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T(n) = aT(n/b) + f(n)
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Master’s Theorem
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Similar argument for lower bound.



T (n) = f(n) + af
�n

b

⇥
+ a2f

� n

b2

⇥
+ a3f

� n

b3

⇥
+ · · · + aLf

� n

bL

⇥

case 3: f(n) > dnlogb a+ϵ And ∃c, af(n/b) < cf(n)

af ( n
b ) < cf(n)



T (n) = f(n) + af
�n

b

⇥
+ a2f

� n

b2

⇥
+ a3f

� n

b3

⇥
+ · · · + aLf

� n

bL

⇥

case 3: f(n) > dnlogb a+ϵ And ∃c, af(n/b) < cf(n)

af ( n
b ) < cf(n)

a2f ( n
b2 ) = a [af ( n

b2 )] < a [cf ( n
b )] = c [af ( n

b )] < c2f(n)

a3f ( n
b3 ) < c ⋅ a2f ( n

b2 ) < c3f(n)



T (n) = f(n) + af
�n

b

⇥
+ a2f

� n

b2

⇥
+ a3f

� n

b3

⇥
+ · · · + aLf

� n

bL

⇥

case 3: f(n) > dnlogb a+ϵ And ∃c, af(n/b) < cf(n)



T (n) = f(n) + af
�n

b

⇥
+ a2f

� n

b2

⇥
+ a3f

� n

b3

⇥
+ · · · + aLf

� n

bL

⇥

case 3: f(n) > dnlogb a+ϵ

T(n) < f(n) + cf(n) + c2f(n) + ⋯ + cLf(n)

= f(n)[1 + c + c2 + ⋯cL]
= O( f(n))

Similar argument for lower bound.

And ∃c, af(n/b) < cf(n)

It is important that c<1 for the 
sum term to be bounded by a 
constant
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example from last class:

a = 8,b = 2,f(n) = Θ(n2)

Since  then Case 1 applies.f(n) < cn2 = O(nlog2 8 − 0.1) = O(n2.9)

Therefore T(n) = Θ(nlog2 8) = Θ(n3)
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a = 4,b = 2,f(n) = O(n)

Therefore, case1,  
T(n) = Θ(nlog2 4) = Θ(n2)

Schoolbook approach
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Therefore T(n) = Θ(log n)
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T(n) = 7T(n/2) + Θ(n2)
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constant. Why not 
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Use Induction to 
prove.

O(log n log log n)
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Lets rewrite with m = log n

Define S(m) = T(2m)
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T(2m) = 2T(2m/2) + c ⋅ m
Lets rewrite with m = log n

S(m) = 2S(m/2) + Θ(m)

Apply Master’s Thm case 2: S(m) = Θ(m log m)

Since , we have m = log n T(n) = Θ(log n log log n)

Define S(m) = T(2m)
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Examples we will discuss
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merge
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(A, q + 1, r)

(A, p, q, r)
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Algorithms Lecture 2: Divide and Conquer

The control of a large force is the same principle as the control of a few men:
it is merely a question of dividing up their numbers.

— Sun Zi, The Art of War (c. 400 C.E.), translated by Lionel Giles (1910)

2 Divide and Conquer

2.1 MergeSort

Mergesort is one of the earliest algorithms proposed for sorting. According to Knuth, it was sug-
gested by John von Neumann as early as 1945.

1. Divide the array A[1 .. n] into two subarrays A[1 ..m] and A[m + 1 .. n], where m = ⇥n/2⇤.
2. Recursively mergesort the subarrays A[1 ..m] and A[m + 1 .. n].

3. Merge the newly-sorted subarrays A[1 ..m] and A[m + 1 .. n] into a single sorted list.

Input: S O R T I N G E X A M P L
Divide: S O R T I N G E X A M P L

Recurse: I N O S R T A E G L M P X
Merge: A E G I L M N O P S R T X

A Mergesort example.

The first step is completely trivial; we only need to compute the median index m. The second
step is also trivial, thanks to our friend the recursion fairy. All the real work is done in the final
step; the two sorted subarrays A[1 ..m] and A[m + 1 .. n] can be merged using a simple linear-time
algorithm. Here’s a complete specification of the Mergesort algorithm; for simplicity, we separate
out the merge step as a subroutine.

MERGESORT(A[1 .. n]):
if (n > 1)

m � ⇥n/2⇤
MERGESORT(A[1 ..m])
MERGESORT(A[m + 1 .. n])
MERGE(A[1 .. n],m)

MERGE(A[1 .. n],m):
i � 1; j � m + 1
for k � 1 to n

if j > n
B[k] � A[i]; i � i + 1

else if i > m
B[k] � A[j]; j � j + 1

else if A[i] < A[j]
B[k] � A[i]; i � i + 1

else
B[k] � A[j]; j � j + 1

for k � 1 to n
A[k] � B[k]

To prove that the algorithm is correct, we use our old friend induction. We can prove that
MERGE is correct using induction on the total size of the two subarrays A[i ..m] and A[j .. n] left to
be merged into B[k .. n]. The base case, where at least one subarray is empty, is straightforward;
the algorithm just copies it into B. Otherwise, the smallest remaining element is either A[i] or A[j],
since both subarrays are sorted, so B[k] is assigned correctly. The remaining subarrays—either
A[i + 1 ..m] and A[j .. n], or A[i ..m] and A[j + 1 .. n]—are merged correctly into B[k + 1 .. n] by the
inductive hypothesis.1 This completes the proof.

1“The inductive hypothesis” is just a technical nickname for our friend the recursion fairy.
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gested by John von Neumann as early as 1945.

1. Divide the array A[1 .. n] into two subarrays A[1 ..m] and A[m + 1 .. n], where m = ⇥n/2⇤.
2. Recursively mergesort the subarrays A[1 ..m] and A[m + 1 .. n].

3. Merge the newly-sorted subarrays A[1 ..m] and A[m + 1 .. n] into a single sorted list.

Input: S O R T I N G E X A M P L
Divide: S O R T I N G E X A M P L

Recurse: I N O S R T A E G L M P X
Merge: A E G I L M N O P S R T X

A Mergesort example.

The first step is completely trivial; we only need to compute the median index m. The second
step is also trivial, thanks to our friend the recursion fairy. All the real work is done in the final
step; the two sorted subarrays A[1 ..m] and A[m + 1 .. n] can be merged using a simple linear-time
algorithm. Here’s a complete specification of the Mergesort algorithm; for simplicity, we separate
out the merge step as a subroutine.

MERGESORT(A[1 .. n]):
if (n > 1)

m � ⇥n/2⇤
MERGESORT(A[1 ..m])
MERGESORT(A[m + 1 .. n])
MERGE(A[1 .. n],m)

MERGE(A[1 .. n],m):
i � 1; j � m + 1
for k � 1 to n

if j > n
B[k] � A[i]; i � i + 1

else if i > m
B[k] � A[j]; j � j + 1

else if A[i] < A[j]
B[k] � A[i]; i � i + 1

else
B[k] � A[j]; j � j + 1

for k � 1 to n
A[k] � B[k]

To prove that the algorithm is correct, we use our old friend induction. We can prove that
MERGE is correct using induction on the total size of the two subarrays A[i ..m] and A[j .. n] left to
be merged into B[k .. n]. The base case, where at least one subarray is empty, is straightforward;
the algorithm just copies it into B. Otherwise, the smallest remaining element is either A[i] or A[j],
since both subarrays are sorted, so B[k] is assigned correctly. The remaining subarrays—either
A[i + 1 ..m] and A[j .. n], or A[i ..m] and A[j + 1 .. n]—are merged correctly into B[k + 1 .. n] by the
inductive hypothesis.1 This completes the proof.

1“The inductive hypothesis” is just a technical nickname for our friend the recursion fairy.
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T (n) = 2T (n/2) + O(n)
= �(n log n)


