## 5800



apr5/apr7 2022<br>shelat

## WE HAVE BEEN SOLVING PROBLEM A BY SOLVING SMALLER VERSIONS OF problem A

## MORE GENERAL IDEA: SOLVE PROBLEM A BY SOLVING PROBLEM B

D\&C, DP, or Greedy
Instance of size N

## D\&C, DP, or Greedy Instance of size N



## D\&C, DP, or Greedy <br> Instance of size N

## S <br> solution to original problem


solutions to smaller instance

## Bipartite Matching Algorithm

$B P(L, R, E)$
I. MAKE NEW G' FROM INPUT G.
2. RUN FF ON G'
3. OUTPUT ALL MIDDLE EDGES WITH FLOW $\mathrm{F}(\mathrm{E})=\mathrm{I}$.


## Bipartite <br> Matching <br> Instance



## Bipartite <br> Matching Instance

## Max flow Instance



IF G HAS A MATCHING OF SIZE K, THEN $G$ has a MAKFLOw of $k$.
Proof: Let $M^{*}$ be the matching of size $K$ for $G$, Construct flow $f$ to be

$$
\begin{array}{r}
f(e)=1 \text { if } e \in M^{x}, \text { and if } e=(x, y) \\
\text { then } f(s, x)=1 \\
f(y, t)=1
\end{array}
$$

$\Rightarrow$ flow $f$ satisfliog
(1) capacity constrains
(2) flow constraint

$$
\operatorname{inflow}(x)=\operatorname{outflim}(x)
$$

$G^{\prime}$
HAS A FLOW OF K, THEN G HAS K-MATCHING.

(1) Our algorithm uses FF, s- flow for $G^{\prime}$ is integral.

Now define $M:\{e \mid f(e)=1$ and $e=(x, y)$ sit $x \in L y \in R\}$
Prove that $M$ is a matching.

- All flows are integral 4 capacity $c(e)=1$. so $f(e)=0$ ar I for $e \in E$.

Thus for all $\frac{v \in L}{v \in R}, V$ is incident to at moot I edge in $M$, By the flow constraint. By MiN. cuts, $|\mu|=K$

```
(L,R,E)
    Instances of
Bipartite matching
```

| $(L, R, E)$ |
| :---: |
| Instances of |
| Bipartite matching |



flow

matching

flow

## Reduction

## PROBLEM $_{\mathrm{a}} \leq_{\mathrm{f}(\mathrm{n})}$ PROBLEM $_{\mathrm{b}}$



Runs in time $f(n)$

## PROBLEM $_{a} \leq_{f(n)}$ PROBLEM $_{b}$

$\exists \mathrm{c}, \mathrm{d}$
$\mathrm{T}\left(\operatorname{PROBLEM}_{\mathrm{a}}(\mathfrak{n})\right) \leq \mathrm{f}(\mathfrak{n})+\mathrm{cT}\left(\right.$ PROBLEM $\left._{\mathfrak{b}}(\mathrm{d} \mathfrak{n})\right)$

Maximum bipartite


## edge-disjoint paths



## maxBIPARTITE $<_{\text {bev }}$ maxFLOW

maxEDGEDISJ < $\mathbf{< e v e}^{\text {maxFLOW }}$

## party problem



Graph of friends who do not get along with one another

## Def: independent set

## Def: independent set

Def: For a graph G, a set $S \subseteq V$ is an independent set if no two nodes in $S$ are joined by an edge.

## example



## goal:

Given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$,

## goal:

Given a graph $G=(V, E), \quad$ find the largest or max independent set.

This represents the largest group of people who are conflict free.

## baseball



> Imagine a scalable, abstract version of baseball or " n " players.

A vertex cover of a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a

A vertex cover of a graph $G=(V, E)$ is a

> Set of nodes $S$ such that for each edge $e=(x, y) \in E$, either $x \in S$ or $y \in S$.

## example


goal:
given a graph $G$,

## goal:

## given a graph $G$,

Find the minimum sized vertex cover for $G$.


MAXINDSET $\leq_{\mathrm{O}}(\mathrm{V})$ MINVERTEXCOVER

## A solution to VC can be used to solve INDSET.

What is required to show this reduction?

Тнм:

Tнм: $\quad$ For a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E}), \mathrm{S}$ is a vertex cover of G if and only if $(\mathrm{V}-\mathrm{S})$ is an independent set of G .

Thm: set $S$ is an independent set of $G$ iff V-S is a vertex cover.


Thm: set $S$ is an independent set of $G$ iff $V-S$ is a vertex cover.
suppose $S$ is an independent set.


Thm: set $S$ is an independent set of $G$ iff $V$ - $S$ is a vertex cover. suppose $\mathrm{V}-\mathrm{S}$ is a vc.



V-S

Vertex Cover


Ind Set

## 3sat problem

input:
output:

## 3sat problem

input: Boolean formula in 3CNF, i.e., a logical AND of clauses of the $O R$ of 3 variables.

## output:

## 3sat problem

input: Boolean formula in 3CNF, i.e., a logical AND of clauses of the $O R$ of 3 variables.
output: An assignment $A: V->\{T, F\}$ of variables that make the formula evaluate to True.

## 3sat example

$(x \vee y \vee z) \wedge(x \vee \bar{y} \vee y) \wedge(u \vee y \vee \bar{z}) \wedge(z \vee \bar{x} \vee u) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})$

$$
\begin{gathered}
3 \text { SAT } \leq p \text { INDSET } \\
(x \vee y \vee z) \wedge(x \vee \bar{y} \vee y) \wedge(\mathcal{u} \vee y \vee \bar{z}) \wedge(z \vee \bar{x} \vee \mathfrak{u}) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})
\end{gathered}
$$

what must we do to?

(G)

Instances of MaxIndSet


A satisfying assignment


Ind Set


These arguments often follow a common pattern.

They involve a gadget that explains how to map aspects of one problem into another problem

## 3 SAT $\leq_{p}$ INDSET

$$
(x \vee y \vee z) \wedge(x \vee \bar{y} \vee y) \wedge(u \vee y \vee \bar{z}) \wedge(z \vee \bar{x} \vee u) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})
$$

## 3 SAT $\leq_{p}$ INDSET

$$
(x \vee y \vee z) \wedge(x \vee \bar{y} \vee y) \wedge(u \vee y \vee \bar{z}) \wedge(z \vee \bar{x} \vee u) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})
$$



$$
(x \vee y \vee z) \wedge(x \vee \bar{y} \vee y) \wedge(u \vee y \vee \bar{z}) \wedge(z \vee \bar{x} \vee u) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})
$$



$\phi \in \mathrm{SAT} \Longrightarrow$

$(\mathrm{G}, \mathrm{k}) \in \operatorname{INDSET} \Longrightarrow$

SET COVER
IND SET


VERTEX COVER

## Road Map


clique

clique $=\{$

(G,k) Instances of Clique


A satisfying assignment


Ind Set

## CLIQUE

$$
\phi=\begin{aligned}
& \text { FORMULA } \\
& \left(x_{1} \vee x_{2} \vee x_{3}\right) \\
& \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right) \\
& \wedge\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}\right)
\end{aligned} \quad \begin{gathered}
\text { GRAPH, } \mathrm{K}=\# \text { CLAUSES }
\end{gathered}
$$

## CLIQUE



Create 3 nodes/clause

( $\overline{x_{1}}$

(x)

$\stackrel{\square}{x_{3}}$

## CLIQUE

FORMULA
$\phi=\begin{aligned} & \left(x_{1} \vee x_{2} \vee x_{3}\right) \\ & \left(\overline{x_{1}} \vee \bar{x}_{2} \vee x_{3}\right) \quad \mathrm{F}=\text { \# CLAUSES }\end{aligned}$ $\wedge\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}\right)$

Create 3 nodes/clause
Connect nodes to "non-opposites"


## CLIQUE

FORMULA

$$
\phi=\begin{aligned}
& \left(x_{1} \vee x_{2} \vee x_{3}\right) \quad \square \\
& \\
& \wedge\left(\overline{x_{1}} \vee \bar{x}_{2} \vee x_{3}\right) \\
& \wedge\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}\right)
\end{aligned}
$$

Graph, K

Create 3 nodes/clause
Connect nodes to "non-opposites"


## CLIQUE

FORMULA

$$
\phi=\begin{aligned}
& \left(x_{1} \vee x_{2} \vee x_{3}\right) \quad \begin{array}{c}
\mathrm{F} \\
\\
\\
\wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right) \\
\wedge\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}\right)
\end{array} \mathrm{K}=\text { \# CLAUSES }
\end{aligned}
$$

Graph, K

Create 3 nodes/clause
Connect nodes to "non-opposites"


## CLIQUE

$$
\begin{aligned}
& \left(x_{1} \vee x_{2} \vee x_{3}\right) \\
\phi= & \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right) \\
& \wedge\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}\right)
\end{aligned}
$$



## CLIQUE

$$
\begin{aligned}
& \left(x_{1} \vee x_{2} \vee x_{3}\right) \\
& \phi=\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right) \\
& \\
& \\
& \wedge\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}\right)
\end{aligned}
$$



Satisfying assignment $=$ I VAR/CLAUSE

## CLIQUE

$$
\begin{aligned}
& \left(x_{1} \vee x_{2} \vee x_{3}\right) \\
\phi= & \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right) \\
& \wedge\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}\right)
\end{aligned}
$$



SATISFYING ASSIGNMENT $=$ I VAR/CLAUSE

K "NON-OPPOSITE" CONNECTED NODES

## CLIQUE

$$
\begin{array}{ll}
\phi= & \left(x_{1} \vee x_{2} \vee x_{3}\right) \\
& \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right) \\
& \wedge\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}\right)
\end{array}
$$



K-CLIQUE
I NODE/CLAUSE IS TRUE

## CLIQUE

$$
\phi=\begin{aligned}
& \left(x_{1} \vee x_{2} \vee x_{3}\right) \\
& \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right) \\
& \\
& \wedge\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}\right)
\end{aligned}
$$



## K-CLIQUE

I NODE/CLAUSE IS TRUE
Satisfying assignment

## CLIQUE



## Theory of NP

## Languages

## DEF OF NP

a language L belongs to the class NP iff there exists a polynomial time algorithm A and a constant c such that

$$
L=\left\{x \in\{0,1\}^{*} \mid \exists y \in\{0,1\}^{|x|^{c}} \text { s.t. } A(x, y)=1\right\}
$$

NP-Completeness
A language L is NP-Complete if
I. $L \in N P$
2. $\forall \mathrm{A} \in \mathrm{NP}, \mathrm{A} \leq \mathrm{P} \mathrm{L}$
"L is among the hardest NP problems"

WHY IS VC IN NP?
vertexcover(G,k)

## COOK-LEVIN THEOREM



## WHAT IS THE HARDEST PROBLEM IN NP?

## Cook-Levin theorem

$$
\forall L \in \mathrm{NP}
$$



SET COVER


VERTEX COVER

## Road Map



All of NP

