5800

Max

mar 27/28 2022
shelat

Ford-Fulkerson

$$
\text { INITIALIZE } \quad f_{\leftarrow}(u, v) \leftarrow 0 \forall u, v
$$

WHILE EXISTS AN AUGMENTING PATH p IN Gf AUGMENT f WITH $\quad c_{f}(p)=\min _{(u, v) \in p} c_{f}(u, v)$

At the end of FF, we can identify a cut whose value is equal to the value of the flow.

FORD-FULKERSON

$$
\text { INITIALIZE } \quad f(u, v) \leftarrow 0 \forall u, v
$$

WHILE EXISTS AN AUGMENTING PATH p IN G_{f}

$$
\text { AUGMENT } f \text { WITH } \quad c_{f}(p)=\min _{(u, v) \in p} c_{f}(u, v)
$$

TIME TO FIND AN AUGMENTING PATH: $\vartheta(E+U)$ DFS, BFS.
NUMBER OF ITERATIONS OF WHILE LOOP:

prteritially a probem.

Thm: max flow = min cut

$$
\max _{f}|f|=\min _{S, T}\|S, T\|
$$

If fir a max flow, then Ga has no augmenting paths. in Gif
Define the set $S=\left\{v \mid \exists\right.$ a path from s to v and $\left.c_{f}(\rho)>0\right\}$

S
 these are the nodes one can still "reach" from s.
Define $T=V-S$.
Note that $s \in S$. Note $t \in T$. (why??)
Became if $t \in S$, then there
$\Rightarrow(S, T)$ is acut. is still one mure augmenting path!!

Thy: max flow = min cut (cont)
(1) Considu some $u \in S$ and $v \in T$.
$f(u, v)=c(u, v)$. why? If there was respacity left, then \checkmark would have been in the set S.

$$
c_{f}(u, v)=0 \Rightarrow f(u, v)=c(u, v)
$$

(2) $f(v, u)=0$ for any $v \in T, u \in S$. If $f(v, u)>0$, then there exists
(3)

$$
|f|=\sum_{u \in S}\left[\sum_{v \in T} f(u, v)-\sum_{v \in T} f(v, u)\right]
$$ a residual edge $u, v \omega / f(u, v)>0$. and so v would be in S :

$$
=\sum_{u \in S} \sum_{v \in T} c(u, v)-\sum_{u \in S} \sum_{v \in T} f(v, u) \text { this term is } 0 \text { by (2) }
$$

$=\left\|S_{1} T\right\| \Rightarrow$ that f has to be the max flow.

FORD-FULKERSON

$$
\begin{aligned}
& \text { INITIALIZE } \quad f(u, v) \leftarrow 0 \forall u, v \\
& \text { WHILE EXISTS AN AUGMENTING PATH } p \text { IN } G_{f} \\
& \qquad \text { AUGMENT } f \text { WITH } \quad c_{f}(p)=\min _{(u, v) \in p} c_{f}(u, v)
\end{aligned}
$$

TIME TO FIND AN AUGMENTING PATH:

NUMBER OF ITERATIONS OF WHILE LOOP:

root of the problem

for a graph G_{1} and flow f_{1}

Edmonds-Karp 2
choose path with fewest edges first. (BFS)
$\delta_{f}(s, v):$ fewest \# of edges on a path from s to u in the residual graph G_{f}
$\delta_{f}(s, v)$ increases monotonically thru exec

$$
\delta_{i+1}(v) \geq \delta_{i}(v)
$$

T index i corresponds to the number of augmenting paths that have been found so for.

for every augmenting path, some edge is critical.

critical edges are removed in next residual graph.

key idea: how many times can an edge be critical?
(when we are using the EK 2 ide of always pushing along the shortest paten from

$$
s \text { to } t]
$$

timeline of augmenting paths using Ell.

Lets say that edge (u, v) is the critical edge at tine i for the (stine.

Therefore, at time int, the edge (u, v) has O capacity and there is sone edge from (u, u).
(5)

0

$$
\delta_{i+1}(s, v) \geqslant \delta_{i}(s, u)+1
$$

first time (u, v) is critical:
the iteration

time $\mathrm{i}+1:(\mathrm{u}, \mathrm{v})$ is critical: $\quad \delta_{i+1}(s, v) \geq \delta_{i}(s, u)+1$

u.

time j: Edge (u,v) STRIKES BACK
what must occur for the edge ($4, v$) to be added back?? We must have found a short ort paste $S \leadsto V \rightarrow u \rightarrow t$

time i+1: (u, v) is critical: $\quad \delta_{i+1}(s, v) \geq \delta_{i}(s, u)+1$

time j: Edge (u,v) STRIKES BACK

first time we

time j: Edge (uv) STRIKES BACK

$$
\begin{aligned}
\delta_{i+1}(s, v) & \geq \delta_{i}(s, u)+1 \\
\delta_{j}(s, u) & =\stackrel{\delta_{j}(s, v)+1}{ }
\end{aligned}
$$

u

$$
\xrightarrow{\delta_{j}(s, u)} \geqq\left(\delta_{i+1}(s, u)+1\right)+1=\delta_{i+1}(s, u)+2
$$

time k: RETURN OF THE (uv) critical

$$
\delta_{k}(s, u) \geq \delta_{i}(s, u)+2
$$

QUESTION: How many times can (u, v) be critical?

$$
\frac{|v|}{2}
$$

$\begin{array}{cll}\text { each } & \begin{array}{ll}\frac{\lfloor V \mid}{2} & \\ \text { edge critical only } \\ \text { there are only } & E\end{array} & \text { edges. }\end{array}$
ergo, total \# of augmenting paths:
$\theta(E \cdot V)$
time to find an augmenting path:
BES BES
total running time of $\mathrm{E}-\mathrm{K}$ algorithm:
worst case:
$\theta\left(E^{2} V\right)$

Every augmenting path hos at least I cortical edge

FF $\quad O\left(E\left|f^{*}\right|\right) \quad$ Ang augmenting path.
EK2 $\quad \theta\left(E^{2} V\right) \quad B E S$.
push-ReLabel

$$
\binom{\text { Tarjan }}{\text { etal }} \quad \begin{align*}
& \text { FASTER PUSH-RELABEL } \tag{u}
\end{align*} \Theta\left(V^{3}\right)
$$

$$
V^{124} \cdot \operatorname{liag}(\cdots) \quad V^{2.5} \cdot \log (\cdots)
$$

Bipartite
Matchings

only 2 students were matched.
maximum bipartite matching

bipartite matching
problem: Given as input a bipartite graph $G=((4 R), E)$, find the largest subset of edges $M \subseteq E$ such that each node occurs at mort once in the set μ.
G^{\prime}
algorithm

Add a sit.

Add edges foin s to $\{L\}$ and $\{R\}$ to t. Sot all capacity to I.
I. MAKE NEW G'

FROM INPUT G.
2. RUN FF ON G'
3. OUTPUT ALL MIDDLE EDGES WITH FLOW $F(E)=$. .

If always produces integral flows if copacitily are integral.
correctness
if G has a matching of size k, then G ' has a maxflow of K
Prof: Given a matching $M \subseteq E$ of size $|M|=K$, such that each node occurs at must once in M, construct a flow f As follows: for all $e \in M, f(e)=1$
(1) f is a valid flow.
for all $c=(u, v) \in M, f(s, u)=1$
capacity constrain il: $f(u, u) \leq c(u, v)$

$$
f(v, t)=1
$$

flow constraint:
0 -therwise.
(2) $|f|=K$. because $\sum_{u \in L} f(s, u)=k$.
correctness
if G' has a flow of k, then G haas a bipartite matchince of k.
Prof: Consider all edges in G' between L and R with $f(e)=I$.
Add e to $M \rightarrow|M|=K$. each $e=(u, u)$ is sot. u can only have one unit of inflow from si so it can occur at most once is M.
$G^{\prime}:$
(5)

same for each v.
This is a UAUD FMAX!! But our reduction procedure produces $M=\{ \}$. (emptyset)
integrality theorem
if capacities are all integral, then \mathcal{F} returns an integral flow.
Proof. By induction. In $f F$, f begins as O. Thus integral.
See f is integral after i steps of $F F$.
Consider the $(i t))^{\text {st }}$ step. Since f is integid, all residual capacities an $G f$ are integral.
FF finds an augmenting path. The min capacity will be integral, and thus the update to f will remain integral on step its.
correctness

IF G' HAS A FLOW OF K, THEN G HAS K-MATCHING.
G Gas integral flows. Therefore, each flow v ave can be only O or I because copacitig are I. [Ret of the coryumet from be fore]
running time

$$
O(E \cdot|f|)<O(E \cdot V)
$$

edge-disjoint paths
INPOT: gruph G

(the actud paths)

algorithm

add cspacity I to each edje

1. Compute max flow
2. Remove all edges with $f(e)=0$.
3. Walk from s.
4. If you reach a node you have visited before, erase flow along path
5. If you reach t, add this path to your set, erase flow along path.
analysis
IF G HAS K DISJOINT PATHS, THEN there (G, c) has a flew $(f)=K$. why is this true??
\rightarrow simply assign a flow of 1 an cash edge or the K disjoint pates.
(c) capacity constraint will be satisfied because $f(e) \leq c(e)$ for all $e \in E$.
(b) flow constraint: (for you to pondu)
(l wall post in the 47 website)
analysis
(G.c)

IF G' HASA FLOW OF K, THEN there exist K edge disjoint paths.
To show: $\exists \mathrm{K}$ edge dis in. pates among the edges in $G 1$ for which $f(e)=1$.
This argument is by induction: Start w/i paths and a G w. Th flow k.
\rightarrow After running the procedure in stop 3, the resulting graph has (i+1) paths and G with flow $k-1$. (proof as an execcise, portal on website)

for each node, replace:

BASEBALL ELIMINATION

			Against				
	W	L	Left	A	P	N	M
BTL	83	71	8	-	I	6	I
PUL	80	79	3	I	-	0	2
NY	78	78	6	6	0	-	0
MONT	77	82	3	I	2	0	-

mont cannot win the NLE.

BASEBALL ELIMINATION
some team most have 77

Run Flow.
Better non-trivid

BASEBALL ELIMINATION

Why it works

Thm: A team T has been eliminated if the maxflow of graph G is less than the total number of games left between the other teams in the league.

