

jan 28/31 2022

shelat

Announcements on H1

?-√

http://www.drblank.com/law301.jpg

Featuring more than 175 recipes from Spice Market, Vong, and 66

ASIAN FLAVORS OF JEAN-GEORGES

COCKDOCK

elBulli2003 elBulli2004

T(n) = aT(n/b) + f(n)

T(n) = aT(n/b) + f(n)

 $(f(n/b^L))$

 $T(n) = f(n) + af\left(\frac{n}{b}\right) + a^2 f\left(\frac{n}{b^2}\right) + a^3 f\left(\frac{n}{b^3}\right) + \dots + a^L f\left(\frac{n}{b^L}\right)$

 $T(n) = f(n) + af\left(\frac{n}{b}\right) + a^2 f\left(\frac{n}{b^2}\right) + a^3 f\left(\frac{n}{b^3}\right) + \dots + a^L f\left(\frac{n}{b^L}\right)$

Comparison of how each term in the sum could relate to the others

 $T(n) = f(n) + af\left(\frac{n}{h}\right) + a^2 f\left(\frac{n}{h^2}\right) + a^3 f\left(\frac{n}{h^3}\right) + \dots + a^L f\left(\frac{n}{h^L}\right)$ case 1: $f(n) = O(n^{\log_b a - \epsilon})$

 $T(n) = f(n) + af\left(\frac{n}{b}\right) + a^2 f\left(\frac{n}{b^2}\right) + a^3 f\left(\frac{n}{b^3}\right) + \dots + a^L f\left(\frac{n}{b^L}\right)$ case 1: $f(n) = O(n^{\log_b a - \epsilon})$

example: T(n) = 4T(n/2) + n

$$\begin{split} T(n) &= f(n) + af\left(\frac{n}{b}\right) + a^2 f\left(\frac{n}{b^2}\right) + a^3 f\left(\frac{n}{b^3}\right) + \dots + a^L f\left(\frac{n}{b^L}\right) \\ \text{case 1:} & f(n) = O\left(n^{\log_b a - \epsilon}\right) \end{split}$$

$$T(n) = f(n) + af\left(\frac{n}{b}\right) + a^{2}f\left(\frac{n}{b^{2}}\right) + a^{3}f\left(\frac{n}{b^{3}}\right) + \dots + a^{L}f\left(\frac{n}{b^{L}}\right)$$

case 1: $f(n) = O(n^{\log_{b} a - \epsilon})$

$$T(n) \le cn^{\log_{b} a - \epsilon} + ac\left(\frac{n}{b}\right)^{\log_{b} a - \epsilon} + a^{2}c\left(\frac{n}{b^{2}}\right)^{\log_{b} a - \epsilon} + \dots + a^{L}c\left(\frac{n}{b^{L}}\right)^{\log_{b} a - \epsilon}$$

$$T(n) = f(n) + af\left(\frac{n}{b}\right) + a^{2}f\left(\frac{n}{b^{2}}\right) + a^{3}f\left(\frac{n}{b^{3}}\right) + \dots + a^{L}f\left(\frac{n}{b^{L}}\right)$$

case 1: $f(n) = O(n^{\log_{b} a - \epsilon})$
 $T(n) \le cn^{\log_{b} a - \epsilon} \left[1 + \left(\frac{a}{b^{\log_{b} a - \epsilon}}\right) + \left(\frac{a^{2}}{b^{2(\log_{b} a - \epsilon)}}\right) + \dots + \left(\frac{a^{L}}{b^{L(\log_{b} a - \epsilon)}}\right)\right]$

$$T(n) = f(n) + af\left(\frac{n}{b}\right) + a^2 f$$

case 1: $f(n) = O(n^{\log n})$

$$T(n) \le cn^{\log_b a - \epsilon} + ac\left(\frac{n}{b}\right)^{\log_b a - \epsilon} +$$

$$= cn^{\log_b a - \epsilon} \left[1 + \left(\frac{a}{b^{\log_b a - \epsilon}} \right) + \left(\frac{b^2}{b^2} \right) \right]$$

$$= cn^{\log_b a - \epsilon} \left[1 + \left(\frac{a}{a/b^{\epsilon}}\right) + \left(\frac{a^2}{a^2/b^2}\right) \right]$$

 $= c n^{\log_b a - \epsilon} \left[1 + b^{\epsilon} + b^{2\epsilon} + \dots + b^{L\epsilon} \right]$

 $f\left(\frac{n}{b^2}\right) + a^3 f\left(\frac{n}{b^3}\right) + \dots + a^L f\left(\frac{n}{b^L}\right)$ $g_b a - \epsilon$

$= cn^{\log_b a - \epsilon} \left[1 + b^{\epsilon} + b^{2\epsilon} + \dots + b^{L\epsilon} \right]$

 $= cn^{\log_b a - \epsilon} \left[1 + b^{\epsilon} + b^{2\epsilon} + \dots + b^{L\epsilon} \right]$ $= cn^{\log_b a - \epsilon} \left[\frac{b^{\epsilon(L+1)} - 1}{b^{\epsilon} - 1} \right]$

Recall that $b^L = b^{\log_b n} = n$

 $= cn^{\log_b a - \epsilon} \left[1 + b^{\epsilon} + b^{2\epsilon} + \dots + b^{L\epsilon} \right]$ $= cn^{\log_b a - \epsilon} \left[\frac{b^{\epsilon(L+1)} - 1}{b^{\epsilon} - 1} \right]$ $= cn^{\log_b a - \epsilon} \left[\frac{b^{\epsilon} n^{\epsilon} - 1}{b^{\epsilon} - 1} \right]$

Recall that $b^L = b^{\log_b n} = n$

 $= c n^{\log_b a - \epsilon} \left[1 + b^{\epsilon} + b^{2\epsilon} + \dots + b^{L\epsilon} \right]$ $= cn^{\log_b a - \epsilon} \left[\frac{b^{\epsilon(L+1)} - 1}{b^{\epsilon} - 1} \right]$ $= cn^{\log_b a - \epsilon} \left| \frac{b^{c}n^{c} - 1}{b^{\epsilon} - 1} \right|$ $\leq \left| \frac{cb^{\epsilon}}{b^{\epsilon} - 1} \right| n^{\log_b a - \epsilon} n^{\epsilon} = O(n^{\log_b a})$

Recall that $b^L = b^{\log_b n} = n$

 $T(n) = f(n) + af\left(\frac{n}{b}\right) + a^2 f\left(\frac{n}{b^2}\right) + a^3 f\left(\frac{n}{b^3}\right) + \cdots + a^L f\left(\frac{n}{b^L}\right)$

case 1: Lower bound

We have:

 $> N^{1} \partial G_{1} \delta$

 $T(n) \neq a^L f(\frac{n}{\iota I})$

Recall that L is the depth of the recursion and $a^{L} = a^{\log_{b} n}$

Master's Theorem $T(n) = f(n) + af\left(\frac{n}{b}\right) + a^2 f\left(\frac{n}{b^2}\right) + a^3 f\left(\frac{n}{b^3}\right) + \dots + a^L f\left(\frac{n}{b^L}\right)$

Master's Theorem $T(n) = f(n) + af\left(\frac{n}{b}\right) + a^2 f\left(\frac{n}{b^2}\right) + a^3 f\left(\frac{n}{b^3}\right) + \dots + a^L f\left(\frac{n}{b^L}\right)$

Master's Theorem $T(n) = f(n) + af\left(\frac{n}{h}\right) + a^2 f\left(\frac{n}{h^2}\right) + a^3 f\left(\frac{n}{h^3}\right) + \dots + a^L f\left(\frac{n}{h^L}\right)$

Then $T(n) = \Theta(n^{\log_b a} \log n)$

Master's Theorem $T(n) = f(n) + af\left(\frac{n}{b}\right) + a^2 f\left(\frac{n}{b^2}\right) + a^3 f\left(\frac{n}{b^3}\right) + \dots + a^L f\left(\frac{n}{b^L}\right)$

Then $T(n) = \Theta(n^{\log_b a} \log n)$

Then $T(n) = \Theta(f(n))$

 $T(n) = f(n) + af\left(\frac{n}{b}\right) + a^2 f\left(\frac{n}{b^2}\right) + a^3 f\left(\frac{n}{b^3}\right) + \dots + a^L f\left(\frac{n}{b^L}\right)$

case 2: $c'n^{\log_b a} < f(n) < cn^{\log_b a}$

 $T(n) = f(n) + af\left(\frac{n}{h}\right) + a^2 f\left(\frac{n}{h^2}\right)$

case 2: $c'n^{\log_b a} < f(n) < cn^{\log_b a}$

 $T(n) < cn^{\log_b a} \left[1 + \left(\frac{a}{b^{\log_b a}} \right) \right]$

$$+ a^{3}f\left(\frac{n}{b^{3}}\right) + \dots + a^{L}f\left(\frac{n}{b^{L}}\right)$$
$$\frac{a}{\log_{b} a} + \left(\frac{a^{2}}{b^{2}\log_{b} a}\right) + \dots + \left(\frac{a^{L}}{b^{L}\log_{b} a}\right)$$

 $T(n) = f(n) + af\left(\frac{n}{h}\right) + a^2 f\left(\frac{n}{h^2}\right) + a^3 f\left(\frac{n}{h^3}\right) + \dots + a^L f\left(\frac{n}{h^L}\right)$

case 2: $c'n^{\log_b a} < f(n) < cn^{\log_b a}$

 $T(n) < cn^{\log_b a} \left| 1 + \left(\frac{a}{b^{\log_b a}} \right) + \left(\frac{a^2}{b^{2\log_b a}} \right) + \dots + \left(\frac{a^L}{b^{L\log_b a}} \right) \right|$

$$= cn^{\log_b a} \left[1 + 1 + \dots 1 \right]$$
$$= cn^{\log_b a} \left[\log_b n \right] = O(a)$$

Similar argument for lower bound.

 $n = O(n^{\log_b a} \log n)$

 $T(n) = f(n) + af\left(\frac{n}{h}\right) + a^2 f\left(\frac{n}{h^2}\right) + a^3 f\left(\frac{n}{h^3}\right) + \dots + a^L f\left(\frac{n}{h^L}\right)$

case 3: $f(n) > dn^{\log_b a + \epsilon}$ And $\exists c$

 $af\left(\frac{n}{b}\right) < cf(n)$

And $\exists c, af(n/b) < cf(n)$

 $T(n) = f(n) + af\left(\frac{n}{h}\right) + a^2 f\left(\frac{n}{h^2}\right) + a^3 f\left(\frac{n}{h^3}\right) + \dots + a^L f\left(\frac{n}{h^L}\right)$

case 3: $f(n) > dn^{\log_b a + \epsilon}$ And $\exists c, af(n/b) < cf(n)$

$$af\left(\frac{n}{b}\right) < cf(n)$$

$$a^{2}f\left(\frac{n}{b^{2}}\right) = a\left[af\left(\frac{n}{b^{2}}\right)\right] < a$$
$$a^{3}f\left(\frac{n}{b^{3}}\right) < c \cdot a^{2}f\left(\frac{n}{b^{2}}\right) < c^{3}$$

 $\left| cf\left(\frac{n}{b}\right) \right| = c \left| af\left(\frac{n}{b}\right) \right| < c^2 f(n)$

2f(n)

 $T(n) = f(n) + af\left(\frac{n}{b}\right) + a^2 f\left(\frac{n}{b^2}\right) + a^3 f\left(\frac{n}{b^3}\right) + \dots + a^L f\left(\frac{n}{b^L}\right)$

case 3: $f(n) > dn^{\log_b a + \epsilon}$ And $\exists c, af(n/b) < cf(n)$

 $T(n) = f(n) + af\left(\frac{n}{b}\right) + a^2 f\left(\frac{n}{b^2}\right) + a^3 f\left(\frac{n}{b^3}\right) + \dots + a^L f\left(\frac{n}{b^L}\right)$ case 3: $f(n) > dn^{\log_b a + \epsilon}$ And $\exists c, af(n/b) < cf(n)$

 $T(n) < f(n) + cf(n) + c^2f(n) + \dots + c^Lf(n)$

$= f(n) |1 + c + c^{2} + \cdots c^{L}|$ = O(f(n))

Similar argument for lower bound.

It is important that c<1 for the sum term to be bounded by a constant

example from last class: $T(n) = 8T(n/2) + \Theta(n^2)$

$a = 8, b = 2, f(n) = \Theta(n^2)$

example from last class: $T(n) = 8T(n/2) + \Theta(n^2)$

example from last class: $T(n) = 8T(n/2) + \Theta(n^2)$

$a = 8, b = 2, f(n) = \Theta(n^2)$

Therefore $T(n) = \Theta(n^{\log_2 8}) = \Theta(n^3)$

Since $f(n) < cn^2 = O(n^{\log_2 8} - 0.1) = O(n^{2.9})$ then Case 1 applies.

Schoolbook approach T(n) = 4T(n/2) + 3O(n)

Schoolbook approach

Therefore, case1, $T(n) = \Theta(n^{\log_2 4}) = \Theta(n^2)$

T(n) = 4T(n/2) + 3O(n)

a = 4, b = 2, f(n) = O(n)

example:

$T(n) = T\left(\frac{14}{17}n\right) + 24$

example:

Since $24 = \Theta(n^{\log_{17/14} 1}) = \Theta(n^0)$, case 2 applies.

Since $24 = \Theta(n^{\log_{17/14} 1}) = \Theta(n^0)$, case 2 applies.

Therefore $T(n) = \Theta(\log n)$

example:

 $T(n) = 2T(n/2) + n^3$

 $T(n) = 2T(n/2) + n^{3}$

Since $n^3 = \Omega(n^{\log_2 2 + \epsilon})$ and $2\left(\frac{n}{2}\right)^3 < \left(\frac{1}{2}\right)n^3$ Case 3 applies.

$T(n) = 16T(n/4) + n^2$

$T(n) = 7T(n/2) + \Theta(n^2)$

$T(n) = 2T(\sqrt{n}) + \lg n$

$$T(n) = 2T(n)$$

$$n$$

$$n^{1/2}$$

$$n^{1/4}$$

$$n^{1/8}$$

$(\sqrt{n}) + lgn$

lg n

$2 \log(n^{1/2})$

 $2^{3} lg(n^{1/2^{3}})$

How to solve for L?

Take logs on both sides: $\frac{1}{2^L}\log n = \log(2)$

 $\frac{1}{n^{2^L}} = 2$

How to solve for L?

Take logs on both sides: $\frac{1}{2^L}\log n = \log(2)$

Then multiply both sides by 2^L, and take logs again.

 $\log \log n = L$

 $\frac{1}{n^{2^L}} = 2$

How to solve for L?

Take logs on both sides: $\frac{1}{2L}\log n = \log(2)$

Then multiply both sides by 2^L, and take logs again.

 $\log \log n = L$

For our purposes, this value can be a constant. Why not 1?

$$T(n) = 2T(n)$$

$$n$$

$$n^{1/2}$$

$$n^{1/4}$$

$$n^{1/8}$$

$(\sqrt{n}) + lgn$

lg n

 $2 \log(n^{1/2})$

 $2^2 \log(n^{1/2^2})$

 $2^3 \log(n^{1/2^3})$

 $2^L \log(n^{1/2^L})$

$$T(n) = 2T(n)$$

$$n^{1/2}$$

$$n^{1/4}$$

$$n^{1/8}$$

$$T(n) = 2T(n)$$

$$n^{1/2}$$

$$n^{1/4}$$

$$n^{1/8}$$

 $T(n) = 2T(\sqrt{n}) + \lg n$

Lets rewrite with $m = \log n$ $T(2^m) = 2T(2^{m/2}) + c \cdot m$ Define $S(m) = T(2^m)$

$T(n) = 2T(\sqrt{n}) + \lg n$

Lets rewrite with $m = \log n$ $T(2^m) = 2T(2^{m/2}) + c \cdot m$ Define $S(m) = T(2^m)$ $S(m) = 2S(m/2) + \Theta(m)$

$T(n) = 2T(\sqrt{n}) + \lg n$

Lets rewrite with $m = \log n$ $T(2^m) = 2T(2^{m/2}) + c \cdot m$ Define $S(m) = T(2^m)$ $S(m) = 2S(m/2) + \Theta(m)$

Apply Master's Thm case 2: $S(m) = \Theta(m \log m)$

Since $m = \log n$, we have $T(n) = \Theta(\log n \log \log n)$

& conquer

Examples we will discuss

 $\begin{array}{l} \text{merge-sort} \ (A,p,r) \\ \text{if} \ p < r \end{array}$ $q \leftarrow \lfloor (p+r)/2 \rfloor$ $\begin{array}{l} \text{merge-sort} \left(A,p,q\right) \\ \text{merge-sort} \left(A,q+1,r\right) \\ \text{merge}(A,p,q,r) \end{array}$

 $\begin{array}{l} \operatorname{merge-sort} \left(A, p, r \right) \\ \operatorname{if} \ p < r \end{array}$ $q \leftarrow \lfloor (p+r)/2 \rfloor$ $\begin{array}{l} \text{merge-sort} \left(A, p, q\right) \\ \text{merge-sort} \left(A, q+1, r\right) \\ \text{merge}(A, p, q, r) \end{array}$ 2 4 5

$$\label{eq:constraint} \begin{split} \hline \frac{\operatorname{MERGE}(A[1 \dots n], m):}{i \leftarrow 1; \ j \leftarrow m+1} \\ & \text{for } k \leftarrow 1 \text{ to } n \\ & \text{if } j > n \\ & B[k] \leftarrow A[i]; \ i \leftarrow i+1 \\ & \text{else if } i > m \\ & B[k] \leftarrow A[j]; \ j \leftarrow j+1 \\ & \text{else if } A[i] < A[j] \\ & B[k] \leftarrow A[i]; \ i \leftarrow i+1 \\ & \text{else} \\ & B[k] \leftarrow A[j]; \ j \leftarrow j+1 \end{split} \\ \end{split}$$

 $\begin{array}{l} \operatorname{merge-sort} \left(A, p, r \right) \\ \operatorname{if} \ p < r \end{array}$ $q \leftarrow \lfloor (p+r)/2 \rfloor$ $\begin{array}{l} \text{merge-sort} \left(A, p, q\right) \\ \text{merge-sort} \left(A, q+1, r\right) \\ \text{merge}(A, p, q, r) \end{array}$

 $\begin{array}{l} \operatorname{merge-sort} \left(A, p, r \right) \\ \operatorname{if} \ p < r \end{array}$ $q \leftarrow \lfloor (p+r)/2 \rfloor$ $\begin{array}{l} \text{merge-sort} \left(A,p,q\right) \\ \text{merge-sort} \left(A,q+1,r\right) \\ \text{merge}(A,p,q,r) \end{array}$ 5 2 4 7 I 3 2 6

 $\begin{array}{l} \text{merge-sort} \ (A, p, r) \\ \text{if} \ p < r \end{array}$ $q \leftarrow \lfloor (p+r)/2 \rfloor$ $\begin{array}{l} \text{merge-sort} \left(A, p, q\right) \\ \text{merge-sort} \left(A, q+1, r\right) \\ \text{merge}(A, p, q, r) \end{array}$ 5 2 4 7 I 3 2 6

 $\begin{array}{l} \text{merge-sort} \ (A, p, r) \\ \text{if} \ p < r \end{array}$ $q \leftarrow \lfloor (p+r)/2 \rfloor$ $\begin{array}{l} \text{merge-sort} \left(A,p,q\right) \\ \text{merge-sort} \left(A,q+1,r\right) \\ \text{merge}(A,p,q,r) \end{array}$ 5 2 4 7 I 3 2 6

 $\begin{array}{l} \text{merge-sort} \ (A,p,r) \\ \text{if} \ p < r \end{array}$ $q \leftarrow \lfloor (p+r)/2 \rfloor$ $\begin{array}{l} \text{merge-sort} \left(A,p,q\right) \\ \text{merge-sort} \left(A,q+1,r\right) \\ \text{merge}(A,p,q,r) \end{array}$

 $\begin{array}{l} \text{merge-sort} \ (A,p,r) \\ \text{if} \ p < r \end{array}$ $q \leftarrow |(p+r)/2|$ merge-sort (A, p, q)merge-sort (A, q + 1, r)merge(A, p, q, r)T(n) = 2T(n/2) + O(n) $= \Theta(n \log n)$

