## 5800

## Max Flows <br> 

mar 27/28/29 2022
shelat

## Ford-Fulkerson

$$
\begin{aligned}
& \text { INITIALIZE } \quad f(u, v) \leftarrow 0 \forall u, v \\
& \text { WHILE EXISTS AN AUGMENTING PATH } p \text { IN } G_{f} \\
& \text { AUGMENT } f \text { WITH } \quad c_{f}(p)=\min _{(u, v) \in p} c_{f}(u, v)
\end{aligned}
$$









## FORD-FULKERSON

$$
\begin{aligned}
& \text { INITIALIZE } \quad f(u, v) \leftarrow 0 \forall u, v \\
& \text { WHILE EXISTS AN AUGMENTING PATH } p \text { IN } \quad G_{f} \\
& \text { AUGMENT } f \text { WITH } \quad c_{f}(p)=\min _{(u, v) \in p} c_{f}(u, v)
\end{aligned}
$$

TIME TO FIND AN AUGMENTING PATH:

NUMBER OF ITERATIONS OF WHILE LOOP:

FOR ANY $f,(S, T)$ IT HOLDS THAT $|f| \leq\|S, T\|$


## Thm: max flow = min cut

$$
\max _{f}|f|=\min _{S, T}| | S, T| |
$$

If f is a max flow, then Gf has no augmenting paths.

Thm: max flow = min cut (cont)

## FORD-FULKERSON

$$
\begin{aligned}
& \text { INITIALIZE } \quad f(u, v) \leftarrow 0 \forall u, v \\
& \text { WHILE EXISTS AN AUGMENTING PATH } p \text { IN } G_{f} \\
& \text { AUGMENT } f \text { WITH } \quad c_{f}(p)=\min _{(u, v) \in p} c_{f}(u, v)
\end{aligned}
$$

TIME TO FIND AN AUGMENTING PATH:

NUMBER OF ITERATIONS OF WHILE LOOP:




root of the problem


## Edmonds-Karp 2

choose path with fewest edges first.

$$
\delta_{f}(s, v):
$$

$\delta_{f}(s, v)$ increases monotonically thru exec
$\delta_{i+1}(v) \geq \delta_{i}(v)$

for every augmenting path, some edge is critical.

critical edges are removed in next residual graph.

key idea: how many times can an edge be critical?


first time $(u, v)$ is critical:

time $\mathrm{i}+1$ : $(\mathrm{u}, \mathrm{v})$ is critical: $\quad \delta_{i+1}(s, v) \geq \delta_{i}(s, u)+1$

time j: Edge (u,v) STRIKES BACK

time $\mathrm{i}+1$ : $(\mathrm{u}, \mathrm{v})$ is critical: $\quad \delta_{i+1}(s, v) \geq \delta_{i}(s, u)+1$

time j: Edge (u,v) STRIKES BACK


time j: Edge ( $u, v$ ) STRIKES BACK

$$
\begin{aligned}
\delta_{i+1}(s, v) & \geq \delta_{i}(s, u)+1 \\
\delta_{j}(s, u) & =\delta_{j}(s, v)+1
\end{aligned}
$$



time k: RETURN OF THE (u,v) critical
$\delta_{k}(s, u) \geq \delta_{i}(s, u)+2$


QUESTION: How many times can $(u, v)$ be critical?
edge critical only
there are only
times
edges.
ergo, total \# of augmenting paths:
time to find an augmenting path:
total running time of E-K algorithm:

FF $\quad O\left(E\left|f^{*}\right|\right)$

EK2

PUSH-RELABEL

FASTER PUSH-RELABEL

Bipartite
Matchings
maximum bipartite matching

maximum bipartite matching


## bipartite matching

PROBLEM:

## algorithm



## algorithm

I. MAKE NEW G' FROM INPUT G.
2. RUN FF ON G'
3. OUTPUT ALL MIDDLE EDGES WITH FLOW $F(E)=\mathbf{I}$.


## correctness

IF G HAS A MATCHING OF SIZE K, THEN
correctness
IF G' HAS A FLOW OF K, THEN

## integrality theorem

IF CAPACITIES ARE ALL INTEGRAL, THEN

## correctness

IF G' HAS A FLOW OF K, THEN G HAS K-MATCHING.

## running time

## edge-disjoint paths



## algorithm



1. Compute max flow
2. Remove all edges with $f(e)=0$.
3. Walk from s.
4. If you reach a node you have visited before, erase flow along path
5. If you reach $t$, add this path to your set, erase flow along path.

## analysis

IF G HAS K DISJOINT PATHS, THEN

## analysis

IF G' HAS A FLOW OF K, THEN
vertex-disjoint paths


## BASEBALL ELIMINATION

|  |  |  |  | Against |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | W | L | Left | A | P | N | M |
| ATL | 83 | 71 | 8 | - | I | 6 | I |
| PHL | 80 | 79 | 3 | I | - | 0 | 2 |
| NY | 78 | 78 | 6 | 6 | 0 | - | 0 |
| MONT | 77 | 82 | 3 | 1 | 2 | 0 | - |

## BASEBALL ELIMINATION

|  |  |  |  |  | Against |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | W | L | Left | N | B | Bo | T | D |
| NY | 75 | 59 | 28 |  | 3 | 8 | 7 | 3 |
| BAL | 71 | 63 | 28 | 3 |  | 2 | 7 | 4 |
| BOS | 69 | 66 | 27 | 8 | 2 |  |  |  |
| TOR | 63 | 72 | 27 | 7 | 7 |  |  |  |
| DET | 49 | 86 | 27 | 3 | 4 |  |  |  |




|  | W | L | Left | N | B | Bo | T | D |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NY | 75 | 59 | 28 |  | 3 | 8 | 7 | 3 |
| BAL | 71 | 63 | 28 | 3 |  | 2 | 7 | 4 |
| BOS | 69 | 66 | 27 | 8 | 2 |  |  |  |
| TOR | 63 | 72 | 27 | 7 | 7 |  |  |  |
| DET | 49 | 86 | 27 | 3 | 4 |  |  |  |



BASEBALL ELIMINATION

|  |  |  |  |  | Against |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | W | N | B | Bo | T |
| NY | 90 |  | I | 4 | 6 |
| BAL | 88 | I |  | 4 | I |
| BOS | 79 |  |  |  |  |
| TOR | 87 | 6 | I | 4 |  |



|  | W L | Left | N | B | Bo | T |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NY | 90 |  |  | I | 4 | 6 |
| BAL | 88 | 1 |  | 4 | I |  |
| BOS | 79 | 4 | 4 |  | 4 |  |
| TOR | 87 | 6 | I | 4 |  |  |

## Why it works

Thm: A team T has been eliminated if the maxflow of graph $G$ is less than the total number of games left between the other teams in the league.

