Max Hous 2

> mar 27/28/29 2022 shelat

Ford-Fulkerson

```
Initialize f(u,v) \leftarrow 0 \ \forall u,v while exists an augmenting path p in G_f augment f with c_f(p) = \min_{(u,v) \in p} c_f(u,v)
```


FORD-FULKERSON

Initialize
$$f(u,v) \leftarrow 0 \ \forall u,v$$
 while exists an augmenting path p in G_f augment f with $c_f(p) = \min_{(u,v) \in p} c_f(u,v)$

TIME TO FIND AN AUGMENTING PATH:

NUMBER OF ITERATIONS OF WHILE LOOP:

for any f,(S,T) it holds that $|f| \leq ||S,T||$

Thm: max flow = min cut

$$\max_{f} |f| = \min_{S,T} ||S, T||$$

If f is a max flow, then Gf has no augmenting paths.

Thm: max flow = min cut (cont)

FORD-FULKERSON

Initialize
$$f(u,v) \leftarrow 0 \ \forall u,v$$
 while exists an augmenting path p in G_f augment f with $c_f(p) = \min_{(u,v) \in p} c_f(u,v)$

TIME TO FIND AN AUGMENTING PATH:

NUMBER OF ITERATIONS OF WHILE LOOP:

root of the problem

Edmonds-Karp 2

choose path with fewest edges first.

$$\delta_f(s,v)$$
:

 $\delta_f(s,v)$ increases monotonically thru exec

$$\delta_{i+1}(v) \geq \delta_i(v)$$

for every augmenting path, some edge is critical.

critical edges are removed in next residual graph.

key idea: how many times can an edge be critical?

first time (u,v) is critical:

time j: Edge (u,v) STRIKES BACK

time j: Edge (u,v) STRIKES BACK

time j: Edge (u,v) STRIKES BACK

$$\delta_{i+1}(s, v) \ge \delta_i(s, u) + 1$$

$$\delta_j(s, u) = \delta_j(s, v) + 1$$

time k: RETURN OF THE (u,v) critical

$$\delta_k(s, u) \ge \delta_i(s, u) + 2$$

QUESTION: How many times can (u,v) be critical?

edge critical only

times.

there are only

edges.

ergo, total # of augmenting paths:

time to find an augmenting path:

total running time of E-K algorithm:

FF

 $O(E|f^*|)$

EK2

PUSH-RELABEL

FASTER PUSH-RELABEL

Bipartite Matchings

maximum bipartite matching

maximum bipartite matching

bipartite matching

PROBLEM:

algorithm

algorithm

- I. MAKE NEW G' FROM INPUT G.
- 2. RUN FF ON G'
- 3. OUTPUT ALL MIDDLE EDGES WITH FLOW F(E)=1.

correctness

IF G HAS A MATCHING OF SIZE K, THEN

correctness

IF G' HAS A FLOW OF K, THEN

integrality theorem

IF CAPACITIES ARE ALL INTEGRAL, THEN

correctness

IF G' HAS A FLOW OF K, THEN G HAS K-MATCHING.

running time

edge-disjoint paths

algorithm

- 1. Compute max flow
- 2. Remove all edges with f(e) = 0.
- 3. Walk from s.
 - 1. If you reach a node you have visited before, erase flow along path
 - 2. If you reach t, add this path to your set, erase flow along path.

analysis

IF G HAS K DISJOINT PATHS, THEN

analysis

IF G' HAS A FLOW OF K, THEN

vertex-disjoint paths

BASEBALL ELIMINATION

				Against					
	W	L	Left	A	P	Ν	M		
ATL	83	7 I	8	-		6			
PHL	80	79	3		-	0	2		
NY	78	78	6	6	0	_	0		
MONT	77	82	3		2	0	_		

BASEBALL ELIMINATION

A	•	4
A	za i	nst
	7	`

	W	L	Left	N	В	Во	T	D	
NY	75	59	28		3	8	7	3	
BAL	7 I	63	28	3		2	7	4	
BOS	69	66	27	8	2				
TOR	63	72	27	7	7				
DET	49	86	27	3	4				

	W	L	Left	N	В	Во	Т	D	
NY	75	59	28		3	8	7	3	
BAL	71	63	28	3		2	7	4	
BOS	69	66	27	8	2				
TOR	63	72	27	7	7				
DET	49	86	27	3	4				

	W	L	Left	Ν	В	Во	Т	D	
NY	75	59	28		3	8	7	3	
BAL	71	63	28	3		2	7	4	
BOS	69	66	27	8	2				
TOR	63	72	27	7	7				
DET	49	86	27	3	4				

	W	L	Left	N	В	Во	Т	D	
NY	75	59	28		3	8	7	3	
BAL	71	63	28	3		2	7	4	
BOS	69	66	27	8	2				
TOR	63	72	27	7	7				
DET	49	86	27	3	4				

BASEBALL ELIMINATION

					Against	
	W	Ν	В	Во	T	
NY	90		l	4	6	
BAL	88			4		
BOS	79					
TOR	87	6		4		

	W	L	Left	Ν	В	Во	Т
NY	90				I	4	6
BAL	88			I		4	I
BOS	79			4	4		4
TOR	87			6	I	4	

Why it works

Thm: A team T has been eliminated if the maxflow of graph G is less than the total number of games left between the other teams in the league.