5800

apr5/apr7 2022
shelat

WE HAVE BEEN SOLVING PROBLEM A BY SOLVING SMALLER VERSIONS OF PROBLEM A

MORE GENERAL IDEA: SOLVE PROBLEM A BY SOLVING PROBLEM B

D\&C, DP, or Greedy
 Instance of size N

D\&C, DP, or Greedy
 Instance of size N

solutions to smaller instance

D\&C, DP, or Greedy
 Instance of size N

solution to original problem

solutions to smaller instance

Bipartite Matching Algorithm

I. MAKE NEW G' FROM INPUT G.
2. RUN FF ON G'
3. OUTPUT ALL MIDDLE EDGES WITH FLOW $F(E)=I$.

Bipartite
 Matching
 Instance

Bipartite

Matching
Instance

Max flow Instance

 hours to tons formIF G HAS A MATCHING OF SIZE K, THEN G ' has a mAKFLOw of K. (outheo): Lot M^{*} be the matching of size K for G, Construct flow f to be

$$
\begin{array}{r}
f(e)=1 \text { if } e \in \mu^{*} \text {, and if } e=(x, y) \\
\text { then } f(s, x)=1 \\
f(y, t)=1
\end{array}
$$

$$
\Rightarrow \text { flow } f \text { sutis flies }
$$

(1) capacity constrains
(2) flow constraint

$$
\ln f \operatorname{low}(x)=\operatorname{outflim}(x)
$$

$G 1$
HAS A FLOW OF K, THEN G HAS K-MATCHING.

(1) Our algorithm uses FF, of flow for G^{\prime} is integral.

Now define $M:\{e \mid f(e)=1$ and $e=(x, y)$ sit $x \in L y \in R\}$
Prove that M is a matching.

- All flows are integral 4 capacity $c(e)=1$. so $f(e)=0$ ar 1 for $e \in E$.

Thus for all $\frac{v \in L}{V \in R}, V$ is incident to at moot I edge in M. By the flow constraint. By cuts, $\quad|\mu|=K$
(c) Your alaorlithm

(L,R,E)
 Instances of Bipartite matching

(L,R,E) Instances of Bipartite matching

M

matching

flow

Reduction

A reduces ir time $f(n)$ to problem B. PROBLEM $_{\mathfrak{a}} \leq_{\mathrm{f}(\mathrm{n})}$ PROBLEM $_{\mathrm{b}}$

PROBLEM $_{\mathrm{a}} \leq_{\mathrm{f}(\mathrm{n})}$ PROBLEM $_{\mathrm{b}}$

$$
\begin{aligned}
& \exists \mathrm{c}, \mathrm{~d} \\
& \underbrace{\top\left(\operatorname{PROBLEM}_{a}(n)\right.}) \leq f(\mathfrak{n})+\mathrm{cT}\left(\text { PROBLEM }_{\mathrm{b}}(\mathrm{dn})\right)
\end{aligned}
$$

Maximum bipartite

edge-disjoint paths

maxBIPARTITE $<_{\text {E.v }}$ maxFLOW

maxEDGEDISJ $<_{\text {Etv }}$ maxFLOW
 G"radoces in time ExV to Maxflu"

Graph of friends who do not get along with one another
an edge curesponds to a conflict b/w you friend e.

- goal:
find the lanes set of your friends that
get along when other

Def: independent set god: find the largest independent set in $G=(V, E)$

INDSET: A subset of the vecticics $S \subseteq V$ such that no two nodes $x, y \in S$ hack an edge between them, ier $(x, y) \notin E$.

Def: independent set

Def: For a graph G , a set $S \subseteq V$ is an independent set if no two nodes in S are joined by an edge.

example

goal:

Given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$,

Given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E}), \quad$ find the largest or max independent set.

This represents the largest group of people who are conflict free.

baseball

baseball

> Imagine a scalable, abstract version of baseball or " n " players.

A vertex cover of a graph $G=(V, E)$ is a
subset of nodes $C \subseteq V$ such that for each $e=(x, y) \in E$, either $x \in C$ or $y \in C$.

A vertex cover of a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a

> Set of nodes S such that for each edge $e=(x, y) \in E$, either $x \in S$ or $y \in S$.

goal:
given a graph $G,=(U, E)$ find the smallest set cover.

goal:

given a graph G,

Find the minimum sized vertex cover for G.

A solution to VC can be used to solve INDSET.

What is required to show this reduction?
(1) your algorith

independent
set cover

instance of
min veter caver
\| $a n g$ solution

Thy: Set S is a vertex corer for $G=(V, E)$
If and only if $(V-S)$ is an ing set of G.

Tнм: \quad For a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E}), \mathrm{S}$ is a vertex cover of G if and only if $(\mathrm{V}-\mathrm{S})$ is an independent set of G .

Thm: set S is an independent set of G iff V - S is a vertex cover.

Thy: set S is an independent set of G af $V-S$ is a vertex cover.
S indset $\Rightarrow(V-S)$ is a venter curer. suppose S is an independent set.
Consider any edge $e=(x, y) \in E$.
(1) If $x \in S$, then $y \notin S$
$\Rightarrow \quad y \in(V-S)$. edge e is covered by
 god is. show $(V-S)$ is a veter cover.
(2) If $x \notin S$, then $x \in(V-S)$ and again, e is covered.
This holds for every edge $e \in E$. So (V-S) is a veter cover.

Thy: set S is an independent set of G af $V-S$ is a vertex cover. suppose V-S is a vc.
Consider any $x \in S$ and any edge $e=(x, y) \in E$.
(1) Since $x \notin(V-S)$, then $y \in(V-S)$ why? Because $(v-S)$ is a vertex cover, so it most raddle y.

(2) This implies that $y \in S$.

This is true for every $x \in S$ and ever incilect ese $c=(x a y) \in E \Rightarrow S$ is independent set.
(G)
Instances of
MinVertex Cover
$V-S$
Vertex Cover

Ind Set

3sat problem
Bodem formula in 3CNF form: conjunctien of input: clauses, each clouse includes 3 variables example: $(a$ on B or C) AND (d or \bar{a} or \bar{b}) AND (…)
output: find an assignmeat to all the variably that makes the formula troe.

3sat problem

input: Boolean formula in 3CNF, i.e., a logical AND of clauses of the $O R$ of 3 variables.

output:

3sat problem

input: Boolean formula in 3CNF, i.e., a logical AND of clauses of the $O R$ of 3 variables.
output: An assignment $A: V->\{T, F\}$ of variables that make the formula evaluate to True.

3sat example

$$
(x \vee y \vee z) \wedge(x \vee \bar{y} \vee y) \wedge(u \vee y \vee \bar{z}) \wedge(z \vee \bar{x} \vee \mathfrak{u}) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})
$$

3 SAT \leq_{p} INDSET

$$
(x \vee y \vee z) \wedge(x \vee \bar{y} \vee y) \wedge(u \vee y \vee \bar{z}) \wedge(z \vee \bar{x} \vee u) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})
$$

what must we do to?

$$
\begin{aligned}
& \text { Assigumat to } \\
& \{T, F\}
\end{aligned}
$$

A satisfying assignment

Ind Set

These arguments often follow a common pattern.

They involve a gadget that explains how to map aspects of one problem into another problem

$3 \mathrm{SAT} \leq_{p}$ INDSET

$$
(x \vee y \vee z) \wedge(x \vee \bar{y} \vee y) \wedge(u \vee y \vee \bar{z}) \wedge(z \vee \bar{x} \vee u) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})
$$

3 SAT \leq_{p} INDSET

$(x \vee y \vee z) \wedge(x \vee \bar{y} \vee y) \wedge(u \vee y \vee \bar{z}) \wedge(z \vee \bar{x} \vee u) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})$

$$
(x \vee y \vee z) \wedge(x \vee \bar{y} \vee y) \wedge(u \vee y \vee \bar{z}) \wedge(z \vee \bar{x} \vee u) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})
$$

K clause

$\phi \in \mathrm{SAT} \Longrightarrow \exists$ an independent set G of size K
(1) each clause has some variable which makes it true. select I such variable for ea clause, and add its corresponding node to S.
(2) S is an inospendet set. If $x \in S$, x was true, \bar{x} was false and thus ND instance of \bar{x} coder be chosen to be added to $5 . \Rightarrow$ each triangle has exacty I selietal node.

$(\mathrm{G}, \mathrm{k}) \in \operatorname{INDSET} \Longrightarrow$ (far yos ait home) the origind farmulu is sitsifiable.

SET COVER IND SET

VERTEX COVER

Road Map

clique

clique $=\{$

CLIQUE

$$
\phi=\begin{gathered}
\text { FORMULA } \\
\left(x_{1} \vee x_{2} \vee x_{3}\right) \\
\wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right) \\
\wedge\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}\right)
\end{gathered} \quad \begin{gathered}
\text { GRAPH, } \mathrm{K}=\# \text { CLAUSES }
\end{gathered}
$$

CLIQUE

> (ㅈ4) (조
\square

Create 3 nodes/clause

(${ }^{1}$

(

CLIQUE

Create 3 nodes/clause
Connect nodes to
"non-opposites"

CLIQUE

Create 3 nodes/clause
Connect nodes to
"non-opposites"

CLIQUE

FORMULA
$\left(x_{1} \vee x_{2} \vee x_{3}\right)$
$\wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right)$

$\wedge\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}\right)$$\quad$| GRAPH, $\mathrm{F}=$ \# CLAUSES |
| :---: |

Create 3 nodes/clause
Connect nodes to
"non-opposites"

CLIQUE

$$
\phi=\begin{aligned}
& \left(x_{1} \vee x_{2} \vee x_{3}\right) \\
& \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right) \\
& \\
& \wedge\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}\right)
\end{aligned}
$$

CLIQUE

$$
\begin{aligned}
& \left(x_{1} \vee x_{2} \vee x_{3}\right) \\
\phi= & \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right) \\
& \wedge\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}\right)
\end{aligned}
$$

SATISFYING ASSIGNMENT $=$ I VAR/CLAUSE

CLIQUE

$$
\begin{aligned}
& \left(x_{1} \vee x_{2} \vee x_{3}\right) \\
\phi= & \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right) \\
& \wedge\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}\right)
\end{aligned}
$$

SATISFYING ASSIGNMENT $=$ I VAR/CLAUSE

K "NON-OPPOSITE" CONNECTED NODES

CLIQUE

$$
\phi=\begin{aligned}
& \left(x_{1} \vee x_{2} \vee x_{3}\right) \\
& \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right) \\
& \\
& \wedge\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}\right)
\end{aligned}
$$

K-CLIQUE

I NODE/CLAUSE IS TRUE

CLIQUE

$$
\phi=\begin{aligned}
& \left(x_{1} \vee x_{2} \vee x_{3}\right) \\
& \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right) \\
& \\
& \wedge\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}\right)
\end{aligned}
$$

K-CLIQUE
I NODE/CLAUSE IS TRUE
Satisfying assignment

CLIQUE

$$
\begin{aligned}
\phi= & \left(x_{1} \vee x_{2} \vee x_{3}\right) \\
& \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right) \\
& \wedge\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}\right)
\end{aligned}
$$

$$
\phi \in S A T \quad \Leftrightarrow \quad f(\phi) \in C L I Q U E
$$

Theory of NP

DEF OF NP

a language L belongs to the class NP iff there exists a polynomial time algorithm A and a constant c such that

$$
L=\left\{x \in\{0,1\}^{*} \mid \exists y \in\{0,1\}^{|x|^{c}} \text { s.t. } A(x, y)=1\right\}
$$

A language L is NP-Complete if

i. $L \in N P$
2. $\forall \mathrm{A} \in \mathrm{NP}, \mathrm{A} \leq \mathrm{p} \mathrm{L}$
"L is among the hardest NP problems"

WHY IS VC IN NP?

vertexcover (G,k)

COOK-LEVIN THEOREM

WHAT IS THE HARDEST PROBLEM IN NP?

Cook-Levin theorem

$$
\forall L \in \mathrm{NP}
$$

SET COVER IND SET

VERTEX COVER

All of NP

