$$
255800
$$

divide

\& conquer

2 sndisht

hou to
se combire.

Examples we will discuss
Mugesort

- Ashitrage
- Closest pair of points
- Median
- Matrix Molt
- Fast fourier 1 ans form


```
merge-sort \((A, p, r)\)
    if \(p<r\)
        \(q \leftarrow\lfloor(p+r) / 2\rfloor\)
merge-sort ( \(A, p, q\) )
merge-sort \((A, q+1, r)\)
merge \((A, p, q, r)\)
```



```
merge-sort \((A, p, r)\)
    if \(p<r\)
        \(q \leftarrow\lfloor(p+r) / 2\rfloor\)
    \(=\) merge-sort \((A, p, q)\)
    merge-sort \((A, q+1, r)\)
    merge \((A, p, q, r)\)
```

MERGE $(A[1 . . n], m):$	
$i \leftarrow 1 ; j \leftarrow m+1$	
for $k \leftarrow 1$ to n	
if $j>n$	
$B[k] \leftarrow A[i] ; i \leftarrow i+1$	
else if $i>m$	
$B[k] \leftarrow A[j] ; j \leftarrow j+1$	
else if $A[i]<A[j]$	
$B[k] \leftarrow A[i] ; i \leftarrow i+1$	(1)
else	
$B[k] \leftarrow A[j] ; j \leftarrow j+1$	

 for \(k \leftarrow 1\) to \(n\)
 \(A[k] \leftarrow B[k]\)
 | 5 | 2 | 4 | 7 | 1 | 3 | 2 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


```
merge-sort \((A, p, r)\)
    if \(p<r\)
        \(q \leftarrow\lfloor(p+r) / 2\rfloor\)
        merge-sort \((A, p, q)\)
        merge-sort \((A, q+1, r)\)
    merge \((A, p, q, r)\)
```

```
MERGE(A[1..n],m):
    for }k\leftarrow1\mathrm{ to }
        if j>n
        B[k]}\leftarrowA[i];i\leftarrowi+
    else if i>m
        B[k]\leftarrowA[j]; j\leftarrowj+1
    else if A[i]<A[j]
        B[k]}\leftarrowA[i];i\leftarrowi+
        else
            B[k]}\leftarrowA[j];j\leftarrowj+
```

 for \(k \leftarrow 1\) to \(n\)
 \(A[k] \leftarrow B[k]\)
 | 5 | 2 | 4 | 7 | 1 | 3 | 2 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


```
merge-sort \((A, p, r)\)
    if \(p<r\)
        \(q \leftarrow\lfloor(p+r) / 2\rfloor\)
        merge-sort ( \(A, p, q\) )
        merge-sort \((A, q+1, r)\)
        \(\rightarrow\) merge \((A, p, q, r)\)
```

$\operatorname{MERGE}(A[1 . . n], m)$:
$i \leftarrow 1 ; j \leftarrow m+$
for $k \leftarrow 1$ to n
if $j>n$
$B[k] \leftarrow A[i] ; i \leftarrow i+1$ else if $i>m$
$B[k] \leftarrow A[j] ; j \leftarrow j+1$
else if $A[i]<A[j]$
else $B[k] \leftarrow A[i] ; i \leftarrow i+1$
$B[k] \leftarrow A[j] ; j \leftarrow j+1$
for $k \leftarrow 1$ to n
$A[k] \leftarrow B[k]$

5	2	4	7	1	3	2	6

$$
\begin{aligned}
& \text { merge-sort }(A, p, r) \\
& \text { if } p<r \\
& q \leftarrow\lfloor(p+r) / 2\rfloor \\
& \text { merge-sort }(A, p, q) \\
& \text { merge-sort }(A, q+1, r) \\
& \text { merge }(A, p, q, r)
\end{aligned}
$$

5	2	4	7	1	3	2	6


```
merge-sort (A,p,r)
    if p<r
        q\leftarrow\lfloor(p+r)/2\rfloor
merge-sort (A,p,q)
merge-sort ( }A,q+1,r
merge ( }A,p,q,r
```

5	2	4	7	1	3	2	6


```
merge-sort (A,p,r)
    if p<r
        q\leftarrow\lfloor(p+r)/2\rfloor
merge-sort (A,p,q)
merge-sort (A,q+1,r)
merge ( }A,p,q,r
```

1	2	2	3	4	5	6	7

$$
\begin{aligned}
& \text { merge-sort }(A, p, r) \\
& \text { if } p<r \\
& \qquad q \leftarrow\lfloor(p+r) / 2\rfloor
\end{aligned}
$$

$$
\text { merge-sort }(A, p, q)
$$

$$
\text { merge-sort }(A, q+1, r)
$$

$$
\text { merge }(A, p, q, r)
$$

$$
\begin{aligned}
T(n) & =2 T(n / 2)+\Theta(n) \\
& =\Theta(n \log n)
\end{aligned}
$$

arbitrage

input: array of n numbers

goal: is to find the best buy-sell oppriturity. i.e. the pair (i, j) such that $i<j$ and $A_{j}-A_{i}$ is the largest among all pairs $(i . j) \in[1, n]^{2}$

Main idea

Find the best ar arbitrage opportunity in LEAFT and in RIGHT.

Then look for opportunities when you buy on the left and sell on the right.
first attempt

if $|A|=2$, then base cage else

$$
\begin{array}{ll}
& \lg \in \operatorname{arbit}\left(A\left[1 \ldots n_{12}\right]\right) \\
\Rightarrow & \operatorname{sg} \leftarrow \operatorname{arbit}\left(A\left[\frac{n}{2}+1, \ldots n\right]\right) \\
& \min , \max \leqslant \operatorname{Min}(\operatorname{left+}(A)), \operatorname{MAX}(\operatorname{right}(A))
\end{array}
$$

return $\max \{(g, r g$, max $-\min \}$
first attempt

$$
\begin{aligned}
& \text { min }
\end{aligned}=\operatorname{lom}_{0} \quad 1, n / 2
$$

$$
\begin{aligned}
& \text { arbit(A[1...n]) } \\
& \text { base case if }|A|<=2 \\
& \text { if } A[i]<\text { min, } \\
& \lg =\operatorname{arbit}(\operatorname{left}(A)) \text {, } \\
& r g=\operatorname{arbit}(\operatorname{right}(A)) T(n / 2) \\
& \left.\rightarrow \frac{\operatorname{minl}}{\operatorname{maxr}}=\frac{\min (\operatorname{left}(A))}{\max (\operatorname{right}(\bar{A}))}\right] \quad \theta \underline{\theta(n)} \\
& \text { return } \max \{\operatorname{maxr-min} l, l g, r g\} \\
& \text { case } 2 \\
& T(n)=2 T\left(\frac{n}{2}\right)+\theta(n) \Rightarrow \theta\left(h_{15 n}\right)
\end{aligned}
$$

first attempt: time $\Theta(n \log n)$

arbit(A[1...n])
base case if $|A|<=2$
$\lg =\operatorname{arbit}(\operatorname{left}(\mathrm{A})) \quad T(N / 2)$
$r g=\operatorname{arbit}(r i g h t(A)) \quad t(1 / 2)$
$\left[\begin{array}{l}\operatorname{minl}=\min (\operatorname{left}(A)) \\ \operatorname{maxr}=\max (\operatorname{right}(A))\end{array}\right]$ which fakes $\theta(n)$
return max\{maxr-minl,lg,rg\} \|
better approach

better approach

Can we find a solution that has $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{O}(1)$?
if we cold, the the solution would be case 1

$$
\theta\left(n^{\log _{2} 2}\right)=\theta(n)
$$

better approach

Can we find a solution that has $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{O}(1)$?

$$
\begin{aligned}
& \min l=\min (l \operatorname{eft}(A)) \\
& \operatorname{maxr}=\max (r i g h t(A)) \\
& \text { return } \max \{\operatorname{maxr}-\operatorname{minl}, l g, r g\}
\end{aligned}
$$

\rightarrow Have arbit function ALSO return min, mat of the array
second attempt

$$
\begin{aligned}
& \text { arbit+(A[1...n]) } \\
& \text { base case if }|A|<=2 \\
& \text { lye, min, max } \leftarrow \operatorname{arbit}+(l e f t(A)) . \quad T\left(\frac{n}{2}\right) \\
& \text { rn, min, } \underset{\sim}{\max } \in \operatorname{arbatt}(\operatorname{right}(A)) \quad T\binom{0}{2} \\
& \rightarrow \text { mid }=\text { max }-l \text { min } \\
& \text { return } \max \{l y, r g \text {, mid }\} \text {, } \\
& \text { - } \min \{l \text { min, min }\} \text {, } \\
& \max \left\{l_{\text {max }}, r_{\text {max }}\right\}
\end{aligned}
$$

```
second attempt
    arbit+(A[1...n])
        base case if }|A|<=2\mathrm{ , return }\mp@subsup{A}{2}{}-\mp@subsup{A}{1}{},\operatorname{min}(\mp@subsup{A}{1}{},\mp@subsup{A}{2}{}),\operatorname{max}(\mp@subsup{A}{1}{},\mp@subsup{A}{2}{}
        (lg,minl,maxl) = arbit(left(A))
        (rg,minr,maxr) = arbit(right(A))
            return max{maxr-minl,lg,rg},
                min{minl, minr},
                max{maxl, maxr}
T(n)=2T(\frac{n}{2})+0(1) }=>T(n)=0(n)\mathrm{ by caseI.
```


closest pair

Simple brute force approach takes $\Theta\left(n^{2}\right)$

solve the large problem by
solving smaller problems and combining solutions

(9)
(13)

(4)
(5)
(12)

Divide \& Conquer
(14)

Divide \& Conquer

What if the input points are distributed like this?

Then all of the points are within δ of the middle. If we need to check all of the points, we are back to $O\left(n^{2}\right)$

But we have extra information! The only candidates for closest pair are within δ of each other. How can we use this info?

FACT: <=1
point per cubby

FACT: <=1
point per cubby

wort cache, this
process taney
$n \cdot(5=\theta(n)$
fine.
FACT: $<=1$

Closest(P)

Closest(P)

Base Case: If <8 points, brute force.

1. Let q_{c} be the "middle-element" of points
2. Divide P into Left, Right according to q
3. delta, r, $, \mathrm{j}=\mathrm{MIN}($ Closest(Left) $), \quad$ Closest(Right) $)$
4. Mohawk $=\{$ Scan P, add pts that are delta from (9.x) $\}$
5. For each point x in Mohawk (in y-order): Compute distance to its next 15 neighbors Update delta,r,j if any pair (x, y) is < delta
6. Return (delta,r,j)

Closest(P)

Base Case: If <8 points, brute force.

1. Let q be the "middle-element" of points
2. Divide P into Left, Right according to q
3. delta,r,j = MIN(Closest(Left) , Closest(Right))
4. Mohawk $=\{$ Scan P, add pts that are delta from q.x $\}$
5. For each point x in Mohawk (in y -order): Compute distance to its next 15 neighbors Update delta,r,j if any pair (x, y) is \& delta
6. Return (delta,r,j)

Details: How to do step 1?

(14)
(1)

(9)

(2)
(4)
(11)
(12)
-sorted in X: 13151491071981123412 -sorted in Y: 6512111031349872114
(13)

(2)
(3)
(11)
(12)
(6)
(2)

(3)
(11)

ClosestPair(P)
Compute Sorted-in-X list SX
Compute Sorted-in-Y list SY
$\theta(n \cdot \log n)$
$\operatorname{Closest}(\mathrm{P}, \mathrm{SX}, \mathrm{SY}){ }^{-} T(n)=$
$\theta\left(r_{1} \cdot \log n\right)$
$\theta(n \cdot \log n)$

$$
\text { Tot } l=\theta(n \cdot \log n)
$$

Let q be the middide-element of SX
Divide P into Left, Right according to q
delta, ry = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY))

Mohawk $=\{$ Scan SY, add pts that are delta from q.x \} $\quad \theta(n)$
For each point x in Mohawk (in order):
Compute distance to its next 15 neighbors Update delta,r,j if any pair (x, y) is < delta

Return (delta,r,j)

$$
T(n)=2 T\left(\frac{n}{2}\right)+\theta(n) \Rightarrow \theta\left(n b g_{n}\right)
$$

Closest(P,SX,SY)

Let q be the middle-element of SX
Divide P into Left, Right according to q
delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY))

Mohawk $=\{$ Scan SY, add pts that are delta from q.x $\}$
For each point x in Mohawk (in order):
Compute distance to its next 15 neighbors Update delta,r,j if any pair (x, y) is < delta

Return (delta,r,j)
(13)
(1) (7) ,

3
(2)
(3)
(11)

Closest(P,SX,SY)

Let q be the middle-element of SX
Divide P into Left, Right according to q. Scan to get LY, RY.
delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY))

Mohawk $=\{$ Scan SY, add pts that are delta from q.x $\}$
For each point x in Mohawk (in order):
Compute distance to its next 15 neighbors Update delta,r,j if any pair (x, y) is < delta

Return (delta,r,j)

Closest(P,SX,SY)

Let q be the middle-element of SX
Divide P into Left, Right according to q. Scan to get LY, RY.
delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY))

Mohawk $=\{$ Scan SY, add pts that are delta from q.x $\}$
For each point x in Mohawk (in order):
Compute distance to its next 15 neighbors Update delta,r,j if any pair (x, y) is < delta

Return (delta,r,j)
sorted in X:13 15149107981123412 sorted in Y: 6512111031349872114
(14)
(1)
(9)
(13)
(2)

(3)

Closest(P,SX,SY)

Let q be the middle-element of SX
Divide P into Left, Right according to q. Scan to get LY, RY.
delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY))

Mohawk $=\{$ Scan SY, add pts that are delta from q.x $\}$
For each point x in Mohawk (in order):
Compute distance to its next 15 neighbors Update delta,r,j if any pair (x, y) is < delta

Return (delta,r,j)

Closest(P,SX,SY)

Let q be the middle-element of SX
Divide P into Left, Right according to q. Scan to get LY, RY.
delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY))

Mohawk $=\{$ Scan SY, add pts that are delta from q.x $\}$
For each point x in Mohawk (in order):
Compute distance to its next 15 neighbors Update delta,r,j if any pair (x, y) is < delta

Return (delta,r,j)

Running time for Closest pair algorithm
$T(n)=$

$$
T(n)=2 T(n / 2)+\Theta(n)=\Theta(n \log n)
$$

@author Robert Sedgewick
author Kevin Wayne
http://algs4.cs.princeton.edu/99hull/ClosestPair.java.html
public ClosestPair(Point20] points)
int $N=$ points.length;
if $(\mathbb{N}<=1)$ return;
It sort by x-coordinate (breaking ties by y-coordinate) Point2D[] pointsByX = new Point2D[N]
for (int $\mathrm{i}=0 ; \mathrm{i}<\mathrm{N} ; \mathrm{i}++$)
pointsByX[i] = points[i];
Arrays.sort(pointsByX, Point2D.X_ORDER);
4/ check for coincident points
for (int $\mathrm{i}=0 ; \mathrm{i}<\mathrm{N}-1 ; \mathrm{i}++$) $\{$
if (pointsByX[i].equals(pointsByX[i+1])) \{
bestDistance $=0.0$; best1 = pointsByX[i]; best2 $=$ pointsByX[i+1];
return:
\}
π sort by y-coordinate (but not yet sorted)
Point2D[] pointsByY $=$ new Point2D[N];
for (int $\mathrm{i}=0 ; \mathrm{i}<\mathrm{N} ; \mathrm{i}++$)
pointsByY[i] = pointsByX[i];
// auxiliary array
Point2D[] aux = new Point2D[N]:
closest(pointsByX, pointsByY, aux, $\mathrm{O}, \mathrm{N}-1$);
\}

// find closest pair of points in pointsByX[lo..hi]

I/ precondition: pointsByX[lo..hi] and pointsByY[lo..hi] are the same sequence of points, sorted by x.y-coord private double closest(Point2D[] pointsByX, Point2D【 pointsByY, Point2D[] aux, int lo, int hi)
if (hi <= lo) return Double.POSITIVE_INFINITY
int mid $=10+(\mathrm{hi}-10) / 2$;
Point2D median $=$ pointsBy $X[$ mid $]$:
N compute closest pair with both endpoints in left subarray or both in right subarray
double delta1 = closest(pointsByX, pointsByY, aux, lo, mid);
double delta2 $=$ closest(pointsByX, pointsByY, aux, mid +1 , hi);
double delta $=$ Math.min(delta1, delta2);
I/ merge back so that pointsByY[lo..hi] are sorted by y-coordinate merge(pointsByY, aux, lo, mid, hi);

```
If aux[0..M-1] = sequence of points closer than delta, sorted by y-coordinate
    int M = 0;
for (inti=lo;i<= hi; i++) {
    if (Math.abs(pointsByY[i].x() - median.x()) < delta
        aux[M++] = pointsByY[i]
}
```

```
N compare each point to its neighbors with y-coordinate closer than delta
for (int i=0;i<M; i++) {
    I/ a geometric packing argument shows that this loop iterates at most 7 times
    for (int j = i+1; (j < M) && (aux[j].y() - aux[i].y() < delta); j++) {
        double distance = aux[i].distanceTo(aux[j]);
        if (distance < delta) {
            delta = distance;
            if (distance < bestDistance) {
            bestDistance = delta;
            best1 = aux[i];
            best2 = aux[j];
            // StdOut.println("better distance = " + delta + " from " + best1 + " to " + best2)
        }
    }
I
return delta
```


$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \star\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right]=
$$

$$
\begin{aligned}
{\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \star\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right] } & =\left[\begin{array}{cc}
5+14 & 6+16 \\
15+28 & 18+32
\end{array}\right] \\
& =\left[\begin{array}{ll}
19 & 22 \\
43 & 50
\end{array}\right]
\end{aligned}
$$

$$
\left[\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\
\vdots & & & \\
a_{n, 1} & a_{n, 2} & \cdots & a_{n, n}
\end{array}\right]\left[\begin{array}{cccc}
b_{1,1} & b_{1,2} & \cdots & b_{1, n} \\
b_{2,1} & b_{2,2} & \cdots & b_{2, n} \\
\vdots & & & \\
b_{n, 1} & b_{n, 2} & \cdots & b_{n, n}
\end{array}\right]=\left[\begin{array}{cccc}
c_{1,1} & c_{1,2} & \cdots & c_{1, n} \\
c_{2,1} & c_{2,2} & \cdots & c_{2, n} \\
\vdots & & & \\
c_{n, 1} & c_{n, 2} & \cdots & c_{n, n}
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\
\vdots & & & \\
a_{n, 1} & a_{n, 2} & \cdots & a_{n, n}
\end{array}\right]\left[\begin{array}{cccc}
b_{1,1} & b_{1,2} & \cdots & b_{1, n} \\
b_{2,1} & b_{2,2} & \cdots & b_{2, n} \\
\vdots & & & \\
b_{n, 1} & b_{n, 2} & \cdots & b_{n, n}
\end{array}\right]=\left[\begin{array}{cccc}
c_{1,1} & c_{1,2} & \cdots & c_{1, n} \\
c_{2,1} & c_{2,2} & \cdots & c_{2, n} \\
\vdots & & & \\
c_{n, 1} & c_{n, 2} & \cdots & c_{n, n}
\end{array}\right]} \\
& n \\
& c_{i, j}= \\
& \sum a_{i, k} \cdot b_{k, j} \\
& k=1
\end{aligned}
$$

$$
\left[\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\
\vdots & & & \\
a_{n, 1} & a_{n, 2} & \cdots & a_{n, n}
\end{array}\right]\left[\begin{array}{cccc}
b_{1,1} & b_{1,2} & \cdots & b_{1, n} \\
b_{2,1} & b_{2,2} & \cdots & b_{2, n} \\
\vdots & & & \\
b_{n, 1} & b_{n, 2} & \cdots & b_{n, n}
\end{array}\right]=\left[\begin{array}{cccc}
c_{1,1} & c_{1,2} & \cdots & c_{1, n} \\
c_{2,1} & c_{2,2} & \cdots & c_{2, n} \\
\vdots & & & \\
c_{n, 1} & c_{n, 2} & \cdots & c_{n, n}
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{cc}
E & F \\
G & H
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] \times\left[\begin{array}{cc}
E & F \\
G & H
\end{array}\right]} \\
& \quad=\left[\begin{array}{ll}
A E+B G & A F+B H \\
C E+D G & C F+D H
\end{array}\right]
\end{aligned}
$$

$$
\begin{gathered}
{\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{cc}
E & F \\
G & H
\end{array}\right]} \\
=\left[\begin{array}{cc}
A E+B G & A F+B H \\
C E+D G & C F+D H
\end{array}\right] \\
T(n)=8 T(n / 2)+\Theta\left(n^{2}\right) \\
\Theta\left(n^{3}\right)
\end{gathered}
$$

$=\left[\begin{array}{cc}A E+B G & A F+B H \\ C E+D G & C F+D H\end{array}\right]$

[Strassen]

$$
\begin{aligned}
P_{1} & =A(F-H) \\
P_{2} & =(A+B) H \\
P_{3} & =(C+D) E \\
P_{4} & =D(G-E) \\
P_{5} & =(A+D)(E+H) \\
P_{6} & =(B-D)(G+H) \\
P_{7} & =(A-C)(E+F)
\end{aligned}
$$

[strassen]

$$
\begin{aligned}
& P_{1}=A(F-H) \\
& P_{2}=(A+B) H \\
& P_{3}=(C+D) E \\
& P_{4}=D(G-E) \\
& P_{5}=(A+D)(E+H) \\
& P_{6}=(B-D)(G+H) \\
& P_{7}=(A-C)(E+F)
\end{aligned}
$$

[strassen]

$$
\begin{aligned}
& P_{1}=A(F-H) \\
& P_{2}=(A+B) H \\
& P_{3}=(C+D) E \\
& P_{4}=D(G-E) \\
& P_{5}=(A+D)(E+H) \\
& P_{6}=(B-D)(G+H) \\
& P_{7}=(A-C)(E+F)
\end{aligned}
$$

[strassen]

$$
\begin{aligned}
& P_{1}=A(F-H) \\
& P_{2}=(A+B) H \quad M(n)=7 M(n / 2)+18 n^{2} \\
& P_{3}=(C+D) E \\
& P_{4}=D(G-E)=\Theta\left(n^{\log _{2} 7}\right) \\
& P_{5}=(A+D)(E+H) \\
& P_{6}=(B-D)(G+H) \\
& P_{7}=(A-C)(E+F)
\end{aligned}
$$

taking this idea further

3×3 matricies [Laderman'75]

1978 victor pan method

70x70 matrix using 143640
mults
what is the recurrence:

NEMAAN
problem: given a list of n elements, find the element of rank $\mathrm{n} / 2$. (half are larger, half are smaller)
problem: given a list of n elements, find the element of rank (612). (half are larger, half are smaller) can generalize to i

first solution: sort and pluck.

problem: given a list of n elements, find the element of rank i.
key insight:
we do not have to "fully" sort. semi sort can suffice.

00000000000000000000
pick first element
partition list about this one see where we stand

review: how to partition a list

review: how to partition a list

GOAL: start with THIS LIST and END with THAT LIST

review: how to partition a list

partitioning a list about an element takes linear time.

select $(i, A[1, \ldots, n])$
select $(i, A[1, \ldots, n])$
handle base case.
partition list about first element
if pivot p is position i , return pivot
else if pivot p is in position $>\mathrm{i}$ select $(i, A[1, \ldots, p-1])$
else select $((i-p-1), A[p+1, \ldots, n])$
handle base case.
partition list about first element if pivot is position i, return pivot else if pivot is in position $>\mathbf{i}$ select $(i, A[1, \ldots, p-1])$ else select $((i-p-1), A[p+1, \ldots, n])$

Assume our partition always splits list into two eql parts
handle base case.
partition list about first element if pivot is position i , return pivot
else if pivot is in position $>\mathrm{i}$ select $(i, A[1, \ldots, p-1])$ else select $((i-p-1), A[p+1, \ldots, n])$

$$
T(n)=T(n / 2)+O(n)
$$

problem: what if we always pick bad partitions?
problem: what if we always pick bad partitions?

problem: what if we always pick bad partitions?

problem: what if we always pick bad partitions?
select $(i, A[1, \ldots, n])$
handle base case.
partition list about first element if pivot is position i, return pivot
else if pivot is in position $>\mathbf{i}$ select $(i, A[1, \ldots, p-1])$ else select $((i-p-1), A[p+1, \ldots, n])$
select $(i, A[1, \ldots, n])$
handle base case.
partition list about first element if pivot is position i , return pivot
else if pivot is in position $>\boldsymbol{i}$ select $(i, A[1, \ldots, p-1])$ else select $((i-p-1), A[p+1, \ldots, n])$

$$
\begin{aligned}
& T(n)=T(n-1)+O(n) \\
& \Theta\left(n^{2}\right)
\end{aligned}
$$

a good partition element
partition $(A[1, \ldots, n])$
a good partition element
partition $(A[1, \ldots, n])$
produce an element where 30\% smaller, 30\% larger

solution: bootstrap

partition $(A[1, \ldots, n])$

partition $(A[1, \ldots, n])$

partition $(A[1, \ldots, n])$

use the median of this
smaller list as the partition element
partition $(A[1, \ldots, n])$

1.
2.
3.
4.
5.
partition $(A[1, \ldots, n])$
divide list into groups of 5 elements
find median of each small list
gather all medians
call select(...) on this sublist to find median
return the result
divide list into groups of 5 elements find median of each small list
gather all medians
call select(...) on this sublist to find median return the result

$$
P(n)=S(\lceil n / 5\rceil)+O(n)
$$

a nice property of our partition

a nice property of our partition

a nice property of our partition

SWITCH TO A BIGGER EXAMPLE

a nice property of our partition
a nice property of our partition
 at most $\frac{7 n}{10}+6$ numbers
larger than /smaller
a nice property of our partition

select $(i, A[1, \ldots, n])$
select $(i, A[1, \ldots, n])$
handle base case for small list
else pivot = FindPartitionValue(A,n)
partition list about pivot
if pivot is position i , return pivot
else if pivot is in position $>\mathrm{i}$ select $(i, A[1, \ldots, p-1])$
else select $((i-p-1), A[p+1, \ldots, n])$

FindPartition $(A[1, \ldots, n])$
divide list into groups of 5 elements find median of each small list gather all medians
call select(...) on this sublist to find median return the result

$$
P(n)=S(\lceil n / 5\rceil)+O(n)
$$

select $(i, A[1, \ldots, n])$
handle base case for small list
else pivot = FindPartitionValue(A,n) partition list about pivot if pivot is position i , return pivot else if pivot is in position $>\mathrm{i}$ select $(i, A[1, \ldots, p-1])$ else select $((i-p-1), A[p+1, \ldots, n])$

$$
S(n)=S(\lceil n / 5\rceil)+O(n)+S(7 n / 10+6)
$$

select $(i, A[1, \ldots, n])$
handle base case for small list else pivot = FindPartitionValue(A,n) partition list about pivot if pivot is position i , return pivot else if pivot is in position $>\mathrm{i}$ select $(i, A[1, \ldots, p-1])$ else select $((i-p-1), A[p+1, \ldots, n])$

$$
\begin{gathered}
S(n)=S([n / 5\rceil)+O(n)+S(7 n / 10+6) \\
\Theta(n)
\end{gathered}
$$

