
5800
Max Flows 2

mar 27/28 2022
shelat

Ford-Fulkerson

initialize
while exists an augmenting path p in

augment f with

s t

3

2

3

2

2313

1

2

3

3

2

3

2

2313

1

2

3

s t
µ

v

v
Y

1/2

1/1

3

1/1

231/03

1

2

1/2

1

1

1

1

1
s t

1/2

1/1

3

1/1

231/03

1

2

1/2

1

1

1

1

1
s t

1/2

1/1

1/2

1/1

230/13

1/0

3

1/2

1

1

1/0

1

1

1

s t

1/2

1/1

1/2

1/1

230/13

1/0

3

1/2

1

1

1/0

1

1

1

s t

2/1

2/0

2/1

1/1

230/13

1/0

3

1/2

2

2

1/0

1

1

2

s t

At the end of Ff
we can identify a cut whose rate is equal to
the value of the flow

ford-fulkerson

initialize
while exists an augmenting path p in

augment f with

time to find an augmenting path:

number of iterations of while loop:

OfETV DFS BFS

potentially a problem

s t
1/
3

2/2
2/3

1/
2

1/2
2/31/11/3

0/1
2/2

2/3

for any it holds that

Thm: max flow = min cut

If f is a max flow, then Gf has no augmenting paths.

Define the set S u 17 apath from sto
acid
Cfp o

these are the node one can still reach from s
Define T V SÉ to note that Ses Note t ET why

Because if tes thenthereST is acut is still one more augmenting
path

Thm: max flow = min cut (cont)
É consider some ues and vet

u u
flan d un why If there was cupiditylift then

u wouldhavebeen in the set S

Cf un O flan claw
Faia 0 foranyI yes If flu u o then thereexists

a residual edge up w fluid70Ifl Is If un Efluid and so u wouldbe in S

EI Clun EE feua
thistermis 0by

IS Tl that f has to be the max flow

ford-fulkerson

initialize
while exists an augmenting path p in

augment f with

time to find an augmenting path:

number of iterations of while loop:

s v

50 50

50

1

50

s v

50 50

50

1

50

50 1/49

50

1/0

1/49

1s v

1/4
9

1/49

1/
49

0/1

1/49

0s v

root of the problem

50 50

50

1

50

s v

Edmonds-Karp 2
choose path with fewest edges first.

� f (s, v) :

for agraphG BFSand flow f
fewest of edges on a pathfrom sto u
in the residualgraph Gf

� f (s, v)

�i+1(v) � �i(v)

increases monotonically thru exec

I index i corresponds to the number

of augmenting paths thathave been

found so far

s t

1/2

1/1

1/2

1/1

230/13

1/0

3

1/2

1

1

1/0

1

1

1

for every augmenting path, some edge is critical.

the critical bottleneck on the pathfrom
Sto v

s t

2/1

2/0

2/1

1/1

230/13

1/0

3

1/2

1

1

1/0

1

1

1

critical edges are removed in next residual graph.

u v

2/1

2/0

2/1

1/1

230/13

1/0

3

1/2

1

1

1/0

1

1

1

key idea: how many times can an edge be critical?

s t

when we are using the Ek 2 idea of
always pushing along the shortestpathfrom

sto t

i i+1 j k

timeline of augmenting paths using Elz
the ith augmenting flow that Ek found

Lets saythat edge u u s the critical edge at time i fortheistt

so Emei
Therefore at time iel the edge au has 0 capacityand

there is some edgefrom vid

ME 0 0
die Siu fils a t I

first time (u,v) is critical:
i i+1 j k

i i+1 j k

s u v t

time j: Edge (u,v) STRIKES BACK

s u v t

time i+1: (u,v) is critical: �i+1(s, v) � �i(s, u) + 1

theiteratimwich un is anedge in Gf

Whatmust occur For the edge Cuco to be added back
Wemust have found a shortest path STV a s t

a
dj Siu Jj Siu t I

i i+1 j k

s u v t

�j(s, u) = �j(s, v) + 1

time i+1: (u,v) is critical:

s u v t

�i+1(s, v) � �i(s, u) + 1

time j: Edge (u,v) STRIKES BACK

i i+1 j k
time j: Edge (u,v) STRIKES BACK

s u v t

�j(s, u) = �j(s, v) + 1
�i+1(s, v) � �i(s, u) + 1

fifty
Embed

gale gthenest
time verse can

Clue tilsiult It die sin 12

i i+1 j k
time k: RETURN OF THE (u,v) critical

s u v t

�k(s, u) � �i(s, u) + 2

QUESTION: How many times can (u,v) be critical?

2nd time Civ is used

µ
I

edge critical only times.
there are only edges.

ergo, total # of augmenting paths:

time to find an augmenting path:

total running time of E-K algorithm:

each Hal
E

E
Everyaugmenting
path has at
least I critical

Bfs
E edge

worstcase EV

FF

EK2

PUSH-RELABEL

FASTER PUSH-RELABEL

Any augmenting path

OCEV BFS

Tarja I
etal

V3

GodbeyRao O min E v E.bgE
loglu

3
log v25 GC 7

Bipartite
Matchings

maximum bipartite matching
WGR Left

nodes
Rightnodes

All edges
in the

graphgo
from

L to R

only 2 students were matched

maximum bipartite matching

3 students can be
matched

bipartite matching

problem:Given as input a bipartite graph G GR E

find the largest subset of edges ME E
such that each node occurs at most

once in the set u

Chapter 7 Network Flow

& The Problem

One of our original goals i a developing the Maximum-Flow Problem was to

be able to solve the Bipartite Matching Problem, and we now show how to

do this. Recall that a bipartite graph G = (V, E) is an undirected graph whose

node set can be partitioned as V = X U Y, with the property that every edge

e E E has one end in X anJ the other end in Y. A matching M in G is a subset

of the edges M C E such that each node appears in at most one edge in M.

The Bipartite Matching Prcblem is that of finding a matching in G of largest

possible size.

0 Designing the Algorithm

The graph defining a matching problem is undirected, while flow networks are

directed; but it is actually riot difficult to use an algorithm for the Maximum-

Flow Problem to find a ma imum matching.

Beginning with the graph G in an instance of the Bipartite Matching

Problem, we construct a flow network G' as shown in Figure 7.9. First we

direct all edges in G from X to Y. We then add a node s, and an edge (s, x)

from s to each node in X. We add a node t, and an edge (y, t) from each node

in Y to t. Finally, we give each edge in G' a capacity of 1.

We now compute a maximum s-t flow in this network G'. We will discover

that the value of this maxn mum is equal to the size of the maximum matching

in G. Moreover, our analysis will show how one can use the flow itself to

recover the matching.

(a) (b)

Figure 7.9 (a) A bipartite graph. (b) The corresponding flow network, with all capacities
equal to 1.

368

algorithm
G

C R

Add a sit
Addedges for s to c and R to t

Set all capacities to I

Chapter 7 Network Flow

& The Problem

One of our original goals i a developing the Maximum-Flow Problem was to

be able to solve the Bipartite Matching Problem, and we now show how to

do this. Recall that a bipartite graph G = (V, E) is an undirected graph whose

node set can be partitioned as V = X U Y, with the property that every edge

e E E has one end in X anJ the other end in Y. A matching M in G is a subset

of the edges M C E such that each node appears in at most one edge in M.

The Bipartite Matching Prcblem is that of finding a matching in G of largest

possible size.

0 Designing the Algorithm

The graph defining a matching problem is undirected, while flow networks are

directed; but it is actually riot difficult to use an algorithm for the Maximum-

Flow Problem to find a ma imum matching.

Beginning with the graph G in an instance of the Bipartite Matching

Problem, we construct a flow network G' as shown in Figure 7.9. First we

direct all edges in G from X to Y. We then add a node s, and an edge (s, x)

from s to each node in X. We add a node t, and an edge (y, t) from each node

in Y to t. Finally, we give each edge in G' a capacity of 1.

We now compute a maximum s-t flow in this network G'. We will discover

that the value of this maxn mum is equal to the size of the maximum matching

in G. Moreover, our analysis will show how one can use the flow itself to

recover the matching.

(a) (b)

Figure 7.9 (a) A bipartite graph. (b) The corresponding flow network, with all capacities
equal to 1.

368

algorithm
1. MAKE NEW G’
FROM INPUT G.

2. RUN FF ON G’

3. OUTPUT ALL MIDDLE EDGES
WITH FLOW F(E)=1.

G

Ed

Ff always produces integralflows
if capacities are integral

correctness
IF G HAS A MATCHING OF SIZE K, THEN
input

Gl has A Maxflow ofK
Pnd Given a matching MEE of size lml K such that

each node occurs at most once in M construct a

flow f As follows for all een fee l

for all e un em f Scu lf is a validflow
for t lcapacity constraint flan E clan

flow constraint 0 otherwise

I fl k because Lyflsu K

correctness
IF G’ HAS A FLOW OF K, THEN G HAS A BIPARTITE MATCHINGof K

Paf Consider all edges in G between Lane R with feel I
Add e to M I Mfk each e un is set u can only

have one unit of inflow from Soso it
can occuratmost once in MG same for each y

I
É É This is a van Matt

But our reduction procedure
produces M E emptyset

integrality theorem
IF CAPACITIES ARE ALL INTEGRAL, THEN Ff returns an integralflow

poof By induction In ff f begins as 0 Thusintegral
Sese f is integral after i steps of Ff
Consider theCiel t step Since f is integralall residual capacities on Gf are integralFf finds an augmenting path The min capacity will
be integral and thus the update to f willremain integral on step it

correctness
IF G’ HAS A FLOW OF K, THEN G HAS K-MATCHING.

Gl has integral flows Therefore each flow valve
can be only O or I because capacities are I
Rest of the argument from before

running time

OLE Ifl OLE V

f

c

d

h

b

a

e
i

g

z

edge-disjoint paths I
INPUT graphG
souteand

yodestination ok
Sit e

i i

s
output of I

f
Dez

edgedisjoint 1
paths
theactual
paths

algorithm

f

c

d

h

b

a

e
i

g

z

I
J T

C V

N I

1. Compute max flow
2. Remove all edges with f(e) = 0.
3. Walk from s.

1. If you reach a node you have visited before,
erase flow along path

2. If you reach t, add this path to your set, erase
flow along path.

add capacity I toeachedge

1

analysis
IF G HAS K DISJOINT PATHS, THEN

capacity to eachedge

there Gic has a flow fl k
why is this true

simply assign a flow of 1 on each edge

on the K disjoint paths

capacity constraint will be satisfied
because fee Ide for all et E

Flow constraint for you to ponder
I will post on the 47 website

analysis
IF G’ HAS A FLOW OF K, THEN
Chic

there exist k edgedisjointpaths
Toshio I k edge disjoint paths among the edges in G

for which fle I

Thisargometyiggy
induction start w i paths and a Gwith

After running the procedure in step 3 the resulting

graph has Ciel paths and G with flow K l

proof as an exercise posted on website

f

c

d

h

b

a

e
i

g

z

vertex-disjoint pathsdyetample

edge disjoint paths may stillI
g

share a common node

I Input graph G and set.eu
Output ofvertexIt

u disjointpaths
for eachnode replace

I h

baseball elimination

W L Left A P N M
ATL 83 71 8 - 1 6 1

PHL 80 79 3 1 - 0 2

NY 78 78 6 6 0 - 0

MONT 77 82 3 1 2 0 -

Against

MONT cannot win the NLE

baseball elimination

W L Left N B Bo T D
NY 75 59 28 3 8 7 3
BAL 71 63 28 3 2 7 4
BOS 69 66 27 8 2
TOR 63 72 27 7 7
DET 49 86 27 3 4

Against

someteammust
have 77

I
wins

76 25

7g
4 305T

8 71 25
69

CANDetroit
2win

ny-ba

ny-bo

ny-to

ba-bo

ba-to

bo-to

ba

W L Left N B Bo T D

NY 75 59 28 3 8 7 3

BAL 71 63 28 3 2 7 4

BOS 69 66 27 8 2

TOR 63 72 27 7 7

DET 49 86 27 3 4

R F

yay
Max gamesbefore

games
left

q

I
7 8 5

s
it

O 13

unit of
Flow
I WIN

ny-ba

ny-bo

ny-to

ba-bo

ba-to

bo-to

ba
5

6

13

1

W L Left N B Bo T D

NY 75 59 28 3 8 7 3

BAL 71 63 28 3 2 7 4

BOS 69 66 27 8 2

TOR 63 72 27 7 7

DET 49 86 27 3 4

ny-ba

ny-bo

ny-to

ba-bo

ba-to

bo-to

ba

W L Left N B Bo T D

NY 75 59 28 3 8 7 3

BAL 71 63 28 3 2 7 4

BOS 69 66 27 8 2

TOR 63 72 27 7 7

DET 49 86 27 3 4

1

5

6

13

3
8

7

2
7

0

baseball elimination

W N B Bo T
NY 90 1 4 6
BAL 88 1 4 1
BOS 79
TOR 87 6 1 4

Against

4 4 4 91

90 3273
79412 91 88

I

ny-ba

ny-to

ba-to

ny

to

ba

W L Left N B Bo T

NY 90 1 4 6

BAL 88 1 4 1

BOS 79 4 4 4

TOR 87 6 1 4

FLOWE ANY
OT

I
p

6

I
y

3

t
this
cot

hasvalue
7 which

is

less
than the f

games

left

Why it works
Thm: A team T has been eliminated if the maxflow of graph G is
less than the total number of games left between the other
teams in the league.

