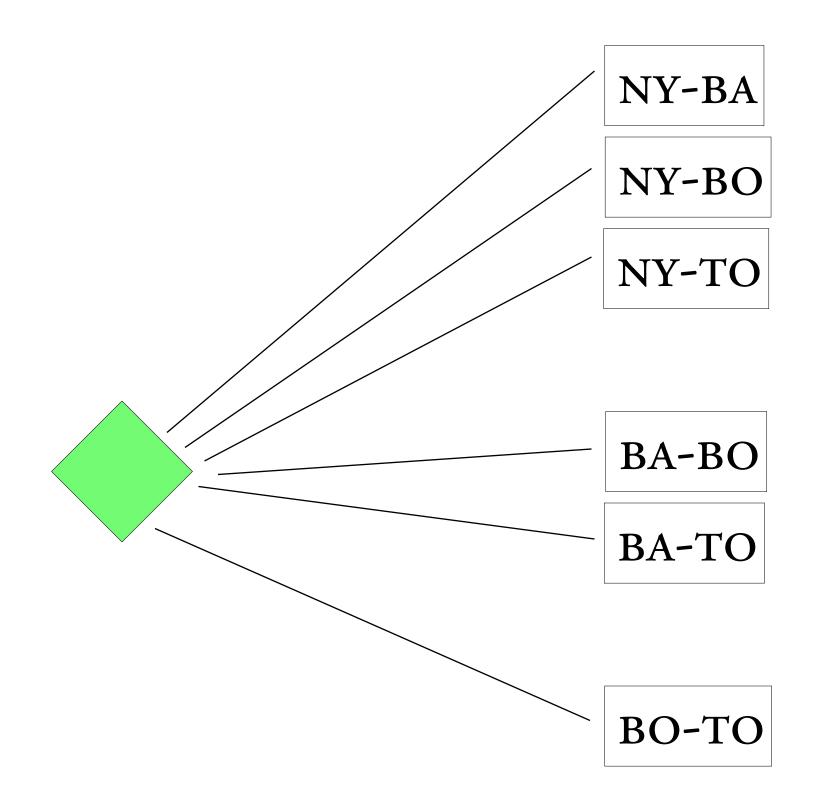
	W	L	Left
ATL	83	71	8
PHL	80	79	3
NY	78	78	6
MONT	77	82	3

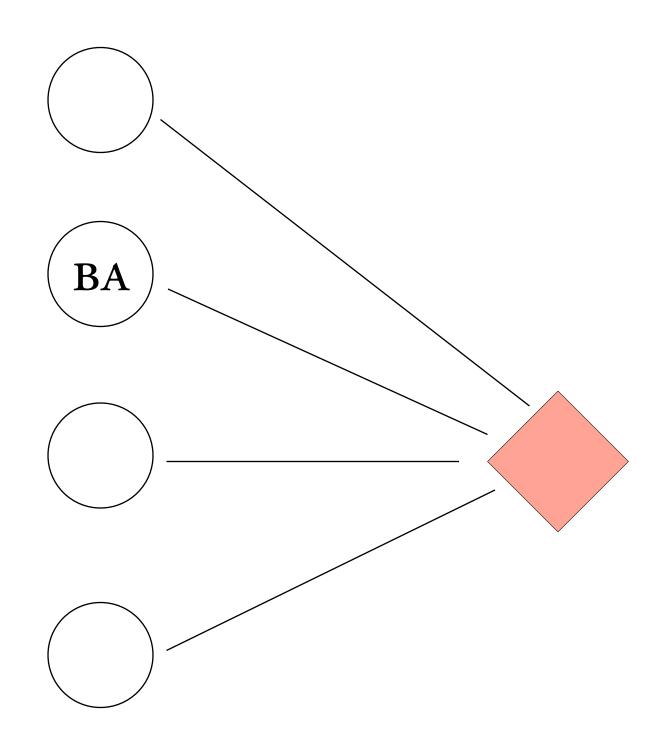


BASEBALL ELIMINATION

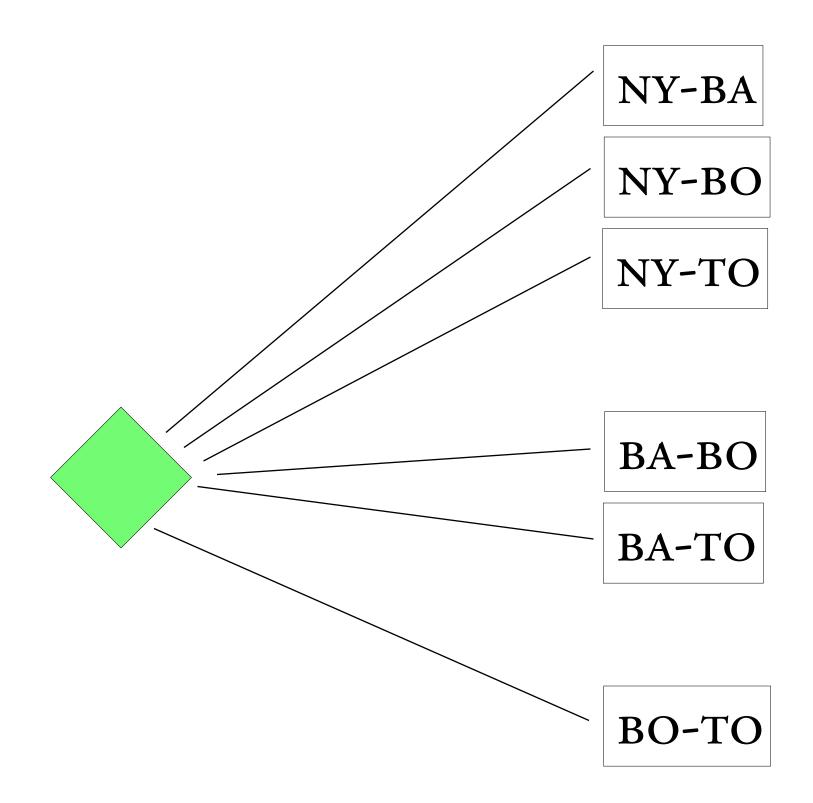
	W		Left
NY	75	59	28
BAL	71	63	28
BOS	69	66	27
TOR	63	72	27
DET	49	86	27

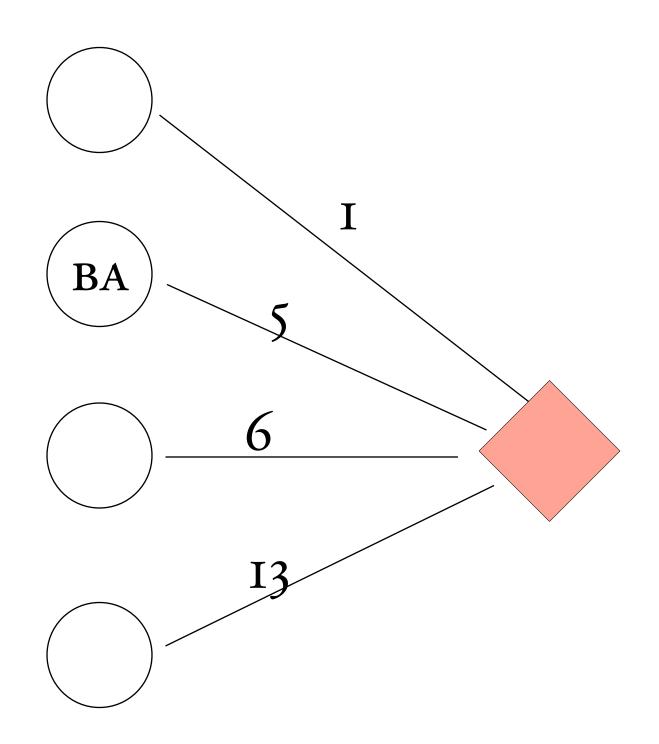




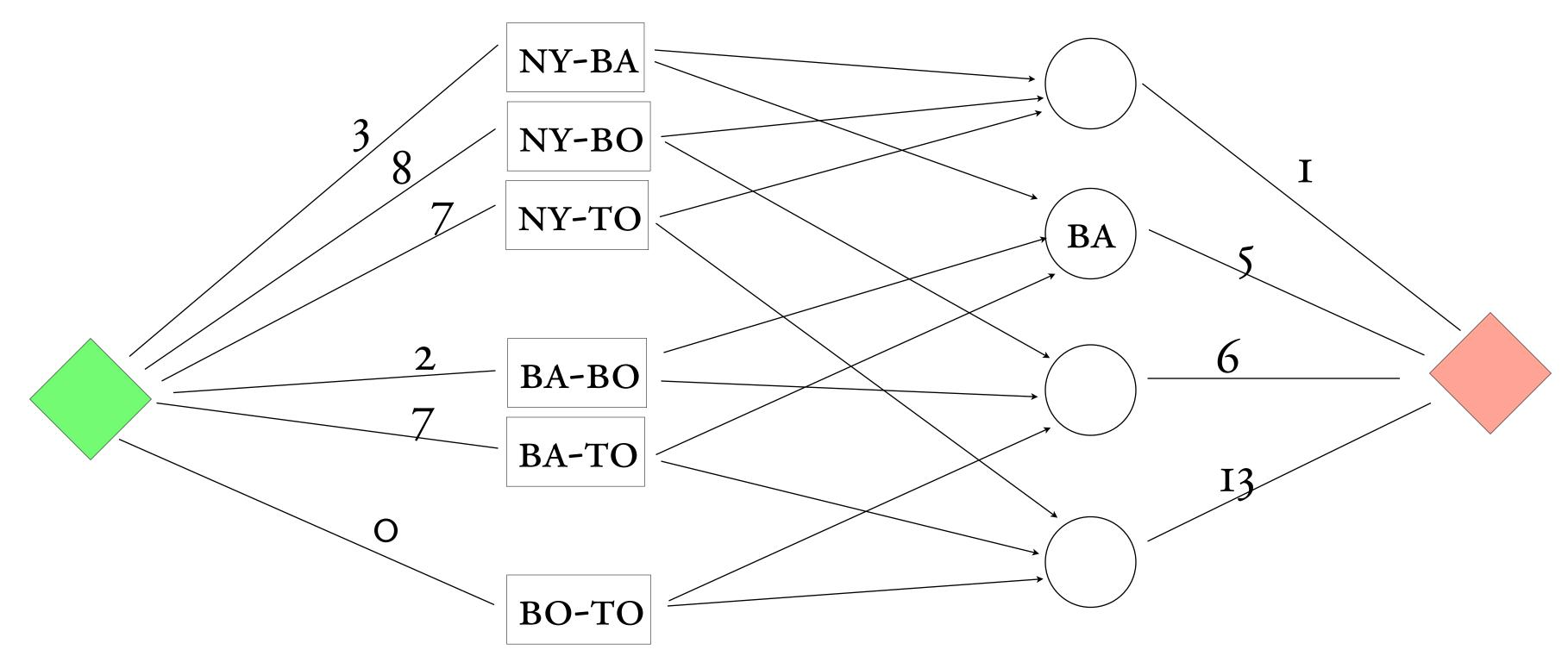


	W	L	Left	Ν	В	Во	Т	D	
NY	75	59	28		3	8	7	3	
BAL	71	63	28	3		2	7	4	
BOS	69	66	27	8	2				
TOR	63	72	27	7	7				
DET	49	86	27	3	4				





	W	L	Left	Ν	В	Во	Т	D	
NY	75	59	28		3	8	7	3	
BAL	71	63	28	3		2	7	4	
BOS	69	66	27	8	2				
TOR	63	72	27	7	7				
DET	49	86	27	3	4				



	\mathbf{W}	L	Left	Ν	В	Во	Т	D	
NY	75	59	28		3	8	7	3	
BAL	71	63	28	3		2	7	4	
BOS	69	66	27	8	2				
TOR	63	72	27	7	7				
DET	49	86	27	3	4				