$$
255800
$$

divide

\& conquer

Examples we will discuss

- Mage sort
- Arbitrage
- Closest lar el points
- Matrix multiplication /Kandsiba
- Medan - algaithen
- FF_{T}


```
merge-sort \((A, p, r)\)
    if \(p<r\)
        \(q \leftarrow\lfloor(p+r) / 2\rfloor\)
    merge-sort \((A, p, q)\)
    merge-sort \((A, q+1, r)\)
    merge \((A, p, q, r)\)
```

```
merge-sort \((A, p, r)\)
    if \(p<r\)
        \(q \leftarrow\lfloor(p+r) / 2\rfloor\)
merge-sort \((A, p, q)\)
merge-sort \((A, q+1, r)\)
merge \((A, p, q, r)\)
```

```
MERGE (A[1..n],m):
    for }k\leftarrow1\mathrm{ to }
        if j>n
        B[k]}\leftarrowA[i];i\leftarrowi+
    else if i>m
            B[k]\leftarrowA[j]; j}\leftarrowj+
    else if }A[i]<A[j
            B[k]\leftarrowA[i];i}i\leftarrowi+
        else
            B[k]}\leftarrowA[j]; j\leftarrowj+
```

for $k \leftarrow 1$ to n
$A[k] \leftarrow B[k]$

5	2	4	7	1	3	2	6


```
merge-sort \((A, p, r)\)
    if \(p<r\)
        \(q \leftarrow\lfloor(p+r) / 2\rfloor\)
        merge-sort \((A, p, q)\)
        merge-sort \((A, q+1, r)\)
    merge \((A, p, q, r)\)
```

```
MERGE(A[1..n],m):
    for }k\leftarrow1\mathrm{ to }
        if j>n
        B[k]}\leftarrowA[i];i\leftarrowi+
    else if i>m
        B[k]\leftarrowA[j]; j\leftarrowj+1
    else if A[i]<A[j]
        B[k]}\leftarrowA[i];i\leftarrowi+
        else
            B[k]}\leftarrowA[j];j\leftarrowj+
```

 for \(k \leftarrow 1\) to \(n\)
 \(A[k] \leftarrow B[k]\)
 | 5 | 2 | 4 | 7 | 1 | 3 | 2 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


```
merge-sort \((A, p, r)\)
    if \(p<r\)
        \(q \leftarrow\lfloor(p+r) / 2\rfloor\)
        merge-sort \((A, p, q)\)
        merge-sort \((A, q+1, r)\)
        merge \((A, p, q, r)\)
```

$\frac{\operatorname{Merge}(A[1 . . n], m)}{i \leftarrow 1 ;} ;$
$i \leftarrow 1 ; j \leftarrow m$
for $k \leftarrow 1$ to n
if $j>n$
$B[k] \leftarrow A[i] ; i \leftarrow i+1$
else if $i>m$
$B[k] \leftarrow A[j] ; j \leftarrow j+1$
else if $A[i]<A[j]$
else $B[k] \leftarrow A[i] ; i \leftarrow i+1$
$B[k] \leftarrow A[j] ; j \leftarrow j+1$
for $k \leftarrow 1$ to n
$A[k] \leftarrow B[k]$

5	2	4	7	1	3	2	6

$$
\begin{aligned}
& \text { merge-sort }(A, p, r) \\
& \text { if } p<r \\
& q \leftarrow\lfloor(p+r) / 2\rfloor \\
& \text { merge-sort }(A, p, q) \\
& \text { merge-sort }(A, q+1, r) \\
& \text { merge }(A, p, q, r)
\end{aligned}
$$

5	2	4	7	1	3	2	6

$$
\begin{aligned}
& \text { merge-sort }(A, p, r) \\
& \text { if } p<r \\
& \quad q \leftarrow\lfloor(p+r) / 2\rfloor \\
& \text {-merge-sort }(A, p, q) \\
& \text { - merge-sort }(A, q+1, r) \\
& \text { - merge }(A, p, q, r)
\end{aligned}
$$

5	2	4	7	1	3	2	6


```
merge-sort (A,p,r)
    if p<r
        q\leftarrow\lfloor(p+r)/2\rfloor
merge-sort (A,p,q)
merge-sort (A,q+1,r)
merge ( }A,p,q,r
```

1	2	2	3	4	5	6	7

$$
\begin{aligned}
& \text { merge-sort }(A, p, r) \\
& \text { if } p<r \\
& q \leftarrow\lfloor(p+r) / 2\rfloor \\
& \text { merge-sort }(A, p, q) \\
& \text { merge-sort }(A, q+1, r) \\
& \text { merge }(A, p, q, r) \\
& T(n)=2 T(n / 2)+\Theta(n) \\
& =\Theta(n \log n)
\end{aligned}
$$

arbitrage

input: array of n numbers

goal: find the indicies i, j such that $i \leqslant j$ which maximizes A_{j}-A.

This is the best trade to make on this day.

Main idea

Find the best arbitrage opportunity in LEFT and in RIGHT.

Then look for opportunities when you buy on the left and sell on the right.
first attempt

arbit(A[1...n])
first attempt

$$
\begin{aligned}
& \text { arbit(A[1...n]) } \\
& \text { base case if }|A|<=2 \\
& \underline{l g}=\operatorname{arbit}(l \underline{e f t}(A))-T(n / 2) \\
& \underline{r} g=\operatorname{arbit}(r i g h t(A)) \\
& \left.\begin{array}{l}
\operatorname{minl}=\min (\underline{\operatorname{left}(A))} \\
\underline{\operatorname{maxr}}=\underline{\max (\operatorname{righ}(A))}
\end{array}\right] \quad \theta(n)
\end{aligned}
$$

$$
\begin{aligned}
& T(n)=2 T\left(\frac{n}{2}\right)+\theta(n)=\theta(n \log n)
\end{aligned}
$$

first attempt: time $\Theta(n \log n)$

arbit(A[1...n])
base case if $|A|<=2$
lg = arbit(left(A))
rg = arbit(right(A))
minl $=\min (l e f t(A))$
$\operatorname{maxr}=\max (r i g h t(A))$
return $\max \{m a x r-m i n l, l g, r g\}$
$\mathrm{T}(\mathrm{n})=2 T(n / 2)+\Theta(n)$

better approach

These are the steps that are taking $\Theta(n)$ time

better approach

Can we find a solution that has $T(n)=2 T(n / 2)+O(1)$?

These are the steps that are taking $\Theta(n)$ time

better approach

Can we find a solution that has $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{O}(1)$?

$$
\left.\begin{array}{ll}
\left\{\begin{array}{l}
\operatorname{minl}=\min (\operatorname{left}(A)) \\
\operatorname{maxr}
\end{array}=\max (\operatorname{r\overline {ight}(A)})\right.
\end{array}\right\} \quad \begin{aligned}
& \text { These are the steps that are } \\
& \text { taking } \underline{(\text { (n)time }}
\end{aligned}
$$

first attempt

second attempt
arbit2 (A [1...n]) // Returns \{best trade,min,max\} base case if $|A|<=2$
$l_{g}, l_{\text {min }}, l_{\text {max }} \nleftarrow \operatorname{arbit} 2(\operatorname{left}(A)) \quad T(n \mid 2)$
ry, min, max it $\operatorname{arbit} 2(\operatorname{right}(A))$: $T\left(n_{12}\right)$
$\operatorname{mid}=r_{\text {max }}-l \min$
return $\max \{l g, r g, \operatorname{mid}\}$,
$\min \{$ lain, rain $\}$,
$\max \left\{l_{\max }, r_{\max }\right\}$

second attempt

base case if $|A|<=2$, ...
(lg,minl,maxl) = arbit2(left(A))
(rg,minr,maxr) = arbit2(right(A))
return $\max \{m a x r-m i n l, l g, r g\}$,
min\{minl, minr\}, max\{maxl, maxr\}

$$
T(n)=2 T\left(\frac{n}{2}\right)+\theta(1) \Rightarrow T(n)=\theta(n)
$$

by Masters case 1

second attempt

base case if $|A|<=2$, ...
(lg,minl,maxl) = arbit2(left(A))
(rg,minr,maxr) = arbit2(right(A))
return $\max \{m a x r-m i n l, l g, r g\}$,
min\{minl, minr\}, max\{maxl, maxr\}

New runtime is $T(n)=2 T(n / 2)+\Theta(1)=\Theta(n)$

closest pair

Simple brute force approach takes $\Theta\left(n^{2}\right)$

(14)

(3)
solve the large problem by
solving smaller problems and combining solutions
(14)
(1)
(ㄹ) (8)
(2)
(2)
(4)
(13)
(3)
(10)
(11)
(5)
(12)
(6)

Divide \& Conquer

Divide \& Conquer

Find closest pair on the left half.

Find closest pair on the right half.

Divide \& Conquer

Find closest pair on the left half.

Find closest pair on the right half.

Divide \& Conquer

Divide \& Conquer

Now look for pairs
between the left and right that are closer.

What if the input points are like this?

Then all of the points are within δ of the middle.
If we need to check all of the points, we are back to $O\left(n^{2}\right)$

But we have extra information! The only candidates for closest pair are within δ of each other. How can we use this info?

$$
\left(\frac{\delta}{2}\right)^{2}+\left(\frac{\delta}{2}\right)^{2}=\sqrt{\frac{2 \delta^{2}}{4}}=\frac{\sqrt{2} \cdot \delta}{2}<\delta
$$

A grid this size has a diagonal that is smaller than delta. That means each grid box can only have 1 point in it.
If there was another, then the closest parer on the left or right would have been this pair.

Claim: If there is another point closer than δ, then it must be among the next 15 points sorted by y-coordinate.

FACT: At most 1 point in each cubby

FACT: <=1
point per cubby

Check the next 15 points

Closest(P)

Base Case: If <8 points, brute force.

1. Let q be the "middle-element" of points
2. Divide P into Left, Right according to q
\rightarrow 3. delta, r,j $=$ MIN(Closest(Left),\quad Closest(Right))
3. Mohawk $=\{$ Scan P, add pts that are <delta from q. x$\}$
$\theta(n)$
(5. For each point \underline{p} in Mohawk (in y-order): from b.ttom to top. Compute distance between p and its next 15 neighbors. Update delta,r,j if any pair $(\underset{\sim}{\mu}, \bar{y})$ is $<$ delta
4. Return (delta,r,j)

$$
T(n)=2 T\left(\frac{n}{2}\right)+\theta(n)
$$

Base Case: If <8 points, brute force.

1. Let q be the "middle-element" of points
2. Divide P into Left, Right according to q
3. delta,r,j = MIN(Closest(Left) , Closest(Right))
4. Mohawk $=\{$ Scan P, add pts that are <delta from q. x \}
5. For each point p in Mohawk (in y-order):

Compute distance between p and its next 15 neighbors Update delta,r,j if any pair (x, y) is < delta
6. Return (delta,r,j)

Details: How to do step 1?

(2)
(4)
(11)
(12)
\rightarrow Points sorted in X: 1315149107681123412 \rightarrow Points sorted in Y: 6512111031349872114

sorted in X:1315149107981123412 sorted in Y:6512111031349872114 (14)
(13)
(2)
(3)
(11)

ClosestPair(P)
Compute Sorted-in-X list SX $\quad \theta(n \log n)$
Compute Sorted-in-Y list SY $\quad \theta(n \log n)$
$\underline{C l o s e s t(P, S X, S Y)} \quad \theta\left(n\left(\log _{n}\right)\right.$
$\theta(n \log n)$

Closest(P,SX,SY)

Let q be the middle-element of SX
Divide P into Left, Right according to q
delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY))

Mohawk $=\{$ Scan SY, add pts that are delta from q.x $\}$
For each point p in Mohawk (in order): by Sy from b.ttom to top.
Compute distance between p and its next 15 neighbors Update delta,r,j if any pair (x, y) is < delta

Return (delta,r,j)

Closest(P,SX,SY)

Let q be the middle-element of SX
Divide P into Left, Right according to q
delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY))

Mohawk $=\{$ Scan SY, add pts that are delta from q. x \}
For each point p in Mohawk (in order):
Compute distance between p and its next 15 neighbors Update delta,r,j if any pair (x, y) is < delta

Return (delta,r,j)
(13)
(1) (7) ,

3
(2)
(3)
(11)

Closest(P,SX,SY)

Let q be the middle-element of SX
Divide P into Left, Right according to q. Scan to get LY, RY.
delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY))

Mohawk $=\{$ Scan SY, add pts that are delta from q.x $\}$
For each point p in Mohawk (in order):
Compute distance between p and its next 15 neighbors Update delta,r,j if any pair (x, y) is < delta

Return (delta,r,j)

Closest(P,SX,SY)

Let q be the middle-element of SX
Divide P into Left, Right according to q. Scan to get LY, RY.
delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY))

Mohawk $=\{$ Scan SY, add pts that are delta from q.x $\}$
For each point p in Mohawk (in order):
Compute distance between p and its next 15 neighbors Update delta,r,j if any pair (x, y) is < delta

Return (delta,r,j)
sorted in X:13 15149107981123412 sorted in Y: 6512111031349872114
(14)
(1)
(9)
(13)
(2)

(3)

Closest(P,SX,SY)

Let q be the middle-element of SX
Divide P into Left, Right according to q. Scan to get LY, RY.
delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY))

Mohawk $=\{$ Scan SY, add pts that are delta from q.x $\}$
For each point p in Mohawk (in order):
Compute distance between p and its next 15 neighbors Update delta,r,j if any pair (x, y) is < delta

Return (delta,r,j)

Closest(P,SX,SY)

Let q be the middle-element of SX
Divide P into Left, Right according to q. Scan to get LY, RY.
delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY))

Mohawk $=\{$ Scan SY, add pts that are delta from q.x $\}$
For each point p in Mohawk (in order):
Compute distance between p and its next 15 neighbors Update delta,r,j if any pair (x, y) is < delta

Return (delta,r,j)

Running time for Closest pair algorithm
$T(n)=$

Running time for Closest pair algorithm

$$
T(n)=
$$

$$
T(n)=2 T(n / 2)+\Theta(n)=\Theta(n \log n)
$$

public ClosestPair(Point20[] points) \{

$$
\begin{aligned}
& \text { int } N=\text { points.length; } \\
& \text { if }(N<=1) \text { return; }
\end{aligned}
$$

I/ sort by x -coordinate (breaking ties by y-coordinate) Point2D[] pointsByX = new Point2D[N];
for (int $\mathrm{i}=\mathrm{O} ; \mathrm{i}<\mathrm{N} ; \mathrm{i}++$)
pointsBy $[[]]=$ points[i];
Arrays.sort(pointsByX, Point2D.X_ORDER);
// check for coincident points
for (int $\mathrm{i}=0 ; \mathrm{i}<\mathrm{N}-1 ; \mathrm{i}++$) $\{$
if (pointsByX[i].equals(pointsByX[i+1])) \{ bestDistance $=0.0$;
best1 = pointsByX[i];
best2 $=$ pointsByX[i+1];
return;
\}
\}
I/ sort by y-coordinate (but not yet sorted)
Point2D[] pointsByY = new Point2D[N];
for (int $\mathrm{i}=\mathrm{O}: \mathrm{i}<\mathrm{N} ; \mathrm{i}++$)
pointsByY[i] = pointsByX[i];
I/ auxiliary array
Point20[] aux = new Point2D[N];
closest(pointsByX, pointsByY, aux, $\mathbf{0}, \mathrm{N}-1$);
\}
// find closest pair of points in pointsByX[lo..hi]
// precondition: pointsByX[lo. hi] and pointsByY[lo. hi] are the same sequence of points, sorted by x, y-coord private double closest(Point2D] pointsByX, Point2D[pointsByY. Point2D] aux, int lo, int hi) $\{$ if (hi >= lo) return Double.POSITIVE_INFINITY;
int mid $=10+(\mathrm{hi}-\mathrm{l} 0) / 2$;
Point2D median = pointsByX[mid];
// compute closest pair with both endpoints in left subarray or both in right subarray
double delta1 = closest(pointsByX, pointsByY, aux, lo, mid);
double delta2 $=$ closest(pointsByX, pointsByY, aux, mid +1 , hi):
double delta $=$ Math.min(delta1, delta2);
// merge back so that pointsByY[lo. hi] are sorted by y-coordinate merge(pointsByY, aux, (lo, mid, hi);
/ $/$ aux[0..M-1] $=$ sequence of points closer than delta, sorted by y-coordinate
int $M=0$;
for (int $\mathrm{i}=\mathrm{l}$; $\mathrm{i}<=\mathrm{hi} ; \mathrm{i}++$) $\{$
if (Math.abs(pointsByY[i].x() - median.x()) < delta)
aux[$M++]=$ pointsBy $[i] ;$
\}
// compare each point to its neighbors with y-coordinate closer than delta
for (int $i=0 ; i<M ; i++)\{$
I/ a geometric packing argument shows that this loop iterates at most 7 times
for (int $\mathrm{j}=\mathrm{i}+1$: $(\mathrm{j}<\mathrm{M}) \& \&($ aux $[\mathrm{j}] . \mathrm{y})$ - aux[i]. y($)<$ delta) $\mathrm{j}++$) $\{$
double distance $=$ aux[i].distanceTo(aux[j]):
if (distance $<$ delta) $\{$
delta $=$ distance;
if (distance < bestDistance) \{
bestDistance $=$ delta;
best1 $=$ aux[i];
best2 $=$ aux[j];
|/ StdOut.printhn("better distance = " + delta + " from " + best1 + " to " + best2);
\}
\}
\}
\}
return delta;

$$
\begin{aligned}
{\left[\begin{array}{ll}
1 & 2 \\
34
\end{array}\right] \star\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right] } & =\left[\begin{array}{cc}
\frac{5 \cdot 1+2 \cdot 7}{} & 6 \cdot 1+2 \cdot 8 \\
3 \cdot 5+4 \cdot 7 & 6 \cdot 3+4 \cdot 8
\end{array}\right] \\
& =\left[\begin{array}{cc}
19 & 20 \\
43 & 50
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
{\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \star\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right] } & =\left[\begin{array}{cc}
5+14 & 6+16 \\
15+28 & 18+32
\end{array}\right] \\
& =\left[\begin{array}{ll}
19 & 22 \\
43 & 50
\end{array}\right]
\end{aligned}
$$

$$
\backsim\left[\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\
\vdots & & & \\
a_{n, 1} & a_{n, 2} & \cdots & a_{n, n}
\end{array}\right]\left[\begin{array}{cccc}
b_{1,1} & b_{1,2} & \cdots & b_{1, n} \\
b_{2,1} & b_{2,2} & \cdots & b_{2, n} \\
\vdots & & & \\
b_{n, 1} & b_{n, 2} & \cdots & b_{n, n}
\end{array}\right]=\left[\begin{array}{cccc}
c_{1,1} & c_{1,2} & \cdots & c_{1, n} \\
c_{2,1} & c_{2,2} & \cdots & c_{2, n} \\
\vdots & & & \\
c_{n, 1} & c_{n, 2} & \cdots & c_{n, n}
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\
\hline \vdots & & - & \\
a_{n, 1} & a_{n, 2} & \cdots & a_{n, n}
\end{array}\right]\left[\begin{array}{cc|cc}
b_{1,1} & b_{1,2} & \cdots & b_{1, n} \\
b_{2,1} & b_{2,2} & \cdots & b_{2, n} \\
\vdots & & & \\
b_{n, 1} & b_{n, 2} & \cdots & b_{n, n}
\end{array}\right]=\left[\begin{array}{cccc}
c_{1,1} & c_{1,2} & \cdots & c_{1, n} \\
c_{2,1} & \left(c_{2,2}\right) & \cdots & c_{2, n} \\
\vdots & \uparrow & & \\
c_{n, 1} & c_{n, 2} & \cdots & c_{n, n}
\end{array}\right]} \\
& \boldsymbol{n} \quad \therefore \theta\left(n^{2}\right) \text { entries. } \\
& c_{i, j}=\sum_{k=1} a_{i, k} \cdot b_{k, j} \quad \theta_{n}
\end{aligned}
$$

standard matmult take $n^{2}-n=\theta\left(n^{3}\right)$ operations.

$$
\begin{aligned}
& \quad\left[\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\
\vdots & & & \\
a_{n, 1} & a_{n, 2} & \cdots & a_{n, n}
\end{array}\right]\left[\begin{array}{cccc}
b_{1,1} & b_{1,2} & \cdots & b_{1, n} \\
b_{2,1} & b_{2,2} & \cdots & b_{2, n} \\
\vdots & & & \\
b_{n, 1} & b_{n, 2} & \cdots & b_{n, n}
\end{array}\right]=\left[\begin{array}{cccc}
c_{1,1} & c_{1,2} & \cdots & c_{1, n} \\
c_{2,1} & c_{2,2} & \cdots & c_{2, n} \\
\vdots & & & \\
c_{n, 1} & c_{n, 2} & \cdots & c_{n, n}
\end{array}\right] \\
& \text { U/2 }
\end{aligned}
$$

how can we dy this operation more efficient $l y$?

$$
\begin{aligned}
& {\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{ll}
E & F \\
G & H
\end{array}\right]=} \\
& {\left[\begin{array}{ll}
A \cdot E+B G & A F+B H \\
C E+D G & C F+D H
\end{array}\right] }
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] *\left[\begin{array}{ll}
E & F \\
G & H
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& T(n)=\stackrel{\theta}{O} T\left(\frac{n}{2}\right)+\theta\left(n^{2}\right)
\end{aligned}
$$

By manters $\theta\left(n^{\log _{2} 8}\right)=\theta\left(n^{3}\right)$ ase 1

$$
\begin{gathered}
{\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{cc}
E & F \\
G & H
\end{array}\right]} \\
=\left[\begin{array}{cc}
A E+B G & A F+B H \\
C E+D G & C F+D H
\end{array}\right] \\
T(n)=8 T(n / 2)+\Theta\left(n^{2}\right) \\
\Theta\left(n^{3}\right)
\end{gathered}
$$

$=\left[\begin{array}{ll}{ }^{*} A E+B G & { }^{5} A F+B H \\ C E+D G \\ { }^{*} A F F+D H\end{array}\right]$

[Strassen]

$$
\begin{array}{lr}
\frac{\text { Strassen] }}{P_{1}=A(F-H)} & S=P_{1}+P_{2} \\
P_{2}=(A+B) H & A(F-H)+(A+B) \cdot H=A F-A H+A H A+B H \\
P_{3}=\underline{(C+D) E} & T=P_{3}+P_{4}=C E+D E+D G-D E \\
P_{4}=\underline{D(G-E)} & R=P_{5}+P_{4}-P_{2}+P_{6} \\
P_{5}=\overline{(A+D)(E+H)} & =A E+A H+D E+D_{H E}=A E+B G \\
P_{6}=(B-D)(G+H) & \\
& +D G-D E \\
P_{7}=(A-C)(E+F) & \\
& -A H-B H \\
& +B G+B H-D G-D_{H}
\end{array}
$$

$$
\begin{aligned}
& R=P_{5}+P_{4} \circ P_{2}+P_{6} \\
&=\left[\begin{array}{ll}
A E+B G & A F+B H S \\
C E+D G & C F+D H
\end{array}\right]=P_{1}+P_{2} \\
& {\left[\begin{array}{l}
{[\text { strassen] }} \\
P_{1}
\end{array}=A(F-H)\right.} \\
& P_{2}\left.=(A+B) H \quad M(n)=7 M\left(\frac{n}{2}\right)+\theta C_{n}^{2}\right) \\
& P_{3}=(C+D) E \\
& P_{4}=D(G-E) \\
& P_{5}=(A+D)(E+H) \\
& P_{6}=(B \rightarrow D)(G+H) \\
& P_{7}=(A-C)(E+F)
\end{aligned}
$$

[strassen]

$$
\begin{aligned}
& P_{1}=A(F-H) \\
& P_{2}=(A+B) H \quad M(n)=7 M(n / 2)+18 n^{2} \\
& P_{3}=(C+D) E \\
& P_{4}=D(G-E) \\
& P_{5}=(A+D)(E+H) \\
& P_{6}=(B-D)(G+H) \quad=\Theta\left(n^{\log _{2} 7}\right) \\
& P_{7}=(A-C)(E+F)
\end{aligned} \quad=\sim 2.807
$$

taking this idea further
3×3 matricies [Laderman'75] in 23 multe

$$
\left[\begin{array}{lll}
A & B & C \\
D & E & f \\
n & I & J
\end{array}\right]\left[\begin{array}{lll}
K & L & n \\
N & o l \\
Q & R & S
\end{array}\right] \quad \begin{aligned}
L(n) & =23 L\left(\frac{n}{3}\right)+\theta\left(n^{2}\right) \\
& =\theta\left(\log _{3} 23\right)
\end{aligned}
$$

Strassen

$$
n^{\log _{2} 7} \sim n^{2.807}
$$

$$
\begin{array}{r}
n^{\log _{3} 23} \sim n^{2.85} \\
(\text { worse!!) })
\end{array}
$$

1978 victor pan method
70×70 matrix using 143640 mulls
what is the recurrence:

$$
\begin{aligned}
\forall(n)=\left(43640 V\left(\frac{n}{70}\right)\right. & +\theta\left(n^{2}\right) \\
n^{\log _{70} 143640} \sim & n^{2.795} \\
& (\text { Impi vement !! })
\end{aligned}
$$

NEMAAN

problem: given a list of n elements, find the element of rank $\mathrm{n} / 2$. (half are larger, half are smaller)
problem: given a list of n elements, find the element of rank (612). (half are larger, half are smaller) can generalize to i

first solution: sort and pluck.

problem: given a list of n elements, find the element of rank i.
key insight:
we do not have to "fully" sort. semi sort can suffice.
pick first element
partition list about this one see where we stand

review: how to partition a list

GOAL: start with THIS LIST and END with THAT LIST

review: how to partition a list

Since the orange pto is larger than the pivot swap elements with the blue 4 move the blue pointer

$\theta(a)$ time, partitioned the array

partitioning a list about an element takes linear time.

select $(i, A[1, \ldots, n])$

select (i.) $A[1, \ldots, n]$)

handle base case of 1 element. partition list about first element if pivot p is position i, return pivot else if pivot p is in position $>\mathrm{i}$ select $(i, A[1, \ldots, p-1])$ else select $((i-p-1), A[p+1, \ldots, n])$
handle base case.
partition list about first element
if pivot is position i , return pivot
else if pivot is in position >i select $(i, A[1, \ldots, p-1])$
else select $((i-p-1), A[p+1, \ldots, n])$
In this lually case.

$$
S(n)=S\left(\frac{n}{2}\right)+\theta(n)=\theta(n)
$$

Assume our partition always splits list into two eq parts

handle base case.

partition list about first element

$T(n)=T(n / 2)+O(n)$

problem: what if we always pick bad partitions?
problem: what if we always pick bad partitions?

problem: what if we always pick bad partitions?

problem: what if we always pick bad partitions?
select $(i, A[1, \ldots, n])$
handle base case.
partition list about first element if pivot is position i, return pivot
else if pivot is in position $>\mathbf{i}$ select $(i, A[1, \ldots, p-1])$ else select $((i-p-1), A[p+1, \ldots, n])$
select $(i, A[1, \ldots, n])$
handle base case.
partition list about first element if pivot is position i , return pivot
else if pivot is in position $>\boldsymbol{i}$ select $(i, A[1, \ldots, p-1])$ else select $((i-p-1), A[p+1, \ldots, n])$

$$
\begin{aligned}
& T(n)=T(n-1)+O(n) \\
& \Theta\left(n^{2}\right)
\end{aligned}
$$

a good partition element
partition $(A[1, \ldots, n])$
a good partition element
partition $(A[1, \ldots, n])$
produce an element where 30\% smaller, 30\% larger

solution: bootstrap

partition $(A[1, \ldots, n])$

partition $(A[1, \ldots, n])$

divide list into groups of 5 elements find median of each small list using brute force gather all medians

use the median of this
smaller list as the partition element
divide list into groups of 5 elements find median of each small list using brute force gather all medians
call select(...) on this sublist to find median
return the result
divide list into groups of 5 elements find median of each small list
gather all medians
call select(...) on this sublist to find median return the result

$$
P(n)=S(\lceil n / 5\rceil)+O(n)
$$

a nice property of our partition

a nice property of our partition

Imagine rearranging the elements by sorting each column and then also sorting the medians.

a nice property of our partition

Imagine rearranging the elements by sorting each column and then also sorting the medians.

SWITCH TO A BIGGER EXAMPLE

SWICH TO A BIGGER EXAMPLE

These yellow elements are all smaller than the median. How many are there?

These yellow elements are all smaller than the median. How many are there?

$$
\begin{gathered}
3\left(\left\lceil\frac{1}{2}\lceil n / 5\rceil\right\rceil-2\right) \\
\quad \geq \frac{3 n}{10}-6
\end{gathered}
$$

There are $\lceil n / 5\rceil / 2$ columns. Ignoring the first and last, each column has 3 elements in it that are smaller than the median.
a nice property of our partition

$$
\begin{gathered}
3\left(\left\lceil\frac{1}{2}\lceil n / 5\rceil\right\rceil-2\right) \\
\quad \geq \frac{3 n}{10}-6
\end{gathered}
$$

this implies there are at most $\frac{7 n}{10}+6$ numbers
larger than /smaller
a nice property of our partition

$$
\leq \frac{7 n}{10}+6
$$

$$
\leq \frac{7 n}{10}+6
$$

The median-of-medians is guaranteed to have a linear fraction of the input that is smaller and larger than it.
select $(i, A[1, \ldots, n])$
handle base case for small list
else pivot = FindPartitionValue(A,n)
partition list about pivot
if pivot is position i , return pivot
else if pivot is in position $>\mathrm{i}$ select $(i, A[1, \ldots, p-1])$
else select $((i-p-1), A[p+1, \ldots, n])$

FindPartition $(A[1, \ldots, n])$
divide list into groups of 5 elements find median of each small list gather all medians
call select(...) on this sublist to find median return the result

$$
P(n)=S(\lceil n / 5\rceil)+O(n)
$$

handle base case for small list else pivot = FindPartitionValue(A,n) partition list about pivot if pivot is position i , return pivot else if pivot is in position $>\mathrm{i}$ select $(i, A[1, \ldots, p-1])$ else select $((i-p-1), A[p+1, \ldots, n])$

$$
S(n)=S(\lceil n / 5\rceil)+\Theta(n)+S(\lceil 7 n / 10+6\rceil)
$$

$\Theta(n)$
You can use induction like in the homework problem.

How to get intuition for S(n)

Horizontal axis title

Horizontal axis title
$1+4-14 y+x$

1. Changing representation from polynomial (coefficient form) into polynomial (point-wise form)
2. Clever divide and conquer
$f(x)=5+2 x+x^{2}$
(4)

$$
\begin{aligned}
y & =a x^{2}+b x+c \\
-5 & =a 0+b \phi+c \\
30 & =a\left(5^{2}\right)=b 5+c \\
515 & =a\left(10^{2}\right)+b 10+c
\end{aligned}
$$

$$
A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}
$$

FFT

$$
\begin{aligned}
& \text { input: } a_{0}, a_{1}, a_{2}, \ldots, a_{n-1} \\
& \qquad A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}
\end{aligned}
$$

output:

FFT

$$
\begin{aligned}
& \text { input: } a_{0}, a_{1}, a_{2}, \ldots, a_{n-1} \\
& \qquad A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}
\end{aligned}
$$

output: evaluate polynomial A at (any) n different points.
$A(x)$

Later, we shall see that the same ideas for FFT can be used to implement Inverse-FFT.

Inverse FFT: Given n-points,

Later, we shall see that the same ideas for FFT can be used to implement Inverse-FFT.

Inverse FFT: Given n-points,

$$
y_{0}, y_{1}, \ldots, y_{n-1}
$$

find a degree n polynomial A such that

$$
y_{i}=A\left(\omega_{i}\right)
$$

