

feb 1/3 2022

shelat

& conquer

Examples we will discuss

 $\begin{array}{l} \text{merge-sort} \ (A,p,r) \\ \text{if} \ p < r \end{array}$ $q \leftarrow \lfloor (p+r)/2 \rfloor$ $\begin{array}{l} \text{merge-sort} \left(A,p,q\right) \\ \text{merge-sort} \left(A,q+1,r\right) \\ \text{merge}(A,p,q,r) \end{array}$

 $\begin{array}{l} \operatorname{merge-sort} \left(A, p, r \right) \\ \operatorname{if} \ p < r \end{array}$ $q \leftarrow \lfloor (p+r)/2 \rfloor$ $\begin{array}{l} \text{merge-sort} \left(A, p, q\right) \\ \text{merge-sort} \left(A, q+1, r\right) \\ \text{merge}(A, p, q, r) \end{array}$ 2 4 5

$$\label{eq:constraint} \begin{split} \hline \frac{\operatorname{MERGE}(A[1 \dots n], m):}{i \leftarrow 1; \ j \leftarrow m+1} \\ & \text{for } k \leftarrow 1 \text{ to } n \\ & \text{if } j > n \\ & B[k] \leftarrow A[i]; \ i \leftarrow i+1 \\ & \text{else if } i > m \\ & B[k] \leftarrow A[j]; \ j \leftarrow j+1 \\ & \text{else if } A[i] < A[j] \\ & B[k] \leftarrow A[i]; \ i \leftarrow i+1 \\ & \text{else} \\ & B[k] \leftarrow A[j]; \ j \leftarrow j+1 \end{split} \\ \end{split}$$

 $\begin{array}{l} \operatorname{merge-sort} \left(A, p, r \right) \\ \operatorname{if} \ p < r \end{array}$ $q \leftarrow \lfloor (p+r)/2 \rfloor$ $\begin{array}{l} \text{merge-sort} \left(A, p, q\right) \\ \text{merge-sort} \left(A, q+1, r\right) \\ \text{merge}(A, p, q, r) \end{array}$

 $\begin{array}{l} \operatorname{merge-sort} \left(A, p, r \right) \\ \operatorname{if} \ p < r \end{array}$ $q \leftarrow \lfloor (p+r)/2 \rfloor$ $\begin{array}{l} \text{merge-sort} \left(A,p,q\right) \\ \text{merge-sort} \left(A,q+1,r\right) \\ \text{merge}(A,p,q,r) \end{array}$ 5 2 4 7 I 3 2 6

 $\begin{array}{l} \text{merge-sort} \ (A, p, r) \\ \text{if} \ p < r \end{array}$ $q \leftarrow \lfloor (p+r)/2 \rfloor$ $\begin{array}{l} \text{merge-sort} \left(A, p, q\right) \\ \text{merge-sort} \left(A, q+1, r\right) \\ \text{merge}(A, p, q, r) \end{array}$ 5 2 4 7 I 3 2 6

 $\begin{array}{l} \text{merge-sort} \ (A, p, r) \\ \text{if} \ p < r \end{array}$ $q \leftarrow \lfloor (p+r)/2 \rfloor$ $\begin{array}{l} \text{merge-sort} \left(A,p,q\right) \\ \text{merge-sort} \left(A,q+1,r\right) \\ \text{merge}(A,p,q,r) \end{array}$ 5 2 4 7 I 3 2 6

 $\begin{array}{l} \text{merge-sort} \ (A,p,r) \\ \text{if} \ p < r \end{array}$ $q \leftarrow \lfloor (p+r)/2 \rfloor$ $\begin{array}{l} \text{merge-sort} \left(A,p,q\right) \\ \text{merge-sort} \left(A,q+1,r\right) \\ \text{merge}(A,p,q,r) \end{array}$

 $\begin{array}{l} \text{merge-sort} \ (A,p,r) \\ \text{if} \ p < r \end{array}$ $q \leftarrow |(p+r)/2|$ merge-sort (A, p, q)merge-sort (A, q + 1, r)merge(A, p, q, r)T(n) = 2T(n/2) + O(n) $= \Theta(n \log n)$

arbitrage

1 1

goal:

Main idea

Find the best arbitrage opportunity in LEFT and in RIGHT.

Then look for opportunities when you buy on the left and sell on the right.

first attempt

arbit(A[1...n])

first attempt

- arbit(A[1..n])
 - base case if |A| <= 2
 - lg = arbit(left(A))
 - rg = arbit(right(A))
 - minl = min(left(A))
 - maxr = max(right(A))

return max{maxr-minl,lg,rg}

first attempt: time $\Theta(n \log n)$ arbit(A[1..n])base case if |A| <= 2lq = arbit(left(A))rg = arbit(right(A))minl = min(left(A))maxr = max(right(A)) $T(n) = 2T(n/2) + \Theta(n)$

better approach

These are the steps that are taking $\Theta(n)$ time

better approach

Can we find a solution that has T(n) = 2T(n/2) + O(1)?

These are the steps that are taking $\Theta(n)$ time

better approach

minl = min(left(A))maxr = max(right(A))

return max{maxr-minl,lg,rg}

Can we find a solution that has T(n) = 2T(n/2) + O(1)?

- These are the steps that are taking $\Theta(n)$ time

first attempt arbit(A[1...n])

second attempt arbit2(A[1...n]) base case if $|A| \le 2$

// Returns {best trade,min,max}

second attempt arbit2(A[1...n]) base case if |A| <= 2, ... (lg,minl,maxl) = arbit2(left(A))(rg,minr,maxr) = arbit2(right(A)) return max{maxr-minl,lq,rq}, min{minl, minr}, max{maxl, maxr}

// Returns {best trade,min,max}

second attempt arbit2(A[1...n]) base case if $|A| \leq 2$, ... (lg,minl,maxl) = arbit2(left(A))(rg,minr,maxr) = arbit2(right(A)) return max{maxr-minl,lq,rq}, min{minl, minr}, max{maxl, maxr}

// Returns {best trade,min,max}

New runtime is $T(n) = 2T(n/2) + \Theta(1) = \Theta(n)$

Simple brute force approach takes $\Theta(n^2)$

(7)

10

8

14

9

1

(13)

Assume all points have distinct x & y coordinates.

 $\left(4\right)$

3

(11

2

solve the large problem by

- solving smaller problems and combining solutions

Divide & Conquer

Find closest pair on the left half.

Divide & Conquer

Find closest pair on the right half.

Find closest pair on the left half.

Divide & Conquer

Find closest pair on the right half.

Now look for pairs between the left and right that are closer.

Divide & Conquer

Now look for pairs between the left and right that are closer.

Divide & Conquer

Now look for pairs between the left and right that are closer.

What if the input points are like this?

Then all of the points are within δ of the middle. If we need to check all of the points, we are back to $O(n^2)$

But we have extra information! The only candidates for closest pair are within δ of each other. How can we use this info?

Imagine there is a grid of cubbies starting at the lowest Y point

 $\delta/2$

A grid this size has a diagonal that is smaller than delta. That means each grid box can only have 1 point in it.

FACT: At most 1 point in each cubby

Claim: If there is another point closer than δ , then it must be among the next 15 points sorted by y-coordinate.

FACT: At most 1 point in each cubby

Check the next 15 points

Check the next 15 points

Check the next 15 points

Closest(P)

)

Closest(P)

- Base Case: If <8 points, brute force. 1. Let q be the "middle-element" of points
- 2. Divide P into Left, Right according to q
- 3. delta,r,j = MIN(Closest(Left), Closest(Right))
- 4. Mohawk = { Scan P, add pts that are <delta from q.x }
- 5. For each point p in Mohawk (in y-order): Compute distance between p and its next 15 neighbors Update delta,r,j if any pair (x,y) is < delta</p>

6. Return (delta,r,j)

// returns the minimum distance delta // and the closest pair Romeo, Juliet Orute force.

Closest(P)

- Base Case: If <8 points, brute force. 1. Let q be the "middle-element" of points
- 2. Divide P into Left, Right according to q
- 3. delta,r,j = MIN(Closest(Left), Closest(Right))
- 4. Mohawk = { Scan P, add pts that are <delta from q.x }
- 5. For each point p in Mohawk (in y-order): Compute distance between p and its next 15 neighbors Update delta,r,j if any pair (x,y) is < delta</p>

6. Return (delta,r,j)

// returns the minimum distance delta // and the closest pair Romeo, Juliet Orute force.

Can be reduced to 7!

Details: How to do step 1?

Points sorted in X: 13 1 5 14 9 10 7 6 8 11 2 3 4 12 Points sorted in Y: 6 5 12 11 10 3 13 4 9 8 7 2 1 14 14 (2) $\left(7\right)$ 8 (9)(4)(13) (3) (10)(11

ClosestPair(P)

Compute Sorted-in-X list SX Compute Sorted-in-Y list SY Closest(P,SX,SY)

Closest(P,SX,SY)

- Let q be the middle-element of SX Divide P into Left, Right according to q delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY))
- Mohawk = { Scan SY, add pts that are delta from q.x } For each point p in Mohawk (in order): Compute distance between p and its next 15 neighbors Update delta,r,j if any pair (x,y) is < delta

Return (delta,r,j)

Closest(P,SX,SY)

- Let q be the middle-element of SX Divide P into Left, Right according to q delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY))
- Mohawk = { Scan SY, add pts that are delta from q.x } For each point p in Mohawk (in order): Compute distance between p and its next 15 neighbors Update delta,r,j if any pair (x,y) is < delta

Return (delta,r,j)

Can be reduced to 7!

(10)

Closest(P,SX,SY)

- Let q be the middle-element of SX Divide P into Left, Right according to q. Scan to get LY, RY. delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY))
- Mohawk = { Scan SY, add pts that are delta from q.x } For each point p in Mohawk (in order): Compute distance between p and its next 15 neighbors Update delta,r,j if any pair (x,y) is < delta

Return (delta,r,j)

Closest(P,SX,SY)

- Let q be the middle-element of SX Divide P into Left, Right according to q. Scan to get LY, RY. delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY))
- Mohawk = { Scan SY, add pts that are delta from q.x } For each point p in Mohawk (in order): Compute distance between p and its next 15 neighbors Update delta,r,j if any pair (x,y) is < delta

Return (delta,r,j)

Can be reduced to 7!

sorted in X: 13 1 5 1 4 9 10 7 9 8 11 2 3 4 12 sorted in Y: 6 5 12 1 1 10 3 13 4 9 8 7 2 1 14

11

2

5

(12)

 $\left(\begin{array}{c}4\end{array}\right)$

(3)

7

(10)

(8)

Closest(P,SX,SY)

- Let q be the middle-element of SX Divide P into Left, Right according to q. Scan to get LY, RY. delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY))
- Mohawk = { Scan SY, add pts that are delta from q.x } For each point p in Mohawk (in order): Compute distance between p and its next 15 neighbors Update delta,r,j if any pair (x,y) is < delta

Return (delta,r,j)

Closest(P,SX,SY)

- Let q be the middle-element of SX Divide P into Left, Right according to q. Scan to get LY, RY. delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY))
- Mohawk = { Scan SY, add pts that are delta from q.x } For each point p in Mohawk (in order): Compute distance between p and its next 15 neighbors Update delta,r,j if any pair (x,y) is < delta

Return (delta,r,j)

Can be reduced to 7!

Running time for Closest pair algorithm

T(n) =
Running time for Closest pair algorithm

T(n) =

$T(n) = 2T(n/2) + \Theta(n) = \Theta(n \log n)$

```
// find closest pair of points in pointsByX[lo..hi]
                                  public ClosestPair(Point2D[] points) {
@author Robert Sedgewick
                                                                                                                 // precondition: pointsByX[lo..hi] and pointsByY[lo..hi] are the same sequence of points, sorted by x,y-coord
@author Kevin Wayne
                                       int N = points.length;
                                                                                                                 private double closest(Point2D[] pointsByX, Point2D[] pointsByY, Point2D[] aux, int lo, int hi) {
                                       if (N \leq = 1) return;
                                                                                                                    if (hi \leq lo) return Double.POSITIVE INFINITY;
                                                                                                                    int mid = lo + (hi - lo) / 2;
                                       // sort by x-coordinate (breaking ties by y-coordinate)
                                                                                                                    Point2D median = pointsByX[mid];
                                       Point2D[] pointsByX = new Point2D[N];
                                                                                                                    // compute closest pair with both endpoints in left subarray or both in right subarray
                                       for (int i = 0; i < N; i++)
                                                                                                                    double delta1 = closest(pointsByX, pointsByY, aux, lo, mid);
                                          pointsByX[i] = points[i];
                                                                                                                    double delta2 = closest(pointsByX, pointsByY, aux, mid+1, hi);
                                       Arrays.sort(pointsByX, Point2D.X_ORDER);
                                                                                                                    double delta = Math.min(delta1, delta2);
                                                                                                                    // merge back so that pointsByY[lo..hi] are sorted by y-coordinate
                                       // check for coincident points
                                                                                                                    merge(pointsByY, aux, lo, mid, hi);
                                       for (int i = 0; i < N-1; i++) {
                                          if (pointsByX[i].equals(pointsByX[i+1])) {
                                                                                                                    // aux[0..M–1] = sequence of points closer than delta, sorted by y-coordinate
                                                                                                                    int M = 0:
                                             bestDistance = 0.0:
                                                                                                                    for (int i = lo; i \le hi; i++) {
                                             best1 = pointsByX[i];
                                                                                                                      if (Math.abs(pointsByY[i].x() – median.x()) < delta)
                                             best2 = pointsByX[i+1];
                                                                                                                        aux[M++] = pointsByY[i];
                                             return;
                                                                                                                    // compare each point to its neighbors with y-coordinate closer than delta
                                                                                                                    for (int i = 0; i < M; i++) {
                                                                                                                      // a geometric packing argument shows that this loop iterates at most 7 times
                                                                                                                      for (int j = i+1; (j < M) && (aux[j].y() - aux[i].y() < delta); j++) {
                                       // sort by y-coordinate (but not yet sorted)
                                                                                                                        double distance = aux[i].distanceTo(aux[j]);
                                       Point2D[] pointsByY = new Point2D[N];
                                                                                                                        if (distance < delta) {
                                       for (int i = 0; i < N; i++)
                                                                                                                           delta = distance;
                                                                                                                          if (distance < bestDistance) {
                                          pointsByY[i] = pointsByX[i];
                                                                                                                             bestDistance = delta;
                                                                                                                            best1 = aux[i]:
                                       // auxiliary array
                                                                                                                             best2 = aux[j];
                                                                                                                             // StdOut.println("better distance = " + delta + " from " + best1 + " to " + best2);
                                        Point2D[] aux = new Point2D[N];
                                       closest(pointsByX, pointsByY, aux, 0, N-1);
                                                                                                                    return delta;
```


$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \bigstar \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} =$

$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \bigstar \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 5 + 14 & 6 + 16 \\ 15 + 28 & 18 + 32 \end{bmatrix}$

$= \begin{bmatrix} 19 & 22 \\ 43 & 50 \end{bmatrix}$

$$\begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & & & & \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{bmatrix} \begin{bmatrix} b_{1,1} & b_{1,2} & \cdots & b_{1,n} \\ b_{2,1} & b_{2,2} & \cdots & b_{2,n} \\ \vdots & & & & \\ b_{n,1} & b_{n,2} & \cdots & b_{n,n} \end{bmatrix} = \begin{bmatrix} c_{1,1} & c_{1,2} & \cdots & c_{1,n} \\ c_{2,1} & c_{2,2} & \cdots & c_{2,n} \\ \vdots & & & \\ c_{n,1} & c_{n,2} & \cdots & c_{n,n} \end{bmatrix}$$

$$\begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & & & & \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{bmatrix} \begin{bmatrix} b_{1,1} & b_{1,2} & \cdots & b_{1,n} \\ b_{2,1} & b_{2,2} & \cdots & b_{2,n} \\ \vdots & & & & \\ b_{n,1} & b_{n,2} & \cdots & b_{n,n} \end{bmatrix} = \begin{bmatrix} c_{1,1} & c_{1,2} & \cdots & c_{1,n} \\ c_{2,1} & c_{2,2} & \cdots & c_{2,n} \\ \vdots & & & \\ c_{n,1} & c_{n,2} & \cdots & c_{n,n} \end{bmatrix}$$

k=1

 \boldsymbol{n}

 $c_{i,j} = \sum a_{i,k} \cdot b_{k,j}$

$$\begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & & & & \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{bmatrix} \begin{bmatrix} b_{1,1} & b_{1,2} & \cdots & b_{1,n} \\ b_{2,1} & b_{2,2} & \cdots & b_{2,n} \\ \vdots & & & & \\ b_{n,1} & b_{n,2} & \cdots & b_{n,n} \end{bmatrix} = \begin{bmatrix} c_{1,1} & c_{1,2} & \cdots & c_{1,n} \\ c_{2,1} & c_{2,2} & \cdots & c_{2,n} \\ \vdots & & & \\ c_{n,1} & c_{n,2} & \cdots & c_{n,n} \end{bmatrix}$$

 $\Theta(n^3)$

 $= \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix}$ [Strassen] $P_1 = A(F - H)$ $P_2 = (A + B)H$ $P_3 = (C+D)E$ $P_4 = D(G - E)$ $P_5 = (A+D)(E+H)$ $P_6 = (B - D)(G + H)$ $P_7 = (A - C)(E + F)$

 $\begin{array}{c} R = P_5 + P_4 - P_2 + P_6 \\ = \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \\ T = P_3 + P_4 & U = P_5 + P_1 - P_3 - P_7 \end{bmatrix} = P_1 + P_2$ [strassen] $P_1 = A(F - H)$ $P_2 = (A + B)H$ $P_3 = (C+D)E$ $P_4 = D(G - E)$ $P_5 = (A+D)(E+H)$ $P_6 = (B - D)(G + H)$ $P_7 = (A - C)(E + F)$

$= R \begin{bmatrix} AE_{+} + BG_{-} & AF + BH \\ P_{5} + P_{4} - P_{2} + P_{6} \\ CE_{+} + DG \\ T = P_{3} + P_{4} \end{bmatrix} = P_{1} + P_{2}$

$M(n) = 7M(n/2) + 18n^2$

$= \Theta(n^{\log_2 7})$

taking this idea further

3x3 matricies [Laderman'75] in 23 multe

1978 victor pan method

70x70 matrix using 143640 mults

what is the recurrence:

problem: given a list of **n** elements, find the element of rank n/2. (half are larger, half are smaller)

of rank n/2. (half are larger, half are smaller) can generalize to i

first solution: sort and pluck.

problem: given a list of **n** elements, find the element

$O(n \log n)$

of rank i.

key insight: we do not have to "fully" sort. semi sort can suffice.

problem: given a list of n elements, find the element

pick first element partition list about this one see where we stand

review: how to partition a list

GOAL: start with THIS LIST and END with THAT LIST greater than

review: how to partition a list

partitioning a list about an element takes linear time.

select $(i, A[1, \ldots, n])$

select $(i, A[1, \ldots, n])$ handle base case of 1 element. partition list about first element if pivot p is position i, return pivot else select ((i - p - 1), A[p + 1, ..., n])

else if pivot p is in position > i select $(i, A[1, \ldots, p-1])$

select (i, A[1, ..., n])

handle base case. partition list about first element if pivot is position i, return pivot else select ((i - p - 1), A[p + 1, ..., n])

Assume our partition always splits list into two eql parts

else if pivot is in position > i select (i, A[1, ..., p-1])

select (i, A[1, ..., n])

handle base case. partition list about first element if pivot is position i, return pivot else select ((i - p - 1), A[p + 1, ..., n])

T(n) = T(n/2) + O(n)

Assume our partition always splits list into two eql parts

- else if pivot is in position > i select (i, A[1, ..., p-1])
 - $\Theta(n)$

problem: what if we always pick bad partitions?

problem: what if we always pick bad partitions?

problem: what if we always pick bad partitions?

select (i, A[1, ..., n])

handle base case. partition list about first element if pivot is position i, return pivot else select ((i - p - 1), A[p + 1, ..., n])

else if pivot is in position > i select (i, A[1, ..., p-1])

select (i, A[1, ..., n])

handle base case. partition list about first element if pivot is position i, return pivot else select ((i - p - 1), A[p + 1, ..., n])

 $\Theta(n^2)$

else if pivot is in position > i select (i, A[1, ..., p-1])

T(n) = T(n-1) + O(n)

a good partition element

partition $(A[1,\ldots,n])$

a good partition element

partition $(A[1,\ldots,n])$

produce an element where 30% smaller, 30% larger

solution: bootstrap

image: mark nason

partition $(A[1, \ldots, n])$

partition $(A[1, \ldots, n])$

divide list into groups of 5 elements find median of each small list using brute force gather all medians

use the median of this smaller list as the partition element

partition $(A[1,\ldots,n])$

divide list into groups of 5 elements gather all medians return the result

- find median of each small list using brute force
- call select(...) on this sublist to find median

partition $(A[1,\ldots,n])$

divide list into groups of 5 elements find median of each small list gather all medians return the result

- call select(...) on this sublist to find median

$P(n) = S(\lceil n/5 \rceil) + O(n)$

Imagine rearranging the elements by sorting each column and then also sorting the medians.

Imagine rearranging the elements by sorting each column and then also sorting the medians.

SWITCH TO A BIGGER EXAMPLE

SWITCH TO A BIGGER EXAMPLE

These yellow elements are all smaller than the median. How many are there?

SWITCH TO A BIGGER EXAMPLE

These yellow elements are all smaller than the median. How many are there?

$$3\left(\left\lceil\frac{1}{2}\left\lceil n/5\right\rceil\right\rceil-2\right)$$
$$\geq \frac{3n}{10}-6$$

There are $\lceil n/5 \rceil / 2$ columns. Ignoring the first and last, each column has 3 elements in it that are smaller than the median.

$$3\left(\left\lceil\frac{1}{2}\left\lceil n/5\right\rceil\right\rceil-2\right)$$
$$\geq \frac{3n}{10}-6$$

this implies there are at most $\frac{7n}{10} + 6$ numbers larger than \bigstar

The median-of-medians is guaranteed to have a linear fraction of the input that is smaller and larger than it.

select $(i, A[1, \ldots, n])$

handle base case for small list else pivot = FindPartitionValue(A,n) partition list about pivot if pivot is position i, return pivot else select ((i - p - 1), A[p + 1, ..., n])

else if pivot is in position > i select (i, A[1, ..., p-1])

FindPartition $(A[1, \ldots, n])$

divide list into groups of 5 elements find median of each small list gather all medians return the result

- call select(...) on this sublist to find median

$P(n) = S(\lceil n/5 \rceil) + O(n)$

select (i, A[1, ..., n])

handle base case for small list else pivot = FindPartitionValue(A,n) partition list about pivot if pivot is position i, return pivot else select ((i - p - 1), A[p + 1, ..., n])

$$S(n) = S(\lceil n/5 \rceil) +$$

 $\Theta(n)$

- else if pivot is in position > i select $(i, A[1, \ldots, p-1])$
 - $\Theta(n) + S([7n/10 + 6])$
 - an use induction like in the homework problem.

How to get intuition for S(n)

AAPL

Left vertical axis title

Horizontal axis title

AAPL

Left vertical axis title

Horizontal axis title

big ideas:

big ideas:

1. Changing representation from polynomial (point-wise form)

2. Clever divide and conquer

polynomial (coefficient form) into

 $A(x) = a_0 + a_1 x +$

$$a_2x^2 + \dots + a_{n-1}x^{n-1}$$

FF

output:

Later, we shall see that the same ideas for FFT can be used to implement Inverse-FFT.

Inverse FFT: Given n-points,

Later, we shall see that the same ideas for FFT can be used to implement Inverse-FFT.

Inverse FFT: Given n-points, y_0, y_1, \dots, y_{n-1} find a degree n polynomial A such that $y_i = A(\omega_i)$

