
L4 5800
jan 28/31 2022

shelat

Announcements on H1

?-✓

http://www.drblank.com/law301.jpg

http://www.drblank.com/law301.jpg

cookbook

T(n) = aT(n/b) + f(n)

T(n) = aT(n/b) + f(n)
Lets account for
all of the terms in
this recurrence. Child nodesa

a a a

T (n) = f(n) + af
�n

b

⇥
+ a2f

� n

b2

⇥
+ a3f

� n

b3

⇥
+ · · · + aLf

� n

bL

⇥

 ...
 ...

 ...

Comparison
of how each
term in the
sum could
relate to the
others

case 1:

T (n) = f(n) + af
�n

b

⇥
+ a2f

� n

b2

⇥
+ a3f

� n

b3

⇥
+ · · · + aLf

� n

bL

⇥

f (n) = O(nlogb a��)

y = x2

y = x1.97

case 1:

T (n) = f(n) + af
�n

b

⇥
+ a2f

� n

b2

⇥
+ a3f

� n

b3

⇥
+ · · · + aLf

� n

bL

⇥

example: T(n) = 4T(n/2) + n

f (n) = O(nlogb a��)

case 1:

T (n) = f(n) + af
�n

b

⇥
+ a2f

� n

b2

⇥
+ a3f

� n

b3

⇥
+ · · · + aLf

� n

bL

⇥

f (n) = O(nlogb a��)

case 1:

T (n) = f(n) + af
�n

b

⇥
+ a2f

� n

b2

⇥
+ a3f

� n

b3

⇥
+ · · · + aLf

� n

bL

⇥

f (n) = O(nlogb a��)

T(n) ≤ cnlogb a−ϵ + ac (n
b)

logb a−ϵ

+ a2c (n
b2)

logb a−ϵ

+ ⋯ + aLc (n
bL)

logb a−ϵ

T (n) = f(n) + af
�n

b

⇥
+ a2f

� n

b2

⇥
+ a3f

� n

b3

⇥
+ · · · + aLf

� n

bL

⇥

T(n) ≤ cnlogb a−ϵ [1 + (a
blogb a−ϵ) + (a2

b2(logb a−ϵ)) + ⋯ + (aL

bL(logb a−ϵ))]
case 1: f (n) = O(nlogb a��)

case 1:
T (n) = f(n) + af

�n

b

⇥
+ a2f

� n

b2

⇥
+ a3f

� n

b3

⇥
+ · · · + aLf

� n

bL

⇥

f (n) = O(nlogb a��)

T(n) ≤ cnlogb a−ϵ + ac (n
b)

logb a−ϵ

+ a2c (n
b2)

logb a−ϵ

+ ⋯ + aLc (n
bL)

logb a−ϵ

= cnlogb a−ϵ [1 + (a
blogb a−ϵ) + (a2

b2(logb a−ϵ)) + ⋯ + (aL

bL(logb a−ϵ))]
= cnlogb a−ϵ [1 + (a

a/bϵ) + (a2

a2/b2ϵ) + ⋯ + (aL

aL/bLϵ)]
= cnlogb a−ϵ [1 + bϵ + b2ϵ + ⋯ + bLϵ]

= cnlogb a−ϵ [1 + bϵ + b2ϵ + ⋯ + bLϵ]

Since
then

b > 1,ϵ > 0
bϵ > 1

= cnlogb a−ϵ [1 + bϵ + b2ϵ + ⋯ + bLϵ]

= cnlogb a−ϵ [bϵ(L+1) − 1
bϵ − 1] Recall that

bL = blogb n = n

Since
then

b > 1,ϵ > 0
bϵ > 1

= cnlogb a−ϵ [1 + bϵ + b2ϵ + ⋯ + bLϵ]

= cnlogb a−ϵ [bϵ(L+1) − 1
bϵ − 1] Recall that

bL = blogb n = n

= cnlogb a−ϵ [bϵnϵ − 1
bϵ − 1] Since

then
b > 1,ϵ > 0

bϵ > 1

= cnlogb a−ϵ [1 + bϵ + b2ϵ + ⋯ + bLϵ]

= cnlogb a−ϵ [bϵ(L+1) − 1
bϵ − 1] Recall that

bL = blogb n = n

= cnlogb a−ϵ [bϵnϵ − 1
bϵ − 1]

≤ [cbϵ

bϵ − 1] nlogb a−ϵnϵ = O(nlogb a)

Since
then

b > 1,ϵ > 0
bϵ > 1

case 1: Lower bound

T (n) = f(n) + af
�n

b

⇥
+ a2f

� n

b2

⇥
+ a3f

� n

b3

⇥
+ · · · + aLf

� n

bL

⇥

We have:

T (n) � aLf(
n

bL
)

Recall that L is the depth
of the recursion and
aL = alogb n

 .

Case 1

f(n) = O(nlogb a−ϵ), ϵ > 0

Then T(n) = Θ(nlogb a)

Master’s Theorem

 .

Case 1

f(n) = O(nlogb a−ϵ), ϵ > 0

Then T(n) = Θ(nlogb a)

 . Case 2

f(n) = Θ(nlogb a)

Master’s Theorem

 .

Case 1

f(n) = O(nlogb a−ϵ), ϵ > 0

Then T(n) = Θ(nlogb a)

 . Case 2

f(n) = Θ(nlogb a)
Then T(n) = Θ(nlogb a log n)

Master’s Theorem

 .

Case 1

f(n) = O(nlogb a−ϵ), ϵ > 0

Then T(n) = Θ(nlogb a)

 . Case 2

f(n) = Θ(nlogb a)
Then T(n) = Θ(nlogb a log n)

 .

Case 3

 and f(n) = Ω(nlogb a+ϵ), ϵ > 0 ∃c < 1, af(n/b) < cf(n)

Then T(n) = Θ(f(n))

Master’s Theorem

T (n) = f(n) + af
�n

b

⇥
+ a2f

� n

b2

⇥
+ a3f

� n

b3

⇥
+ · · · + aLf

� n

bL

⇥

case 2: c′￼nlogb a < f(n) < cnlogb a

T (n) = f(n) + af
�n

b

⇥
+ a2f

� n

b2

⇥
+ a3f

� n

b3

⇥
+ · · · + aLf

� n

bL

⇥

case 2: c′￼nlogb a < f(n) < cnlogb a

T(n) < cnlogb a [1 + (a
blogb a) + (a2

b2 logb a) + ⋯ + (aL

bL logb a)]

T (n) = f(n) + af
�n

b

⇥
+ a2f

� n

b2

⇥
+ a3f

� n

b3

⇥
+ · · · + aLf

� n

bL

⇥

case 2: c′￼nlogb a < f(n) < cnlogb a

T(n) < cnlogb a [1 + (a
blogb a) + (a2

b2 logb a) + ⋯ + (aL

bL logb a)]
= cnlogb a [1 + 1 + ⋯1]
= cnlogb a [logb n] = O(nlogb a log n)

Similar argument for lower bound.

T (n) = f(n) + af
�n

b

⇥
+ a2f

� n

b2

⇥
+ a3f

� n

b3

⇥
+ · · · + aLf

� n

bL

⇥

case 3: f(n) > dnlogb a+ϵ And ∃c, af(n/b) < cf(n)

af (n
b) < cf(n)

T (n) = f(n) + af
�n

b

⇥
+ a2f

� n

b2

⇥
+ a3f

� n

b3

⇥
+ · · · + aLf

� n

bL

⇥

case 3: f(n) > dnlogb a+ϵ And ∃c, af(n/b) < cf(n)

af (n
b) < cf(n)

a2f (n
b2) = a [af (n

b2)] < a [cf (n
b)] = c [af (n

b)] < c2f(n)

a3f (n
b3) < c ⋅ a2f (n

b2) < c3f(n)

T (n) = f(n) + af
�n

b

⇥
+ a2f

� n

b2

⇥
+ a3f

� n

b3

⇥
+ · · · + aLf

� n

bL

⇥

case 3: f(n) > dnlogb a+ϵ And ∃c, af(n/b) < cf(n)

T (n) = f(n) + af
�n

b

⇥
+ a2f

� n

b2

⇥
+ a3f

� n

b3

⇥
+ · · · + aLf

� n

bL

⇥

case 3: f(n) > dnlogb a+ϵ

T(n) < f(n) + cf(n) + c2f(n) + ⋯ + cLf(n)

= f(n)[1 + c + c2 + ⋯cL]
= O(f(n))

Similar argument for lower bound.

And ∃c, af(n/b) < cf(n)

It is important that c<1 for the
sum term to be bounded by a
constant

example from last class:

example from last class:

a = 8,b = 2,f(n) = Θ(n2)

example from last class:

a = 8,b = 2,f(n) = Θ(n2)

Since then Case 1 applies.f(n) < cn2 = O(nlog2 8 − 0.1) = O(n2.9)

Therefore T(n) = Θ(nlog2 8) = Θ(n3)

7 8 9 4 3 21 1★
a b c d

Schoolbook approach

7 8 9 4 3 21 1★
a b c d

a = 4,b = 2,f(n) = O(n)

Therefore, case1,
T(n) = Θ(nlog2 4) = Θ(n2)

Schoolbook approach

example:

T(n) = T

�
14

17
n

⇥
+ 24

example:

T(n) = T

�
14

17
n

⇥
+ 24

Since , case 2 applies.24 = Θ(nlog17/14 1) = Θ(n0)

example:

T(n) = T

�
14

17
n

⇥
+ 24

Since , case 2 applies.24 = Θ(nlog17/14 1) = Θ(n0)

Therefore T(n) = Θ(log n)

Since and Case 3 applies.n3 = Ω(nlog2 2+ϵ) 2 (n
2)

3

< (1
2) n3

T(n) = 7T(n/2) + Θ(n2)

T(n) = 2T
��

n
⇥

+ lg n

T(n) = 2T
��

n
⇥

+ lg n

n

n1/2 n1/2

n1/4

n1/8

n1/2L

lg n

2 lg(n1/2)

22 lg(n1/22)

23 lg(n1/23)

2L lg(n1/2L)

How to solve for L?

n
1

2L = 2

1
2L

log n = log(2)

Take logs on both sides:

How to solve for L?

n
1

2L = 2

1
2L

log n = log(2)

Take logs on both sides:

log log n = L

Then multiply both sides by 2L, and
take logs again.

How to solve for L?

n
1

2L = 2

1
2L

log n = log(2)

Take logs on both sides:

log log n = L

Then multiply both sides by 2L, and
take logs again.

For our purposes,
this value can be a
constant. Why not
1?

T(n) = 2T
��

n
⇥

+ lg n

n

n1/2 n1/2

n1/4

n1/8

n1/2L

lg n

2 lg(n1/2)

22 lg(n1/22)

23 lg(n1/23)

2L lg(n1/2L)

T(n) = 2T
��

n
⇥

+ lg n

n

n1/2 n1/2

n1/4

n1/8

n1/2L

lg n

lg(n)

lg(n)

lg(n)

lo
g

lo
g(

n)

T(n) = 2T
��

n
⇥

+ lg n

n

n1/2 n1/2

n1/4

n1/8

n1/2L

lg n

lg(n)

lg(n)

lg(n)

lo
g

lo
g(

n)

Sums to

Use Induction to
prove.

O(log n log log n)

T(n) = 2T
��

n
⇥

+ lg n

T(2m) = 2T(2m/2) + c ⋅ m
Lets rewrite with m = log n

Define S(m) = T(2m)

T(n) = 2T
��

n
⇥

+ lg n

T(2m) = 2T(2m/2) + c ⋅ m
Lets rewrite with m = log n

S(m) = 2S(m/2) + Θ(m)
Define S(m) = T(2m)

T(n) = 2T
��

n
⇥

+ lg n

T(2m) = 2T(2m/2) + c ⋅ m
Lets rewrite with m = log n

S(m) = 2S(m/2) + Θ(m)

Apply Master’s Thm case 2: S(m) = Θ(m log m)

Since , we have m = log n T(n) = Θ(log n log log n)

Define S(m) = T(2m)

divide

& conquer

http://www.kitchenknifedrawer.com/files/1696205/uploaded/K6615D.jpg

http://www.kitchenknifedrawer.com/files/1696205/uploaded/K6615D.jpg

http://www.kitchenknifedrawer.com/files/1696205/uploaded/K6615D.jpg

http://www.kitchenknifedrawer.com/files/1696205/uploaded/K6615D.jpg

http://www.kitchenknifedrawer.com/files/1696205/uploaded/K6615D.jpg

http://www.kitchenknifedrawer.com/files/1696205/uploaded/K6615D.jpg

http://www.kitchenknifedrawer.com/files/1696205/uploaded/K6615D.jpg

http://www.kitchenknifedrawer.com/files/1696205/uploaded/K6615D.jpg

Examples we will discuss

Merge

merge-sort
if

merge-sort
merge-sort
merge

(A, p, r)
p < r
q � ⇥(p + r)/2⇤

(A, p, q)
(A, q + 1, r)

(A, p, q, r)

5 2 4 7 1 3 2 6

Algorithms Lecture 2: Divide and Conquer

The control of a large force is the same principle as the control of a few men:
it is merely a question of dividing up their numbers.

— Sun Zi, The Art of War (c. 400 C.E.), translated by Lionel Giles (1910)

2 Divide and Conquer

2.1 MergeSort

Mergesort is one of the earliest algorithms proposed for sorting. According to Knuth, it was sug-
gested by John von Neumann as early as 1945.

1. Divide the array A[1 .. n] into two subarrays A[1 ..m] and A[m + 1 .. n], where m = ⇥n/2⇤.
2. Recursively mergesort the subarrays A[1 ..m] and A[m + 1 .. n].

3. Merge the newly-sorted subarrays A[1 ..m] and A[m + 1 .. n] into a single sorted list.

Input: S O R T I N G E X A M P L
Divide: S O R T I N G E X A M P L

Recurse: I N O S R T A E G L M P X
Merge: A E G I L M N O P S R T X

A Mergesort example.

The first step is completely trivial; we only need to compute the median index m. The second
step is also trivial, thanks to our friend the recursion fairy. All the real work is done in the final
step; the two sorted subarrays A[1 ..m] and A[m + 1 .. n] can be merged using a simple linear-time
algorithm. Here’s a complete specification of the Mergesort algorithm; for simplicity, we separate
out the merge step as a subroutine.

MERGESORT(A[1 .. n]):
if (n > 1)

m � ⇥n/2⇤
MERGESORT(A[1 ..m])
MERGESORT(A[m + 1 .. n])
MERGE(A[1 .. n],m)

MERGE(A[1 .. n],m):
i � 1; j � m + 1
for k � 1 to n

if j > n
B[k] � A[i]; i � i + 1

else if i > m
B[k] � A[j]; j � j + 1

else if A[i] < A[j]
B[k] � A[i]; i � i + 1

else
B[k] � A[j]; j � j + 1

for k � 1 to n
A[k] � B[k]

To prove that the algorithm is correct, we use our old friend induction. We can prove that
MERGE is correct using induction on the total size of the two subarrays A[i ..m] and A[j .. n] left to
be merged into B[k .. n]. The base case, where at least one subarray is empty, is straightforward;
the algorithm just copies it into B. Otherwise, the smallest remaining element is either A[i] or A[j],
since both subarrays are sorted, so B[k] is assigned correctly. The remaining subarrays—either
A[i + 1 ..m] and A[j .. n], or A[i ..m] and A[j + 1 .. n]—are merged correctly into B[k + 1 .. n] by the
inductive hypothesis.1 This completes the proof.

1“The inductive hypothesis” is just a technical nickname for our friend the recursion fairy.

1

jef
f e

ric
ks

on

merge-sort
if

merge-sort
merge-sort
merge

(A, p, r)
p < r
q � ⇥(p + r)/2⇤

(A, p, q)
(A, q + 1, r)

(A, p, q, r)

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6

Algorithms Lecture 2: Divide and Conquer

The control of a large force is the same principle as the control of a few men:
it is merely a question of dividing up their numbers.

— Sun Zi, The Art of War (c. 400 C.E.), translated by Lionel Giles (1910)

2 Divide and Conquer

2.1 MergeSort

Mergesort is one of the earliest algorithms proposed for sorting. According to Knuth, it was sug-
gested by John von Neumann as early as 1945.

1. Divide the array A[1 .. n] into two subarrays A[1 ..m] and A[m + 1 .. n], where m = ⇥n/2⇤.
2. Recursively mergesort the subarrays A[1 ..m] and A[m + 1 .. n].

3. Merge the newly-sorted subarrays A[1 ..m] and A[m + 1 .. n] into a single sorted list.

Input: S O R T I N G E X A M P L
Divide: S O R T I N G E X A M P L

Recurse: I N O S R T A E G L M P X
Merge: A E G I L M N O P S R T X

A Mergesort example.

The first step is completely trivial; we only need to compute the median index m. The second
step is also trivial, thanks to our friend the recursion fairy. All the real work is done in the final
step; the two sorted subarrays A[1 ..m] and A[m + 1 .. n] can be merged using a simple linear-time
algorithm. Here’s a complete specification of the Mergesort algorithm; for simplicity, we separate
out the merge step as a subroutine.

MERGESORT(A[1 .. n]):
if (n > 1)

m � ⇥n/2⇤
MERGESORT(A[1 ..m])
MERGESORT(A[m + 1 .. n])
MERGE(A[1 .. n],m)

MERGE(A[1 .. n],m):
i � 1; j � m + 1
for k � 1 to n

if j > n
B[k] � A[i]; i � i + 1

else if i > m
B[k] � A[j]; j � j + 1

else if A[i] < A[j]
B[k] � A[i]; i � i + 1

else
B[k] � A[j]; j � j + 1

for k � 1 to n
A[k] � B[k]

To prove that the algorithm is correct, we use our old friend induction. We can prove that
MERGE is correct using induction on the total size of the two subarrays A[i ..m] and A[j .. n] left to
be merged into B[k .. n]. The base case, where at least one subarray is empty, is straightforward;
the algorithm just copies it into B. Otherwise, the smallest remaining element is either A[i] or A[j],
since both subarrays are sorted, so B[k] is assigned correctly. The remaining subarrays—either
A[i + 1 ..m] and A[j .. n], or A[i ..m] and A[j + 1 .. n]—are merged correctly into B[k + 1 .. n] by the
inductive hypothesis.1 This completes the proof.

1“The inductive hypothesis” is just a technical nickname for our friend the recursion fairy.

1

jef
f e

ric
ks

on

merge-sort
if

merge-sort
merge-sort
merge

(A, p, r)
p < r
q � ⇥(p + r)/2⇤

(A, p, q)
(A, q + 1, r)

(A, p, q, r)

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6

Algorithms Lecture 2: Divide and Conquer

The control of a large force is the same principle as the control of a few men:
it is merely a question of dividing up their numbers.

— Sun Zi, The Art of War (c. 400 C.E.), translated by Lionel Giles (1910)

2 Divide and Conquer

2.1 MergeSort

Mergesort is one of the earliest algorithms proposed for sorting. According to Knuth, it was sug-
gested by John von Neumann as early as 1945.

1. Divide the array A[1 .. n] into two subarrays A[1 ..m] and A[m + 1 .. n], where m = ⇥n/2⇤.
2. Recursively mergesort the subarrays A[1 ..m] and A[m + 1 .. n].

3. Merge the newly-sorted subarrays A[1 ..m] and A[m + 1 .. n] into a single sorted list.

Input: S O R T I N G E X A M P L
Divide: S O R T I N G E X A M P L

Recurse: I N O S R T A E G L M P X
Merge: A E G I L M N O P S R T X

A Mergesort example.

The first step is completely trivial; we only need to compute the median index m. The second
step is also trivial, thanks to our friend the recursion fairy. All the real work is done in the final
step; the two sorted subarrays A[1 ..m] and A[m + 1 .. n] can be merged using a simple linear-time
algorithm. Here’s a complete specification of the Mergesort algorithm; for simplicity, we separate
out the merge step as a subroutine.

MERGESORT(A[1 .. n]):
if (n > 1)

m � ⇥n/2⇤
MERGESORT(A[1 ..m])
MERGESORT(A[m + 1 .. n])
MERGE(A[1 .. n],m)

MERGE(A[1 .. n],m):
i � 1; j � m + 1
for k � 1 to n

if j > n
B[k] � A[i]; i � i + 1

else if i > m
B[k] � A[j]; j � j + 1

else if A[i] < A[j]
B[k] � A[i]; i � i + 1

else
B[k] � A[j]; j � j + 1

for k � 1 to n
A[k] � B[k]

To prove that the algorithm is correct, we use our old friend induction. We can prove that
MERGE is correct using induction on the total size of the two subarrays A[i ..m] and A[j .. n] left to
be merged into B[k .. n]. The base case, where at least one subarray is empty, is straightforward;
the algorithm just copies it into B. Otherwise, the smallest remaining element is either A[i] or A[j],
since both subarrays are sorted, so B[k] is assigned correctly. The remaining subarrays—either
A[i + 1 ..m] and A[j .. n], or A[i ..m] and A[j + 1 .. n]—are merged correctly into B[k + 1 .. n] by the
inductive hypothesis.1 This completes the proof.

1“The inductive hypothesis” is just a technical nickname for our friend the recursion fairy.

1

jef
f e

ric
ks

on

merge-sort
if

merge-sort
merge-sort
merge

(A, p, r)
p < r
q � ⇥(p + r)/2⇤

(A, p, q)
(A, q + 1, r)

(A, p, q, r)

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6

Algorithms Lecture 2: Divide and Conquer

The control of a large force is the same principle as the control of a few men:
it is merely a question of dividing up their numbers.

— Sun Zi, The Art of War (c. 400 C.E.), translated by Lionel Giles (1910)

2 Divide and Conquer

2.1 MergeSort

Mergesort is one of the earliest algorithms proposed for sorting. According to Knuth, it was sug-
gested by John von Neumann as early as 1945.

1. Divide the array A[1 .. n] into two subarrays A[1 ..m] and A[m + 1 .. n], where m = ⇥n/2⇤.
2. Recursively mergesort the subarrays A[1 ..m] and A[m + 1 .. n].

3. Merge the newly-sorted subarrays A[1 ..m] and A[m + 1 .. n] into a single sorted list.

Input: S O R T I N G E X A M P L
Divide: S O R T I N G E X A M P L

Recurse: I N O S R T A E G L M P X
Merge: A E G I L M N O P S R T X

A Mergesort example.

The first step is completely trivial; we only need to compute the median index m. The second
step is also trivial, thanks to our friend the recursion fairy. All the real work is done in the final
step; the two sorted subarrays A[1 ..m] and A[m + 1 .. n] can be merged using a simple linear-time
algorithm. Here’s a complete specification of the Mergesort algorithm; for simplicity, we separate
out the merge step as a subroutine.

MERGESORT(A[1 .. n]):
if (n > 1)

m � ⇥n/2⇤
MERGESORT(A[1 ..m])
MERGESORT(A[m + 1 .. n])
MERGE(A[1 .. n],m)

MERGE(A[1 .. n],m):
i � 1; j � m + 1
for k � 1 to n

if j > n
B[k] � A[i]; i � i + 1

else if i > m
B[k] � A[j]; j � j + 1

else if A[i] < A[j]
B[k] � A[i]; i � i + 1

else
B[k] � A[j]; j � j + 1

for k � 1 to n
A[k] � B[k]

To prove that the algorithm is correct, we use our old friend induction. We can prove that
MERGE is correct using induction on the total size of the two subarrays A[i ..m] and A[j .. n] left to
be merged into B[k .. n]. The base case, where at least one subarray is empty, is straightforward;
the algorithm just copies it into B. Otherwise, the smallest remaining element is either A[i] or A[j],
since both subarrays are sorted, so B[k] is assigned correctly. The remaining subarrays—either
A[i + 1 ..m] and A[j .. n], or A[i ..m] and A[j + 1 .. n]—are merged correctly into B[k + 1 .. n] by the
inductive hypothesis.1 This completes the proof.

1“The inductive hypothesis” is just a technical nickname for our friend the recursion fairy.

1

jef
f e

ric
ks

on

merge-sort
if

merge-sort
merge-sort
merge

(A, p, r)
p < r
q � ⇥(p + r)/2⇤

(A, p, q)
(A, q + 1, r)

(A, p, q, r)

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6

2 5 4 7 1 3 2 6

5 2 4 7 1 3 2 6

merge-sort
if

merge-sort
merge-sort
merge

(A, p, r)
p < r
q � ⇥(p + r)/2⇤

(A, p, q)
(A, q + 1, r)

(A, p, q, r)

5 2 4 7 1 3 2 6

2 4 5 7 1 2 3 6

2 5 4 7 1 3 2 6

5 2 4 7 1 3 2 6

merge-sort
if

merge-sort
merge-sort
merge

(A, p, r)
p < r
q � ⇥(p + r)/2⇤

(A, p, q)
(A, q + 1, r)

(A, p, q, r)

1 2 2 3 4 5 6 7

2 4 5 7 1 2 3 6

2 5 4 7 1 3 2 6

5 2 4 7 1 3 2 6

merge-sort
if

merge-sort
merge-sort
merge

(A, p, r)
p < r
q � ⇥(p + r)/2⇤

(A, p, q)
(A, q + 1, r)

(A, p, q, r)

T (n) = 2T (n/2) + O(n)
= �(n log n)

