0000

Stablematch

apr1/apr4 2022

shelat

We have a
 group of suitors and
 reviewers

 preferences over the other group

We seek a

matching between

the two

Alicel prefess B2 to her currat

Bub 2 prefio Alizel to his curciot match.

Unstable Matching

Unstable Matching

Unstable Matching

Stable

matching has many practical applications

亗MATCH
 NATIONAL RESIDENT MATCHING PROGRAM ${ }^{*}$

Figure 1 Applicants and 1st Year Positions in The Match, 1952-2014

Matched			
Applicant Type	2013 Graduates	Prior Year Graduates	
CMG	2571	74	Total
IMG	146	353	499
USMG	23	2	25
TOTAL	2740	429	3169

Definition: matchings
proposes

$$
\begin{aligned}
& P=\left\{p_{1}, p_{2} \ldots\right. \\
& R=\left\{p_{\infty}\right\} \\
& r_{1}, s_{2} \ldots \\
& \left.r_{0}\right\}
\end{aligned}
$$

reviewers

$$
M=\left\{\left(p_{i,}, r_{j 1}\right),\left(p_{i 2}, r_{j 2}\right), \ldots\left(f_{i n}, r_{j n}\right)\right\}
$$

goal is to find a matching
pairs such that each $p i$ and each r_{j} appears in exactly one pair in M.

Definition: matchings

$$
\begin{aligned}
& P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\} \\
& R=\left\{r_{1}, r_{2}, \ldots, r_{n}\right\} \\
& M=\left\{\left(p_{i_{1}}, r_{j_{1}}\right), \ldots,\left(p_{i_{n}}, r_{j_{n}}\right)\right\}
\end{aligned}
$$

netconngs

Each $p_{i}\left(r_{j}\right)$ appears only one in a pairing. A matching is perfect if every p_{i} appears.

Proposen

Image credits: Julia Nikolaeva

Definition: preferences

$$
P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}
$$

$r_{1} \prec_{p 1} r_{2} " \quad p_{1}$ prefers r_{2} over r_{r}

$$
\begin{aligned}
& V_{\text {pr }} \mathrm{H}_{7} 7> \\
& 0.0 \text { 圈 } 9 \\
& \text { TO (: } \\
& \text { 힝 } \\
& \text { 包囲 }
\end{aligned}
$$

Image credits：Julia Nikolaeva

Example：preferences

$$
P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}
$$

$P_{i} \begin{aligned} & \text { has a preference relation } \\ & \text { on the set } \mathrm{R}\end{aligned}$ on the set R

$$
\begin{aligned}
& w_{1} \prec_{p \nu_{i}} w_{4} \prec_{p p_{i}} w_{2} \prec_{p_{i}} w_{8} \cdots w_{n} \\
& \text { 㯖 } \prec \text { 圈 } \\
& \prec \text { - } \\
& \text { Y } \\
& \text { H }
\end{aligned}
$$

$M=\{(D, H),(C, V)\}$
this is an example if an unstable matching

Def: instability

$$
B C(D, V) \text { is }
$$

 Not in S. and

INSTABLLICY: it is a pair $\left(p_{i}, r_{j}\right) \& S$ that is wot in the matching such that
p_{i} prefers r_{j} to its match in S ann r_{j} prefers pi to its match in S.

$$
\begin{aligned}
& \text { Def: instability }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (\% 0) }\left(\mathrm{m}^{2}, w^{2}\right) \& s \\
& w^{\prime} \prec_{m^{*}} w^{*} \\
& m^{\prime} \prec_{w^{*}} m^{*}
\end{aligned}
$$

$M^{=(\operatorname{san})}$
 is a stable matching if

No unmatched pair ($\left.s^{*}, r^{*}\right)$ prefer each other to their partners in M

Example 2

-O …

Prove: for every input

	0.0		En
0		Q.0	
8		$\stackrel{0}{8}$	0.0
	8.	e_{0}^{3}	

there exists a stable matching.
proposal algorithm
(1) Start with everyone unmatched
(2) while \exists an unmatched suitor

Let r be the highest ranked reviewer that shasn't proposed yet Let s "propose" to r :
if r is unmatched: create pair (s, r)
if r is matched to $\left(s^{\prime}, s\right)$ and r prefers $s \geqslant s^{\prime}$ then break $\left(s^{\prime}, r\right)$ and create pair (s, r) otherwise: continue in the loop.

StableMatch $\left(M, W, \prec_{m}, \prec_{w}\right)$
1 Initialize all m, w to be free
2 while $\exists \operatorname{FREE}(m)$ and hasn't proposed to all W
3 do Pick such an m

10 return Set of pairs
s

s

S

S

s

(2)

	VE		$\frac{\text { KEXAS }}{1}$
8	$0 \cdot 0$	8	80
-0	83	$0 \cdot$	8
\%3	\bigcirc	θ	$0 \cdot 0$
θ	2	*3)	\bigcirc

S

S

	0.0		8
0		0.0	
8	0	\bigcirc	0.0
	8_{8}^{2}	Es.	$\stackrel{0}{0}$

Proposal algorithm ends

- EAch suitor proposes at most once to ene reviewer
- Each m proposes $\leq n$ tines.

Since there are n suitors, then $O\left(n^{2}\right)$.

Proposal algorithm ends

$$
O\left(n^{2}\right) \text { steps }
$$

each m proposes at most once to each w.
each m proposes at most n times.
size of M is at most n.
output is a matching
(1) Each suitor appears at most once in the output

This follows because pairs are only created in ling 6,9, and when a pair is created, both parties are free.

StableMatch $\left(M, W, \prec_{m}, \prec_{w}\right)$

1 Initialize all m, w to be free
2 while $\exists \operatorname{Free}(m)$ and hasn't proposed to all W

10 return Set of pairs

StableMatch $\left(M, W, \prec_{m}, \prec_{w}\right)$

1 Initialize all m, w to be free
2 while $\exists \operatorname{Free}(m)$ and hasn't proposed to all W

10 return Set of pairs
output is perfect

$$
|M|=n ? ?
$$

\Rightarrow if thece is an unonathed suiter,
I un vumathed reviews,
So alyorithen cannot have ferminated

output is perfect

if $\exists m$ who is free, then
\exists who has not been asked
output is stable
Proof e By contradiction. Suppose the outph is not stable.
That means there exists a pair ($\left.P^{*}, r^{*}\right)$ that is
Not (N the output M such that $r^{*}>_{p *} M\left(p^{*}\right)$ and

- Consider the moved when r^{*} is matched $p^{*} y_{r^{*}} \mu\left(r^{*}\right)$ with $M\left(r^{*}\right)$ and the monet when p^{k} is matched with $M\left(\rho^{*}\right)$
(1) p^{*} must have proposed to $M\left(\rho^{*}\right)$ last.
denotes the
Bot we know $r^{*} y_{p *} M\left(p^{*}\right)$ match of $r *$ in the output.
$\Rightarrow \rho^{*}$ must have proposed to r^{*} earlier in the algorithm.
output is stable
spse not. $\exists\left(m^{*}, w\right),\left(m, w^{*}\right) \in S \quad w \prec_{m^{*}} w^{*} m \prec_{w^{*}} m^{*}$
What happened when p^{*} proposed to r^{*} :
(a) $\left(\rho^{*}, r^{*}\right)$ pair was created \Rightarrow but then, another proposed p^{\prime} proposed te r^{*}, and r^{*} preferred p^{\prime} to p^{*}.
\Rightarrow this contradicts the assumption that r^{*} prefers ρ^{*} to its current match, because matches are only broken when the reviecuer's preference improve. This contradicts $p^{*} \succ_{r *} M\left(r^{*}\right)$.
output is stable
spse not. $\exists\left(m^{*}, w\right),\left(m, w^{*}\right) \in S \quad w \prec_{m^{*}} w^{*} m \prec_{w^{*}} m^{*}$
(b) Ind case: r^{*} was already matched to ap' at the tine proposed, and the match was not broken.
again this contradict, our assumption that r^{*} prefers p^{*} to its current match.

output is stable

spse not. $\exists\left(m^{*}, w\right),\left(m, w^{*}\right) \in S \quad w \prec_{m^{*}} w^{*} m \prec_{w^{*}} m^{*}$
m^{\star} last proposal was to w but $w \prec_{m^{*}} w^{*}$ and so m^{*} must have already asked w^{*} and must have been rejected by $m^{*} \prec_{w^{*}} m^{\prime}$ then either $\quad m^{\prime} \prec_{w^{*}} m$ or $\mathrm{m}^{\prime}=\mathrm{m}$ which contradicts assumption $m \prec_{w^{*}} m^{*}$

Proposer wins

Remarkable theorem

w is valid for m :
best(m):

GS is Suitor-optimal.

GS matching vs R-opt

S1	S2	S3	S4		R1	R2	R3
R4							
R1	R1	R1	R1		S1	S1	S1
R2	R2	R2	R2		S2	S2	S2
R2							
R3	R3	R3	R3	S3	S3	S3	S3
R4	R4	R4	R4	S4	S4	S4	S4

S1	S2	S3	S4		R1	R2	R3
R4							
R1	R1	R1	R1		S1	S1	S1
R2	R2	R2	R2		S2	S2	S2
R2							
R3	R3	R3	R3	S3	S3	S3	S3
R4	R4	R4	R4	S4	S4	S4	S4

Not honest

S1	S2	S3	R1	R2	R3
0%	8	*3		and	㽣
R2	R1	R1	S1	S2	S2
R1	R2	R3	S2	S1	S3
R3	R3	R2	S3	S3	S1

Not honest

S1	S2	S3
R2	R1	R1
R1	R2	R3
R3	R3	R2

$R 1$	$R 2$	$R 3$
S1	S2	S2
S2	S1	S3
S3	S3	S1

R2	R1	R1	S1	S2	S2
R1	R2	R3	S3	S1	S3
R3	R3	R2	S2	S3	S1

Not honest

S1	S2	S3
R2	R1	R1
R1	R2	R3
R3	R3	R2

R 1	R 2	R 3
S 1	S 2	S 2
S 2	S 1	S 3
S 3	S 3	S 1

R2 R1 R1
S1 S2 S2
R1 R2 R3
S3 S1 S3
R3 R3 R2
S2 S3 S1

装MATCH

Guns and butter

-

$\max x+y$

$$
\begin{aligned}
4 x-y & \leq 8 \\
2 x+y & \leq 10 \\
5 x-2 y & \geq-2 \\
x, y & \geq 0
\end{aligned}
$$

Certificate of optimality

$\max x+y$

$$
\begin{aligned}
4 x-y & \leq 8 \\
2 x+y & \leq 10 \\
5 x-2 y & \geq-2 \\
x, y & \geq 0
\end{aligned}
$$

Certificate of optimality

$\max x+y$

$$
\begin{array}{rlrlr}
4 x-y & \leq 8 & & \\
2 x+y & \leq 10 & 7 & & 14 x+7 y \leq 70 \\
5 x-2 y & \geq-2 & -1 & & -5 x+2 y \leq 2 \\
x, y & \geq 0 & & & 9 x+9 y \leq 72
\end{array}
$$

linear programming
saved Berlin

Stigler diet

CALORIES	3000
PROTEIN	70 g
CALCIUM	.8 g
IRON	19 mg
VITAMIN A	5000 iu
THIAMINE	1.8 mg
RIBOFLAVIN	2.7 mg
NIACIN	18 mg
ASCORBIC ACID	75 mg

Table A. Nutaitive Values of Common Foods pese Dollar of Expmedture, Augugt 15, 1989

Commodity	Uait	Price Aug. 15, 1939 (cents)	Edible Weight per 81.00 (grams)	Calories $(1,000)$	Protein (gramas)	Calciera (grame)	$\begin{aligned} & \text { Iron } \\ & (\mathrm{mg}, \text {) } \end{aligned}$	$\begin{gathered} \text { Vitsmin } \mathrm{A} \\ (1,000 \\ 1.0 .) \end{gathered}$	$\underset{(\mathrm{mg})}{\mathrm{Thin})}$	Riboflavis (wgi)	$\begin{gathered} \text { Nincin } \\ \text { (\#g.) } \end{gathered}$	Ascorbic Acid (mg.)
**. Wheat Flour (Ruriched)	10 lb	38.0	12,000	44.7	1,411	e.0	365		35.4	35.8	441	
\&. Maenroni	1 lb .	14.1	3,217	11.6	418	. 7	54		3,2	1.9	63	
3. Wheat Cereal (Eeriched)	9880	24.9	5,280	11.8	377	14.4	175		14.4	8.8	114	
4. Corn Flakes	$8 \mathrm{cs.}^{\text {os. }}$	7.1	3,194	11.4	252	- 1	86		15.5	2.3	65	
5. Cora Mes!	1 lb .	4.6	9,851	36.0	897	1.7	99	30.9	17.4	7.9	105	
8. Hominy Grits	24 oz	8.5	8,005	88.8	689	. 8	80		10.6	1.6	110	
7. Rice	1 lb .	7.5	6,018	21.9	400	. 6	41		9.0	4.8	60	
8. Rolled Oats	1 lb ,	7.1	8,389	${ }^{25,8}$	$5{ }^{617}$	5.1	\$11		97.1	8.9	64	
9. White Bresd (Enriched)	1 lb .	7.8	5,748	15.6	485	2.5	115		15.8	8.5	126	
10. Whole Wheat Bread	1 b .	9.1	4,985	12.8	484	2.7	125		15.9	6.4	160	
11. Rye Bresd	1 lb .	9.8	4,930	18.4	439	1.1	88		9.9	8.0	86	
19. Pound Cake	1 lb .	94.8	1,829	8.0	130	. 4	81	18.9	8. 8	3.0	17	
13. Sods Crackery	1 l \%	15.1	3,004	12.6	188 510	$\begin{array}{r}\text {. } \\ \hline 5\end{array}$	50					
**15. Mvaporsted Mik (esn)	14 gt ¢0.	11.0 8.7	8,807	6.1 8.4	\$109	10.5 15.1	188888	16.8 20.0	4.0 3.0	16.0 98.5	$1{ }^{7}$	177 60
16. Butter	1 lb .	\$0.8	1,473	10.8	${ }^{9}$. 8	8	44.2		-	4	
${ }^{\text {* }}$ 17. Ologmargarine	1 b .	16.1	Q, 817	20.6	17	. 6	8	55.8	. ${ }^{\text {d }}$			
18. Epgs	1 doz.	32.6	1,857	2.8	288	1.0	82	18.6	2.8	0.5	1	
${ }^{* *} 10$, Cheese (Cheddar)	1 lb .	24.2	1,574	7.4	448	19.4	19	28.1	. 8	10.5	4	
80. Cream	$t \mathrm{pt}$.	14.1	1,699	3.5	49	1.7	3	15.9	. 6	9.5		17
Q1. Peanut Butter	1 lb .	17.9	Q,534	15.7	051	1.0	48		9.6	8.1	471	
29. Msyonuaise	$1 \mathrm{pl}^{\text {c }}$	16.7	1,198	8,6	18	. 8	8	\$.7	. 4	. 5		
23. Crivea	1 lb	90.8 9.8	2, 256	40.1				*		5		
25. Sirloin Steak	1 lb .	39.6	1,145*	4.9	156	. 1	54	. 9	2. 1	9.9	69	
[6. Round Steak	1 lb ,	56.4	1,945*	2.8	214	. 1	32	4	$\underline{8.5}$	8.4	87	
97. Rib Rosst	1 th .	89.8	1,553*	3.4	815	. 1	53			9.0		
29. Chuek Roast	1 b .	22.6	q,007**	8.6	800	. 4	46	4	1.0	4.6	120	
29. Plate	1 lb .	14.6	3,107*	8.6	404	.	68		. 9			
**So. Liver (Beef)	1 b .	20.8	1,692*	2. 8	855	. 7	130	169.9	0.4	50.8	316	59.5
51. Leg of Lamb	1 lb ,	27.6	1,615*	3.1	245	, 1	20		2.8	3.8	88	
se. Lamb Chops (Rib)	1 lb .	56.6	1,259**	3.8	140	. 1	15		1.7	8. 7	54	
5s, Pork Chops	${ }^{1} \mathrm{lb}$.	30.7	1,477**	3.5	198	\%	30		17.4	8.7	60	
S4. Pork Loin Roost	1 b .	24.8	1,874**	4.4	849	. 8	37		18.8	3.6	79	
85. Bacom	1 lb .	25.6	1,779**	10.4	159	. 2	23		1.8	1.8	71	
56, Ham-anoked	1 lb .	87.4	1,655*	6.7	912	. 8	31		9.9	3.5	50	
57. Salt Pork	1 lb .	16.0	8,885*	18.8	164	. 1	26		1.4	1.8		
33, Rospting Chicken	1 lb .	30.3	1,497*	1.8	184	. 1	30	. 1	. 9	1.8	85	46
39. Veal Cutleta	1 lb .	42.8	1,073*	1.7	156	. 1	44		1.4	9.4	57	
40. Salminn, Pink (can)	16 az ,	15.0	3,489	5.8	705	6.8	45	5.5	1.0	4.8	209	
41. Apples	1 lb .	4.4	9,074	6.8	87	. 5	36	7.3	8.6	9.7	5	544
4. Bansnas	1 lb .	6.1	4,969	4.9	60	. 4	30	17.4	2.5	3.5	28	498
49. Lemons	1 dor.	88.0	2,989	1.0	41	1.6	14		S 5		4	089
-45. Oranges	1 dos.	80.9	4,489	9.9 8.4	$\begin{array}{r}40 \\ 138 \\ \hline\end{array}$	1.17	18	11.1 69.0	5.6 4.3	1.3 5.8	10	1,098
${ }^{* *} 4 \mathrm{ib}$. Cabhage	1 bb .	3.7	8,869	2.6	138	3.7 4.0	80 30	\%9,	4.3 9.0	5.8 4.5	97	1888 5,369
47. Carrote	1 bubeh	4.7	6,090	\%.7	73	9.8	43	188.5	6.1	4.3	89	${ }^{608}$
48. Celery	1 stalk	7.3	3,915	. 9	51	3.0	83	. ${ }^{\text {d }}$	1.6	1.4	9	813
43. Lettuee	1 besd	8.2	9,217	. 4	27	1.1	29	112.4	1.8	3.4	11	443
*50, Orions	1 lb .	5.6	11,814	5.8	166	3.8	59	16.6	4.7	5.9	21	1,184

	Brownie	Dumpling	Espresso	Amelia
cost	5	2	3	8
cals	400	200	150	500
choc	3	2	0	0
sugar	2	2	4	4
fat	2	4	0	5

requirements: 500 calories, 6 oz choc, 10 oz sugar, 8 oz fat

	Brownie	Dumpling	Espresso	Amelia
cost	5	2	3	8
cals	400	200	150	500
choc	3	2	0	0
sugar	2	2	4	4
fat	2	4	0	5

requirements: 500 calories, 6 oz choc, 10 oz sugar, 8 oz fat

	Brownie	Dumpling	Espresso	Amelia
cost	5	2	3	8
cals	400	200	150	500
choc	3	2	0	0
sugar	2	2	4	4
fat	2	4	0	5

requirements: 500 calories, 6 oz choc, 10 oz sugar, 8 oz fat

$$
\min 5 x_{1}+2 x_{2}+3 x_{3}+8 x_{4}
$$

$\left[\begin{array}{cccc}400 & 200 & 150 & 500 \\ 3 & 2 & 0 & 0 \\ 2 & 2 & 4 & 4 \\ 2 & 4 & 0 & 5\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right] \geq\left[\begin{array}{c}500 \\ 6 \\ 10 \\ 8\end{array}\right]$
$\min 5 x_{1}+2 x_{2}+3 x_{3}+8 x_{4}$

$$
\left[\begin{array}{cccc}
400 & 200 & 150 & 500 \\
3 & 2 & 0 & 0 \\
2 & 2 & 4 & 4 \\
2 & 4 & 0 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \geq\left[\begin{array}{c}
500 \\
6 \\
10 \\
8
\end{array}\right]
$$

$$
\begin{aligned}
& \min 5 x_{1}+2 x_{2}+3 x_{3}+8 x_{4} \\
& {\left[\begin{array}{cccc}
400 & 200 & 150 & 500 \\
3 & 2 & 0 & 0 \\
2 & 2 & 4 & 4 \\
2 & 4 & 0 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \geq\left[\begin{array}{c}
500 \\
6 \\
10 \\
8
\end{array}\right]} \\
& \text { H-representation } \\
& \text { begin } \\
& 84 \text { rational } \\
& \text {-500 } 400200150500 \\
& \begin{array}{lllll}
-6 & 3 & 2 & 0 & 0
\end{array} \\
& \begin{array}{lllll}
-10 & 2 & 2 & 4 & 4 \\
-6 & 2 & 4 & 0 & 5
\end{array} \\
& \begin{array}{lllll}
0 & 1 & 0 & 0 & 0
\end{array} \\
& 0 \quad 0 \quad 1 \quad 0 \quad 0 \\
& 0 \quad 0 \quad 0 \quad 1 \quad 0 \\
& 0 \quad 0 \quad 0 \quad 0 \quad 1 \\
& \text { end } \\
& \text { minimize } \\
& 05238
\end{aligned}
$$

$\min 5 x_{1}+2 x_{2}+3 x_{3}+8 x_{4}$

$$
\left[\begin{array}{cccc}
400 & 200 & 150 & 500 \\
3 & 2 & 0 & 0 \\
2 & 2 & 4 & 4 \\
2 & 4 & 0 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \geq\left[\begin{array}{c}
500 \\
6 \\
10 \\
8
\end{array}\right]
$$

$\min 5 x_{1}+2 x_{2}+3 x_{3}+8 x_{4}$

$$
\left[\begin{array}{cccc}
400 & 200 & 150 & 500 \\
3 & 2 & 0 & 0 \\
2 & 2 & 4 & 4 \\
2 & 4 & 0 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \geq\left[\begin{array}{c}
500 \\
6 \\
10 \\
8
\end{array}\right]
$$

H-representation begin
84 rational
-500400200150500

-6	3	2	0	0

-10	2	2	4	4
-6	2	4	0	5

0	1	0	0	0
0	0	1	0	0

$\begin{array}{lllll}0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}$
end
minimize
05238

$$
\begin{aligned}
& \min 5 x_{1}+2 x_{2}+3 x_{3}+8 x_{4} \\
& {\left[\begin{array}{cccc}
400 & 200 & 150 & 500 \\
3 & 2 & 0 & 0 \\
2 & 2 & 4 & 4 \\
2 & 4 & 0 & 5
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \geq\left[\begin{array}{c}
500 \\
6 \\
10 \\
8
\end{array}\right]} \\
& \text { *0bjective function is } \\
& 0+5 \text { X[1] }+2 \times[2]+3 \times[3]+8 \text { X[4] } \\
& \text { *LP status: a dual pair }(\mathrm{x}, \mathrm{y}) \text { of optimal solutions found. } \\
& \text { begin } \\
& \text { primal_solution } \\
& 1 \text { : } 0 \\
& 2: 3 \\
& 3 \text { : } 1 \\
& 4: \quad 0 \\
& \text { dual_solution } \\
& 2 \text { : -1/4 } \\
& 5 \text { : -11/4 } \\
& 3 \text { : -3/4 } \\
& 8 \text { : } 5 \\
& \text { optimal_value : } 9 \\
& \text { end } \\
& \text { *number of pivot operations }=4
\end{aligned}
$$

shortest paths as LP

inputs:

shortest paths as LP

$\max d_{t}$

$$
\begin{gathered}
d_{y}-d_{x} \leq l(x, y) \quad \forall e=(x, y) \in E \\
d_{s}=0
\end{gathered}
$$

$\max d_{t}$

$$
\begin{array}{r}
d_{y}-d_{x} \leq l(x, y) \quad \forall e=(x, y) \in E \\
d_{s}=0
\end{array}
$$

$d t=30$

max flow as lp

INPUT:

$$
(G, c, s, t) \quad G=(V, E) \quad c: E \rightarrow \mathbb{Z}_{+}
$$

max flow as lp

$$
\begin{aligned}
& \max \sum_{v} f(s, v)-\sum_{v} f(v, s) \\
& f(u, v) \leq c(u, v) \quad \text { FOR (} \mathrm{u}, \mathrm{v} \text {) IN E } \\
& \sum_{u} f(u, v)=\sum_{w} f(v, w) \quad \forall v \\
& f(u, v) \geq 0 \\
& \text { FOR (u,v) in E }
\end{aligned}
$$

max flow as lp

$$
\begin{aligned}
& \max \sum_{v} f(s, v)-\sum_{v} f(v, s) \\
& f(u, v) \leq c(u, v) \quad \text { FOR }(\mathrm{u}, \mathrm{v}) \text { IN } \mathrm{E} \\
& \sum_{u} f(u, v)=\sum_{w} f(v, w) \forall v \\
& f(u, v) \geq 0 \text { FOR }(\mathrm{u}, \mathrm{v}) \text { IN } \mathrm{E}
\end{aligned}
$$

min-cost flow as lp

INPUT:

$$
(G, c, s, t) \quad G=(V, E) \quad c: E \rightarrow \mathbb{Z}_{+} \quad x: E \rightarrow \mathbb{Z}_{+} \quad d
$$

min-cost flow as lp

min-cost flow as lp

$$
\left.\begin{array}{rl}
\min _{e} x_{e} \cdot f(e) \\
f(e) \leq c(e) \\
f(e) \geq 0
\end{array}\right)
$$

