
jan 28/31 2022
shelat

Announcements on H 1
tree method
?- \checkmark gass \& dien (indestin)

(8) 13
(12) \rightarrow Substatution, change of vaniable -

cookbook

$$
\mathrm{T}(\mathrm{n})=\mathrm{a} \mathrm{~T}(\mathrm{n} / \mathrm{b})+\mathrm{f}(\mathrm{n})
$$

$$
\underline{T(n)}=\underline{f(n)}+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)
$$

D

$$
\begin{aligned}
& T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right) \\
& \text { case 1: } f(n)=\bigcirc\left(n^{\left.\log _{b} a-\epsilon\right)} \begin{array}{c}
\text { small positive } \\
\text { value line } \\
0.001
\end{array}\right.
\end{aligned}
$$

" f is asympotically smaller than $n^{\log _{b} a}$ "

$$
\begin{aligned}
& \begin{array}{l}
T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right) \\
\text { case 1: }
\end{array} f(n)=O\left(n^{\log _{b} a-\epsilon}\right)
\end{aligned}
$$

So case 1 applies

$$
\begin{aligned}
& T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right) \\
& \frac{\text { case 1 }}{}: f(n)=O\left(n^{\log _{b} a-\epsilon}\right) \\
& f(n)<c \cdot n n^{\log _{b} a-\epsilon} \\
& T(n)= c \cdot n^{\log _{b} a-\epsilon}+a \cdot c \cdot\left(\frac{n}{b}\right)^{\log _{b} a-\epsilon}+a^{2} \cdot c \cdot\left(\frac{n}{b^{2}}\right)^{\log _{b} a-\epsilon}+\ldots+a^{L} \cdot c \cdot\left(\frac{n}{b^{L}}\right)^{\log _{b} a-\epsilon} \\
&= c \cdot n^{\log _{b} a-\epsilon}\left[1+\frac{a}{b^{\log _{b} a-\epsilon}}+\frac{a^{2}}{b^{2\left(\log _{b} a-\epsilon\right)}}+\cdots+\frac{a^{L}}{b^{2}\left(\log _{b} a-\epsilon\right)}\right]
\end{aligned}
$$

Notice $b^{i\left(\log _{b} a-t\right)}=\frac{b^{i\left(\log _{b} a\right)}}{b^{i(\epsilon)}}=\frac{a^{i}}{b^{i \cdot \epsilon}}$

$$
\begin{aligned}
& T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right) \\
& \text { case 1: } f(n)=O\left(n^{\log _{b} a-\epsilon}\right)
\end{aligned}
$$

$$
T(n) \leq c n^{\log _{b} a-\epsilon}+a c\left(\frac{n}{b}\right)^{\log _{b} a-\epsilon}+a^{2} c\left(\frac{n}{b^{2}}\right)^{\log _{b} a-\epsilon}+\cdots+a^{L} c\left(\frac{n}{b^{L}}\right)^{\log _{b} a-\epsilon}
$$

$$
\begin{aligned}
& T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right) \\
& \text { case 1: } f(n)=O\left(n^{\log _{b} a-\epsilon}\right) \\
& T(n) \leq c n^{\log _{b} a-\epsilon}\left[1+\left(\frac{a}{b^{\log _{b} a-\epsilon}}\right)+\left(\frac{a^{2}}{b^{2\left(\log _{b} a-\epsilon\right)}}\right)+\cdots+\left(\frac{a^{L}}{b^{L\left(\log _{b} a-\epsilon\right)}}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =c \cdot n^{\log _{b} a-\epsilon}\left[1+b^{\epsilon}+b^{2 \epsilon}+\cdots b^{L \epsilon}\right]
\end{aligned}
$$

$$
\begin{aligned}
& T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right) \\
& \text { case 1: } f(n)=O\left(n^{\log _{b} a-\epsilon}\right)
\end{aligned}
$$

$$
T(n) \leq c n^{\log _{b} a-\epsilon}+a c\left(\frac{n}{b}\right)^{\log _{b} a-\epsilon}+a^{2} c\left(\frac{n}{b^{2}}\right)^{\log _{b} a-\epsilon}+\cdots+a^{L} c\left(\frac{n}{b^{L}}\right)^{\log _{b} a-\epsilon}
$$

$$
=c n^{\log _{b} a-\epsilon}\left[1+\left(\frac{a}{b^{\log _{b} a-\epsilon}}\right)+\left(\frac{a^{2}}{b^{2\left(\log _{b} a-\epsilon\right)}}\right)+\cdots+\left(\frac{a^{L}}{b^{L\left(\log _{b} a-\epsilon\right)}}\right)\right]
$$

$$
=c n^{\log _{b} a-\epsilon}\left[1+\left(\frac{a}{a / b^{\epsilon}}\right)+\left(\frac{a^{2}}{a^{2} / b^{2 \epsilon}}\right)+\cdots+\left(\frac{a^{L}}{a^{L / b^{L \epsilon}}}\right)\right]
$$

$$
=c n^{\log _{b} a-\epsilon}\left[1+b^{\epsilon}+b^{2 \epsilon}+\cdots+b^{L \epsilon}\right]
$$

$$
\begin{aligned}
& =c n^{\log _{b} a-\epsilon}\left[1+b^{\epsilon}+b^{2 \epsilon}+\cdots+b^{L \epsilon}\right] \\
& =c n^{\log _{b} a-\epsilon}\left[\frac{b^{\epsilon(L-1)}-1}{b^{\epsilon}-1}\right] \quad b^{L}=b^{\log _{b} n} \\
& =c \cdot n^{\log _{b} a-\epsilon}\left[\frac{b^{\epsilon} n^{\epsilon}-1}{b^{\epsilon}-1}\right] \quad \begin{array}{l}
\text { since } b>1, \epsilon>0 \\
\text { then } b^{\epsilon}>1
\end{array} \\
& \leq c \cdot n^{\log _{b} a-\epsilon} \cdot n^{\epsilon} \cdot\left(\frac{b^{\epsilon}}{b^{\epsilon-1}}\right)=O\left(n^{\left.\log _{b} a\right)}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =c n^{\log _{b} a-\epsilon}\left[1+b^{\epsilon}+b^{2 \epsilon}+\cdots+b^{L \epsilon}\right] \\
& =c n^{\log _{b} a-\epsilon}\left[\frac{b^{\epsilon(L+1)}-1}{b^{\epsilon}-1}\right] \quad \begin{array}{l}
\text { Recall that } \\
b^{L}=b^{\log _{b} n}=n
\end{array}
\end{aligned}
$$

Since $b>1, \epsilon>0$ then $b^{\epsilon}>1$

$$
\begin{aligned}
& =c n^{\log _{b} a-\epsilon}\left[1+b^{\epsilon}+b^{2 \epsilon}+\cdots+b^{L \epsilon}\right] \\
& =c n^{\log _{b} a-\epsilon}\left[\frac{b^{\epsilon(L+1)}-1}{b^{\epsilon}-1}\right] \quad \begin{array}{l}
\text { Recall that } \\
b^{L}=b^{\log _{b} n}=n
\end{array} \\
& =c n^{\log _{b} a-\epsilon}\left[\frac{b^{\epsilon} n^{\epsilon}-1}{b^{\epsilon}-1}\right] \quad \begin{array}{l}
\text { Since } b>1, \epsilon>0 \\
\text { then } b^{\epsilon}>1
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =c n^{\log _{b} a-\epsilon}\left[1+b^{\epsilon}+b^{2 \epsilon}+\cdots+b^{L \epsilon}\right] \\
& =c n^{\log _{b} a-\epsilon}\left[\frac{b^{\epsilon(L+1)}-1}{b^{\epsilon}-1}\right] \quad \begin{array}{l}
\text { Recall that } \\
b^{L}=b^{\log _{b} n}=n
\end{array} \\
& =c n^{\log _{b} a-\epsilon}\left[\frac{b^{\epsilon} n^{\epsilon}-1}{b^{\epsilon}-1}\right] \quad \begin{array}{l}
\text { Since } b>1, \epsilon> \\
\text { then } b^{\epsilon}>1
\end{array} \\
& \leq\left[\frac{c b^{\epsilon}}{b^{\epsilon}-1}\right] n^{\log _{b} a-\epsilon} n^{\epsilon}=\underline{\underline{O\left(n^{\log _{b} a}\right)}}
\end{aligned}
$$

$$
T(n)=\underbrace{f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdot} \cdot a^{L} f\left(\frac{n}{b^{L}}\right)
$$

case 1: Lower bound

We have:

$$
\begin{aligned}
T(n) & a^{L} f\left(\frac{n}{b^{L}}\right) \\
& >n^{\log _{b} a} \\
\Rightarrow T(n) & =\Omega 2\left(n^{\log _{b} a}\right)
\end{aligned}
$$

Recall that L is the depth of the recursion and

$$
\begin{aligned}
& a^{L}=a^{\log _{b} n} \\
& \begin{aligned}
\left(b^{\log _{b} a}\right)^{\log _{b} n} & =\underbrace{b^{\left(\log _{b} n\right)\left(\log _{b} a\right)}} \\
= & =n^{\log _{b} a}
\end{aligned}
\end{aligned}
$$

Master's Theorem $T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)$
Case 1

- $\square \square$Then $T(n)=\Theta\left(n^{\log _{b} a}\right)$

$$
f(n)=O\left(n^{\log _{b} a-\epsilon}\right), \epsilon>0
$$

Case 2

$$
\overline{f(n)}=\theta\left(n^{\log _{b} a}\right)
$$

$$
\Rightarrow T(n)=\theta\left(n^{\log _{b} \cdot a} \cdot \log n\right)
$$

Master's Theorem $T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)$

Case 1

- \square

Then $T(n)=\Theta\left(n^{\log _{b} a}\right)$
$f(n)=O\left(n^{\log _{b} a-\epsilon}\right), \epsilon>0$
Case 2

$$
\begin{aligned}
& \square(n)=\Theta\left(n^{\log _{b} a}\right)
\end{aligned}
$$

Master's Theorem $T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)$

Case 1

- \square

Then $T(n)=\Theta\left(n^{\log _{b} a}\right)$
$f(n)=O\left(n^{\log _{b} a-\epsilon}\right), \epsilon>0$
Case 2

$$
\begin{aligned}
& \square \square \square \\
& f(n)=\Theta\left(n^{\log _{b} a}\right)
\end{aligned}
$$

Then $T(n)=\Theta\left(n^{\log _{b} a} \log n\right)$

$$
\text { Master's Theorem } T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)
$$

Case 1

Then $T(n)=\Theta\left(n^{\log _{b} a}\right)$
$f(n)=O\left(n^{\log _{b} a-\epsilon}\right), \epsilon>0$
Case 2

$$
f(n)=\Theta\left(n^{\log _{b} a}\right)
$$

Case 3

$$
\begin{aligned}
& T(n)=f \underline{f(n)}+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right) \\
& \text { case 2: } c^{\prime} n^{\log _{b} a}<\underline{f(n)<\underline{c n^{\log _{b} a}}} \begin{aligned}
& T(n)<c \cdot n^{\log _{b} a}+a \cdot c\left(\frac{n}{b}\right)^{\log _{b} a}+a^{2} \cdot c \cdot\left(\frac{n}{b^{2}}\right)^{\log _{b} a}+\ldots+a^{L} \cdot c\left(\frac{n}{b^{c}}\right)^{\log _{b} a} \\
&= c \cdot n^{\log _{b} a}\left[1+\frac{a}{b^{\log _{b} a}}+\frac{a^{2}}{b^{2 \cdot \log _{b} a}}+\cdots+\frac{a^{c}}{b^{L \cdot \log _{b} a}}\right] \\
& b^{i \cdot \log _{b} a}=a^{i}
\end{aligned}
\end{aligned}
$$

$$
T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)
$$

case 2: $c^{\prime} n^{\log _{b} a}<f(n)<c n^{\log _{b} a}$

$$
T(n)<c n^{\log _{b} a}\left[1+\left(\frac{a}{b^{\log _{b} a}}\right)+\left(\frac{a^{2}}{b^{2 \log _{b} a}}\right)+\cdots+\left(\frac{a^{L}}{b^{L \log _{b} a}}\right)\right]
$$

$$
\begin{aligned}
& =c \cdot n^{\log _{b} a}\left[\frac{\text { L-1 ters }}{1+1+\quad 1+\cdots-1}\right] \quad L=\log _{b} n \\
& \leq c \cdot n^{\log _{b} a} \cdot \log _{b} n=O\left(n^{\log _{b} a} \cdot \log _{n} n\right)
\end{aligned}
$$

$$
T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)
$$

case 2: $\quad c^{\prime} n^{\log _{b} a}<f(n)<c n^{\log _{b} a}$

$$
\begin{aligned}
T(n) & <c n^{\log _{b} a}\left[1+\left(\frac{a}{b^{\log _{b} a}}\right)+\left(\frac{a^{2}}{b^{2 \log _{b} a}}\right)+\cdots+\left(\frac{a^{L}}{b^{L \log _{b} a}}\right)\right] \\
& =c n^{\log _{b} a}[1+1+\cdots 1] \\
& =c n^{\log _{b} a}\left[\log _{b} n\right]=O\left(n^{\log _{b} a} \log n\right)
\end{aligned}
$$

Similar argument for lower bound.

$$
\begin{aligned}
& T(n)=f(n)+\underbrace{a f\left(\frac{n}{b}\right)}+\underbrace{a^{2} f\left(\frac{n}{b^{2}}\right.}_{\text {And }})+\underbrace{a^{3} f\left(\frac{n}{b^{3}}\right)}+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right) \\
& \text { case 3: } f(n)>d n^{\left.\log _{b} a+\epsilon\right)}<c f(n)
\end{aligned}
$$

$$
\begin{aligned}
& \underbrace{a f\left(\frac{n}{b}\right)<c f(n)} \\
& a^{2} \cdot f\left(\frac{n}{b^{2}}\right)=a[\underbrace{a \cdot f\left(\frac{n}{b^{2}}\right)}_{\text {by regutarity aplice }}]<a[\underbrace{c \cdot f\left(\frac{n}{b}\right)}_{f\left(\frac{n}{b^{2}}\right)}]
\end{aligned}
$$

$$
T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)
$$

case 3: $f(n)>d n^{\log _{b} a+\epsilon} \quad$ And $\exists c, a f(n / b)<c f(n)$

$$
\begin{aligned}
& a f\left(\frac{n}{b}\right)<c f(n) \\
& a^{2} f\left(\frac{n}{b^{2}}\right)=a\left[a f\left(\frac{n}{b^{2}}\right)\right]<a\left[c f\left(\frac{n}{b}\right)\right]=c\left[a f\left(\frac{n}{b}\right)\right]<c^{2} f(n) \\
& a^{3} f\left(\frac{n}{b^{3}}\right)<c \cdot a^{2} f\left(\frac{n}{b^{2}}\right)<c^{3} f(n)
\end{aligned}
$$

$$
T(n)=\underbrace{f(n)}+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)
$$

case 3: $f(n)>d n^{\log _{b} a+\epsilon} \quad$ And $\exists c, a f(n / b)<c f(n)$

$$
\begin{aligned}
T(n) & <f(n)+c \cdot f(n)+c^{2} \cdot f(n)+\cdots+c^{L} \cdot f(n) \\
& =f(n)\left[1+c+c^{2} 1 \cdots+c^{L}\right] \quad \\
& \quad \begin{array}{c}
\text { because } c=1 \text {, } \\
\text { this becomes } a \\
\text { constant }
\end{array} \\
&
\end{aligned}
$$

$T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)$
case 3: $f(n)>d n^{\log _{b} a+\epsilon} \quad$ And $\exists c, a f(n / b)<c f(n)$

$$
\begin{aligned}
T(n) & <f(n)+c f(n)+c^{2} f(n)+\cdots+c^{L} f(n) \\
& =f(n)\left[1+c+c^{2}+\cdots c^{L}\right] \\
& =O(f(n))
\end{aligned}
$$

$$
=f(n)\left[1+c+c^{2}+\cdots c^{L}\right] \quad \text { It is important that } \mathrm{c}<1 \text { for the }
$$

sum term to be bounded by a constant

Similar argument for lower bound.

(1) compare $f(h)$ to $n^{\log _{b} a} I t$
$n \xlongequal{\text { L.anacas }} \quad n^{\log _{6} a}=n^{\log _{2} 8}=n^{3}$
because $2=3$, then $f(n)=O\left(n^{3-\epsilon}\right)$
\Rightarrow case 1 applies $\Rightarrow T(n)=\theta\left(n^{3}\right)$
example tom last lass: $T(n)=8 T(n / 2)+\Theta\left(n^{2}\right)$

$$
a=8, b=2, f(n)=\Theta\left(n^{2}\right)
$$

example tom last class: $T(n)=8 T(n / 2)+\Theta\left(n^{2}\right)$

$$
a=8, b=2, f(n)=\Theta\left(n^{2}\right)
$$

Since $f(n)<c n^{2}=O\left(n^{\log _{2} 8}-0.1\right)=O\left(n^{2.9}\right)$ then Case 1 applies.

Therefore $T(n)=\Theta\left(n^{\log _{2} 8}\right)=\Theta\left(n^{3}\right)$

Schoolbook approach

$$
\begin{aligned}
& \quad T(n)=\frac{4 T(n / 2)}{a}+\frac{3 O(n)}{\overline{f(n)}} \\
& a=\square \quad n^{\log _{2} 4}=n^{2}
\end{aligned}
$$

case I applies $\Rightarrow T(n)=\theta\left(n^{2}\right)$

Schoolbook approach

$$
\begin{aligned}
T(n) & =4 T(n / 2)+3 O(n) \\
a & =4, b=2, f(n)=O(n)
\end{aligned}
$$

Therefore, case1,

$$
T(n)=\Theta\left(n^{\log _{2} 4}\right)=\Theta\left(n^{2}\right)
$$

$$
\begin{aligned}
& \quad \text { example: } \quad T(n)=T T\left(\frac{14}{17} n\right)+24 \\
& a=1 \quad b=\frac{17}{14}
\end{aligned}
$$

$$
\begin{aligned}
& \text { compare } \\
f(n)=\partial(1) & \text { equal. } n^{\log _{17 / 4} 1}=n^{0}=O(1) . \\
\Rightarrow \text { case } 2 \Rightarrow T(n) & =\theta\left(n^{\log _{17 / 44^{\prime}}} \cdot \log n\right) \\
& =\theta(\log n)
\end{aligned}
$$

example:

$$
T(n)=T\left(\frac{14}{17} n\right)+24
$$

Since $24=\Theta\left(n^{\log _{17 / 14} 1}\right)=\Theta\left(n^{0}\right)$, case 2 applies.
example:

$$
T(n)=T\left(\frac{14}{17} n\right)+24
$$

Since $24=\Theta\left(n^{\log _{17 / 14} 1}\right)=\Theta\left(n^{0}\right)$, case 2 applies.

Therefore $T(n)=\Theta(\log n)$

$$
\begin{aligned}
& \quad T(n)=\underset{a}{2 T}(n / 2)+\frac{n^{3}}{f(n)} \\
& \underline{n}^{3} \quad \text { to } \quad n^{\log _{2} 2^{2}}=n^{\prime} \\
& a \cdot f\left(\frac{n}{b}\right)=2 \cdot\left(\frac{n}{2}\right)^{3}=2\left(\frac{n^{3}}{8}\right)=\frac{n^{3}}{4}<\cdot c \cdot n^{3} \\
& \text { So regulanty condition holds } \quad \text { Set } c=\frac{1}{2}=1 . \\
& \Rightarrow T(n)=\theta\left(n^{3}\right)
\end{aligned}
$$

$$
T(n)=2 T(n / 2)+n^{3}
$$

Since $n^{3}=\Omega\left(n^{\log _{2} 2+\epsilon}\right)$ and $2\left(\frac{n}{2}\right)^{3}<\left(\frac{1}{2}\right) n^{3}$ Case 3 applies.

$$
\begin{gathered}
T(n)=\frac{16}{a} T\left(n / \frac{4}{I}\right)+\frac{n^{2}}{f(n)} \\
f(n)=n^{2} \stackrel{\text { cqual }}{\rightleftarrows} n^{\log _{2} a}=n^{\log _{4} 4}=n^{2}
\end{gathered}
$$

CASe2 $\Rightarrow T(n)=\theta\left(n^{2} \cdot \log n\right)$

$$
T(n)=7 T(n / 2)+\Theta\left(n^{2}\right)
$$

far practise.
\Rightarrow corresponds to a probou we will encounter next class.

Charge of
jariable

$$
\begin{aligned}
& \sqrt{5}=n^{\sqrt{n}} T(n)=2 T(\sqrt{n})+\lg n
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{n^{1 / 2 L}} \square \cdots \square \rightarrow 2^{c} \cdot \lg \left(n^{1 / 22}\right)=2^{\frac{1}{2}} \frac{1}{2} \cdot \lg (n)
\end{aligned}
$$

$T(n)=2 T(\sqrt{n})+\lg n$

How to solve for L?

$$
\log \left(n^{\frac{1}{2^{L}}}=2\right.
$$

Take logs on both sides:

$$
\begin{aligned}
& \left(\frac{1}{2^{L}} \log (n)=\log (2)=1\right. \\
& \Rightarrow \log (n)=2^{L} \quad L=\log \log (n) \\
& \Rightarrow \log (\log (n))=L
\end{aligned}
$$

How to solve for L?

$$
n^{\frac{1}{2^{L}}}=2
$$

Take logs on both sides:

$$
\frac{1}{2^{L}} \log n=\log (2)
$$

Then multiply both sides by $2^{\text {L, and }}$ take logs again.
$\log \log n=L$

How to solve for L?

$n^{\frac{1}{2 L}}=2$

Take logs on both sides:

$$
\frac{1}{2^{L}} \log n=\log (2)
$$

Then multiply both sides by $2^{\text {L, and }}$ take logs again.
$\log \log n=L$
$T(n)=2 T(\sqrt{n})+\lg n$
n
$n^{1 / 2} \quad n^{1 / 2}$
\square

$2^{2} \lg \left(n^{1 / 2^{2}}\right)$
$2^{3} \lg \left(n^{1 / 2^{3}}\right)$

$2^{L} \lg \left(n^{1 / 2^{L}}\right)$
$T(n)=2 T(\sqrt{n})+\lg n$

$T(n)=2 T(\sqrt{n})+\lg n$

$$
T(n)=2 T(\sqrt{n})+\lg n
$$

Lets rewrite with $m=\log n$

$$
T\left(2^{m}\right)=T(n)
$$

$$
T\left(2^{m}\right)=2 T\left(2^{m / 2}\right)+\cdots \cdot m
$$

Define $\underbrace{S(m)}=T\left(2^{m}\right), S(\mathrm{~m} / 2)=T\left(2^{m / 2}\right) \quad$ New recurrence.

$$
S(m)=2 \cdot S(m / 2)+m
$$

By case 2, $\quad S(m)=\theta(\underline{m} \cdot \log \underline{m})$
Finally, since $m=\log (n)$

$$
T(n)=\theta(\log n \cdot \log \log n)
$$

$T(n)=2 T(\sqrt{n})+\lg n$

Lets rewrite with $m=\log n$
$T\left(2^{m}\right)=2 T\left(2^{m / 2}\right)+c \cdot m$
Define $S(m)=T\left(2^{m}\right)$
$S(m)=2 S(m / 2)+\Theta(m)$

$$
T(n)=2 T(\sqrt{n})+\lg n
$$

Lets rewrite with $m=\log n$
$T\left(2^{m}\right)=2 T\left(2^{m / 2}\right)+c \cdot m$
Define $S(m)=T\left(2^{m}\right)$
$S(m)=2 S(m / 2)+\Theta(m)$
Apply Master's Thm case 2: $S(m)=\Theta(m \log m)$

Since $m=\log n$, we have $T(n)=\Theta(\log n \log \log n)$

divide

\& conquer

Examples we will discuss

- Muses art
- Arbitrage
- Closest pair of points
- Matrix molt
- Fast fourier Trusforn


```
merge-sort \((A, p, r)\)
    if \(p<r\)
        \(q \leftarrow\lfloor(p+r) / 2\rfloor\)
    -merge-sort \((A, p, q)\)
    -merge-sort \((A, q+1, r)\)
    merge \((A, p, q, r)\)
```

```
merge-sort \((A, p, r)\)
    if \(p<r\)
        \(q \leftarrow\lfloor(p+r) / 2\rfloor\)
        merge-sort \((A, p, q)\)
    merge-sort \((A, q+1, r)\)
    merge \((A, p, q, r)\)
```


for $k \leftarrow 1$ to n
$A[k] \leftarrow B[k]$

5	2	4	7	1	3	2	6


```
merge-sort \((A, p, r)\)
    if \(p<r\)
        \(q \leftarrow\lfloor(p+r) / 2\rfloor\)
        merge-sort \((A, p, q)\)
        merge-sort \((A, q+1, r)\)
    merge \((A, p, q, r)\)
```

```
MERGE(A[1..n],m):
    for }k\leftarrow1\mathrm{ to }
        if j>n
        B[k]}\leftarrowA[i];i\leftarrowi+
    else if i>m
        B[k]\leftarrowA[j]; j\leftarrowj+1
    else if A[i]<A[j]
        B[k]\leftarrowA[i];i\leftarrowi+1
    else
        B[k]}\leftarrowA[j];j\leftarrowj+
```

 for \(k \leftarrow 1\) to \(n\)
 \(A[k] \leftarrow B[k]\)
 | 5 | 2 | 4 | 7 | 1 | 3 | 2 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


```
merge-sort \((A, p, r)\)
    if \(p<r\)
        \(q \leftarrow\lfloor(p+r) / 2\rfloor\)
        merge-sort \((A, p, q)\)
        merge-sort \((A, q+1, r)\)
        merge \((A, p, q, r)\)
```

$\frac{\operatorname{Merge}(A[1 . . n], m)}{i \leftarrow 1 ;} ;$
$i \leftarrow 1 ; j \leftarrow m$
for $k \leftarrow 1$ to n
if $j>n$
$B[k] \leftarrow A[i] ; i \leftarrow i+1$
else if $i>m$
$B[k] \leftarrow A[j] ; j \leftarrow j+1$
else if $A[i]<A[j]$
$B[k] \leftarrow A[i] ; i \leftarrow i+1$
else
$B[k] \leftarrow A[j] ; j \leftarrow j+1$
for $k \leftarrow 1$ to n
$A[k] \leftarrow B[k]$

5	2	4	7	1	3	2	6

$$
\begin{aligned}
& \text { merge-sort }(A, p, r) \\
& \text { if } p<r \\
& q \leftarrow\lfloor(p+r) / 2\rfloor \\
& \text { merge-sort }(A, p, q) \\
& \text { merge-sort }(A, q+1, r) \\
& \text { merge }(A, p, q, r)
\end{aligned}
$$

5	2	4	7	1	3	2	6

$$
\begin{aligned}
& \text { merge-sort }(A, p, r) \\
& \text { if } p<r \\
& q \leftarrow\lfloor(p+r) / 2\rfloor \\
& \text { merge-sort }(A, p, q) \\
& \text { merge-sort }(A, q+1, r) \\
& \text { merge }(A, p, q, r)
\end{aligned}
$$

5	2	4	7	1	3	2	6


```
merge-sort (A,p,r)
    if p<r
        q\leftarrow\lfloor(p+r)/2\rfloor
merge-sort (A,p,q)
merge-sort (A,q+1,r)
merge ( }A,p,q,r
```

1	2	2	3	4	5	6	7

$$
\begin{aligned}
& \text { merge-sort }(A, p, r) \\
& \text { if } p<r \\
& q \leftarrow\lfloor(p+r) / 2\rfloor \\
& \text { merge-sort }(A, p, q) \\
& \text { merge-sort }(A, q+1, r) \\
& \text { merge }(A, p, q, r) \\
& T(n)=2 T(n / 2)+O(n) \\
& =\Theta(n \log n)
\end{aligned}
$$

