
L5 5800
feb 1/3 2022

shelat

divide

& conquer

http://www.kitchenknifedrawer.com/files/1696205/uploaded/K6615D.jpg

http://www.kitchenknifedrawer.com/files/1696205/uploaded/K6615D.jpg

http://www.kitchenknifedrawer.com/files/1696205/uploaded/K6615D.jpg

http://www.kitchenknifedrawer.com/files/1696205/uploaded/K6615D.jpg

http://www.kitchenknifedrawer.com/files/1696205/uploaded/K6615D.jpg

http://www.kitchenknifedrawer.com/files/1696205/uploaded/K6615D.jpg

http://www.kitchenknifedrawer.com/files/1696205/uploaded/K6615D.jpg

http://www.kitchenknifedrawer.com/files/1696205/uploaded/K6615D.jpg

Examples we will discuss

Merge

merge-sort
if

merge-sort
merge-sort
merge

(A, p, r)
p < r
q � ⇥(p + r)/2⇤

(A, p, q)
(A, q + 1, r)

(A, p, q, r)

5 2 4 7 1 3 2 6

Algorithms Lecture 2: Divide and Conquer

The control of a large force is the same principle as the control of a few men:
it is merely a question of dividing up their numbers.

— Sun Zi, The Art of War (c. 400 C.E.), translated by Lionel Giles (1910)

2 Divide and Conquer

2.1 MergeSort

Mergesort is one of the earliest algorithms proposed for sorting. According to Knuth, it was sug-
gested by John von Neumann as early as 1945.

1. Divide the array A[1 .. n] into two subarrays A[1 ..m] and A[m + 1 .. n], where m = ⇥n/2⇤.
2. Recursively mergesort the subarrays A[1 ..m] and A[m + 1 .. n].

3. Merge the newly-sorted subarrays A[1 ..m] and A[m + 1 .. n] into a single sorted list.

Input: S O R T I N G E X A M P L
Divide: S O R T I N G E X A M P L

Recurse: I N O S R T A E G L M P X
Merge: A E G I L M N O P S R T X

A Mergesort example.

The first step is completely trivial; we only need to compute the median index m. The second
step is also trivial, thanks to our friend the recursion fairy. All the real work is done in the final
step; the two sorted subarrays A[1 ..m] and A[m + 1 .. n] can be merged using a simple linear-time
algorithm. Here’s a complete specification of the Mergesort algorithm; for simplicity, we separate
out the merge step as a subroutine.

MERGESORT(A[1 .. n]):
if (n > 1)

m � ⇥n/2⇤
MERGESORT(A[1 ..m])
MERGESORT(A[m + 1 .. n])
MERGE(A[1 .. n],m)

MERGE(A[1 .. n],m):
i � 1; j � m + 1
for k � 1 to n

if j > n
B[k] � A[i]; i � i + 1

else if i > m
B[k] � A[j]; j � j + 1

else if A[i] < A[j]
B[k] � A[i]; i � i + 1

else
B[k] � A[j]; j � j + 1

for k � 1 to n
A[k] � B[k]

To prove that the algorithm is correct, we use our old friend induction. We can prove that
MERGE is correct using induction on the total size of the two subarrays A[i ..m] and A[j .. n] left to
be merged into B[k .. n]. The base case, where at least one subarray is empty, is straightforward;
the algorithm just copies it into B. Otherwise, the smallest remaining element is either A[i] or A[j],
since both subarrays are sorted, so B[k] is assigned correctly. The remaining subarrays—either
A[i + 1 ..m] and A[j .. n], or A[i ..m] and A[j + 1 .. n]—are merged correctly into B[k + 1 .. n] by the
inductive hypothesis.1 This completes the proof.

1“The inductive hypothesis” is just a technical nickname for our friend the recursion fairy.

1

jef
f e

ric
ks

on

merge-sort
if

merge-sort
merge-sort
merge

(A, p, r)
p < r
q � ⇥(p + r)/2⇤

(A, p, q)
(A, q + 1, r)

(A, p, q, r)

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6

Algorithms Lecture 2: Divide and Conquer

The control of a large force is the same principle as the control of a few men:
it is merely a question of dividing up their numbers.

— Sun Zi, The Art of War (c. 400 C.E.), translated by Lionel Giles (1910)

2 Divide and Conquer

2.1 MergeSort

Mergesort is one of the earliest algorithms proposed for sorting. According to Knuth, it was sug-
gested by John von Neumann as early as 1945.

1. Divide the array A[1 .. n] into two subarrays A[1 ..m] and A[m + 1 .. n], where m = ⇥n/2⇤.
2. Recursively mergesort the subarrays A[1 ..m] and A[m + 1 .. n].

3. Merge the newly-sorted subarrays A[1 ..m] and A[m + 1 .. n] into a single sorted list.

Input: S O R T I N G E X A M P L
Divide: S O R T I N G E X A M P L

Recurse: I N O S R T A E G L M P X
Merge: A E G I L M N O P S R T X

A Mergesort example.

The first step is completely trivial; we only need to compute the median index m. The second
step is also trivial, thanks to our friend the recursion fairy. All the real work is done in the final
step; the two sorted subarrays A[1 ..m] and A[m + 1 .. n] can be merged using a simple linear-time
algorithm. Here’s a complete specification of the Mergesort algorithm; for simplicity, we separate
out the merge step as a subroutine.

MERGESORT(A[1 .. n]):
if (n > 1)

m � ⇥n/2⇤
MERGESORT(A[1 ..m])
MERGESORT(A[m + 1 .. n])
MERGE(A[1 .. n],m)

MERGE(A[1 .. n],m):
i � 1; j � m + 1
for k � 1 to n

if j > n
B[k] � A[i]; i � i + 1

else if i > m
B[k] � A[j]; j � j + 1

else if A[i] < A[j]
B[k] � A[i]; i � i + 1

else
B[k] � A[j]; j � j + 1

for k � 1 to n
A[k] � B[k]

To prove that the algorithm is correct, we use our old friend induction. We can prove that
MERGE is correct using induction on the total size of the two subarrays A[i ..m] and A[j .. n] left to
be merged into B[k .. n]. The base case, where at least one subarray is empty, is straightforward;
the algorithm just copies it into B. Otherwise, the smallest remaining element is either A[i] or A[j],
since both subarrays are sorted, so B[k] is assigned correctly. The remaining subarrays—either
A[i + 1 ..m] and A[j .. n], or A[i ..m] and A[j + 1 .. n]—are merged correctly into B[k + 1 .. n] by the
inductive hypothesis.1 This completes the proof.

1“The inductive hypothesis” is just a technical nickname for our friend the recursion fairy.

1

jef
f e

ric
ks

on

merge-sort
if

merge-sort
merge-sort
merge

(A, p, r)
p < r
q � ⇥(p + r)/2⇤

(A, p, q)
(A, q + 1, r)

(A, p, q, r)

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6

Algorithms Lecture 2: Divide and Conquer

The control of a large force is the same principle as the control of a few men:
it is merely a question of dividing up their numbers.

— Sun Zi, The Art of War (c. 400 C.E.), translated by Lionel Giles (1910)

2 Divide and Conquer

2.1 MergeSort

Mergesort is one of the earliest algorithms proposed for sorting. According to Knuth, it was sug-
gested by John von Neumann as early as 1945.

1. Divide the array A[1 .. n] into two subarrays A[1 ..m] and A[m + 1 .. n], where m = ⇥n/2⇤.
2. Recursively mergesort the subarrays A[1 ..m] and A[m + 1 .. n].

3. Merge the newly-sorted subarrays A[1 ..m] and A[m + 1 .. n] into a single sorted list.

Input: S O R T I N G E X A M P L
Divide: S O R T I N G E X A M P L

Recurse: I N O S R T A E G L M P X
Merge: A E G I L M N O P S R T X

A Mergesort example.

The first step is completely trivial; we only need to compute the median index m. The second
step is also trivial, thanks to our friend the recursion fairy. All the real work is done in the final
step; the two sorted subarrays A[1 ..m] and A[m + 1 .. n] can be merged using a simple linear-time
algorithm. Here’s a complete specification of the Mergesort algorithm; for simplicity, we separate
out the merge step as a subroutine.

MERGESORT(A[1 .. n]):
if (n > 1)

m � ⇥n/2⇤
MERGESORT(A[1 ..m])
MERGESORT(A[m + 1 .. n])
MERGE(A[1 .. n],m)

MERGE(A[1 .. n],m):
i � 1; j � m + 1
for k � 1 to n

if j > n
B[k] � A[i]; i � i + 1

else if i > m
B[k] � A[j]; j � j + 1

else if A[i] < A[j]
B[k] � A[i]; i � i + 1

else
B[k] � A[j]; j � j + 1

for k � 1 to n
A[k] � B[k]

To prove that the algorithm is correct, we use our old friend induction. We can prove that
MERGE is correct using induction on the total size of the two subarrays A[i ..m] and A[j .. n] left to
be merged into B[k .. n]. The base case, where at least one subarray is empty, is straightforward;
the algorithm just copies it into B. Otherwise, the smallest remaining element is either A[i] or A[j],
since both subarrays are sorted, so B[k] is assigned correctly. The remaining subarrays—either
A[i + 1 ..m] and A[j .. n], or A[i ..m] and A[j + 1 .. n]—are merged correctly into B[k + 1 .. n] by the
inductive hypothesis.1 This completes the proof.

1“The inductive hypothesis” is just a technical nickname for our friend the recursion fairy.

1

jef
f e

ric
ks

on

merge-sort
if

merge-sort
merge-sort
merge

(A, p, r)
p < r
q � ⇥(p + r)/2⇤

(A, p, q)
(A, q + 1, r)

(A, p, q, r)

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6

Algorithms Lecture 2: Divide and Conquer

The control of a large force is the same principle as the control of a few men:
it is merely a question of dividing up their numbers.

— Sun Zi, The Art of War (c. 400 C.E.), translated by Lionel Giles (1910)

2 Divide and Conquer

2.1 MergeSort

Mergesort is one of the earliest algorithms proposed for sorting. According to Knuth, it was sug-
gested by John von Neumann as early as 1945.

1. Divide the array A[1 .. n] into two subarrays A[1 ..m] and A[m + 1 .. n], where m = ⇥n/2⇤.
2. Recursively mergesort the subarrays A[1 ..m] and A[m + 1 .. n].

3. Merge the newly-sorted subarrays A[1 ..m] and A[m + 1 .. n] into a single sorted list.

Input: S O R T I N G E X A M P L
Divide: S O R T I N G E X A M P L

Recurse: I N O S R T A E G L M P X
Merge: A E G I L M N O P S R T X

A Mergesort example.

The first step is completely trivial; we only need to compute the median index m. The second
step is also trivial, thanks to our friend the recursion fairy. All the real work is done in the final
step; the two sorted subarrays A[1 ..m] and A[m + 1 .. n] can be merged using a simple linear-time
algorithm. Here’s a complete specification of the Mergesort algorithm; for simplicity, we separate
out the merge step as a subroutine.

MERGESORT(A[1 .. n]):
if (n > 1)

m � ⇥n/2⇤
MERGESORT(A[1 ..m])
MERGESORT(A[m + 1 .. n])
MERGE(A[1 .. n],m)

MERGE(A[1 .. n],m):
i � 1; j � m + 1
for k � 1 to n

if j > n
B[k] � A[i]; i � i + 1

else if i > m
B[k] � A[j]; j � j + 1

else if A[i] < A[j]
B[k] � A[i]; i � i + 1

else
B[k] � A[j]; j � j + 1

for k � 1 to n
A[k] � B[k]

To prove that the algorithm is correct, we use our old friend induction. We can prove that
MERGE is correct using induction on the total size of the two subarrays A[i ..m] and A[j .. n] left to
be merged into B[k .. n]. The base case, where at least one subarray is empty, is straightforward;
the algorithm just copies it into B. Otherwise, the smallest remaining element is either A[i] or A[j],
since both subarrays are sorted, so B[k] is assigned correctly. The remaining subarrays—either
A[i + 1 ..m] and A[j .. n], or A[i ..m] and A[j + 1 .. n]—are merged correctly into B[k + 1 .. n] by the
inductive hypothesis.1 This completes the proof.

1“The inductive hypothesis” is just a technical nickname for our friend the recursion fairy.

1

jef
f e

ric
ks

on

merge-sort
if

merge-sort
merge-sort
merge

(A, p, r)
p < r
q � ⇥(p + r)/2⇤

(A, p, q)
(A, q + 1, r)

(A, p, q, r)

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6

2 5 4 7 1 3 2 6

5 2 4 7 1 3 2 6

merge-sort
if

merge-sort
merge-sort
merge

(A, p, r)
p < r
q � ⇥(p + r)/2⇤

(A, p, q)
(A, q + 1, r)

(A, p, q, r)

5 2 4 7 1 3 2 6

2 4 5 7 1 2 3 6

2 5 4 7 1 3 2 6

5 2 4 7 1 3 2 6

merge-sort
if

merge-sort
merge-sort
merge

(A, p, r)
p < r
q � ⇥(p + r)/2⇤

(A, p, q)
(A, q + 1, r)

(A, p, q, r)

1 2 2 3 4 5 6 7

2 4 5 7 1 2 3 6

2 5 4 7 1 3 2 6

5 2 4 7 1 3 2 6

merge-sort
if

merge-sort
merge-sort
merge

(A, p, r)
p < r
q � ⇥(p + r)/2⇤

(A, p, q)
(A, q + 1, r)

(A, p, q, r)

T (n) = 2T (n/2) + O(n)
= �(n log n)

arbitrage

9/6/09 7:28 PMApple Inc. | AAPL | Charts - Yahoo! Finance

Page 2 of 2http://finance.yahoo.com/charts?s=AAPL#chart7:symbol=aapl;range=1d;in…harttype=line;crosshair=on;ohlcvalues=0;logscale=off;source=undefined

Print Share Send Feedback

Disclaimer. Copyright © 2009 Yahoo! Inc. All rights reserved. Privacy Policy - Terms of Service - Copyright/IP Policy - Send Feedback - Quotes
delayed at least 15 minutes.

9/6/09 7:27 PMAMER INTL GROUP NEW | AIG | Charts - Yahoo! Finance

Page 2 of 2http://finance.yahoo.com/charts?s=AIG#chart8:symbol=aig;range=1d;indic…harttype=line;crosshair=on;ohlcvalues=0;logscale=off;source=undefined

Print Share Send Feedback

Disclaimer. Copyright © 2009 Yahoo! Inc. All rights reserved. Privacy Policy - Terms of Service - Copyright/IP Policy - Send Feedback - Quotes
delayed at least 15 minutes.

....
1 n
input: array of n numbers

goal:

Main idea

Find the best arbitrage opportunity in LEFT and in RIGHT.

Then look for opportunities when you buy on the
left and sell on the right.

first attempt

arbit(A[1...n])

first attempt
arbit(A[1...n])

base case if |A|<=2
lg = arbit(left(A))
rg = arbit(right(A))
minl = min(left(A))
maxr = max(right(A))

return max{maxr-minl,lg,rg}

T(n) =

first attempt: time

arbit(A[1...n])
base case if |A|<=2
lg = arbit(left(A))
rg = arbit(right(A))
minl = min(left(A))
maxr = max(right(A))

return max{maxr-minl,lg,rg}

⇥(n log n)

T(n) = 2T(n/2) + Θ(n)

better approach

These are the steps that are
taking Θ(n)time

better approach
Can we find a solution that has T(n) = 2T(n/2) + O(1) ?

These are the steps that are
taking Θ(n)time

better approach

minl = min(left(A))
maxr = max(right(A))

return max{maxr-minl,lg,rg}

Can we find a solution that has T(n) = 2T(n/2) + O(1) ?

These are the steps that are
taking Θ(n)time

first attempt
arbit(A[1...n])

second attempt
arbit2(A[1…n])
base case if |A|<=2

// Returns {best trade,min,max}

second attempt
arbit2(A[1...n])

base case if |A|<=2, …
(lg,minl,maxl) = arbit2(left(A))
(rg,minr,maxr) = arbit2(right(A))

return max{maxr-minl,lg,rg},

 min{minl, minr},

 max{maxl, maxr}

// Returns {best trade,min,max}

second attempt
arbit2(A[1...n])

base case if |A|<=2, …
(lg,minl,maxl) = arbit2(left(A))
(rg,minr,maxr) = arbit2(right(A))

return max{maxr-minl,lg,rg},

 min{minl, minr},

 max{maxl, maxr}

// Returns {best trade,min,max}

New runtime is T(n) = 2T(n/2) + Θ(1) = Θ(n)

closest pair
of points

1 2

49

5

3

7

6

8

10

11

12

13

14

Simple brute force approach takes Θ(n2)

Assume all
points have
distinct x & y
coordinates.

solve the large problem by
solving smaller problems
and combining solutions

1 2

49

5

3

7

6

8

10

11

12

13

14

1 2

49

5

3

7

6

8

10

11

12

13

14

Divide & Conquer

1 2

49

5

3

7

6

8

10

11

12

13

14

Divide & Conquer

Find closest
pair on the
left half.

Find closest
pair on the
right half.

1 2

49

5

3

7

6

8

10

11

12

13

14

Divide & Conquer

winner!

�
Find closest
pair on the
left half.

Find closest
pair on the
right half.

1 2

49

5

3

7

6

8

10

11

12

13

14

Divide & Conquer

Now look for
pairs
between the
left and right
that are
closer.

1 2

49

5

3

7

6

8

10

11

12

13

14

Divide & Conquer

winner!

�Now look for
pairs
between the
left and right
that are
closer.

1 2

49

5

3

7

6

8

10

11

12

13

14

Divide & Conquer

winner!

�
� �

Now look for
pairs
between the
left and right
that are
closer.

What if the input
points are like
this?

�

� �
Then all of the
points are within

 of the middle.

If we need to
check all of the
points, we are
back to

δ

O(n2)

� �
But we have extra
information! The only
candidates for
closest pair are
within of each
other. How can we
use this info?

δ

� �
�/2

�/2

Imagine

there is

a grid of

cubbies

starting at

the lowest

Y point

�/2

�/2

p
2

2
�

A grid this size has a
diagonal that is smaller
than delta.That means
each grid box can only
have 1 point in it.

� �
�/2

�/2

FACT: At

most 1 point

in each
cubby

� �
�/2

�/2

FACT: At

most 1 point

in each
cubby

Claim: If there is
another point
closer than ,
then it must be
among the next
15 points sorted
by y-coordinate.

δ

� �
�/2

�/2

FACT: <=1

point per

cubby

� �
�/2

�/2

FACT: <=1

point per

cubby

� �
�/2

�/2

FACT: <=1

point per

cubby

� �
�/2

�/2

FACT: <=1

point per

cubby

� �
�/2

�/2

Start

Check the
next 15
points

Visit its

by y-order

� �
�/2

�/2

Next

Check the
next 15
points

� �
�/2

�/2

Next

Check the
next 15
points

Closest(P)

)

Closest(P)

1. Let q be the “middle-element” of points
2. Divide P into Left, Right according to q
3. delta,r,j = MIN(Closest(Left) , Closest(Right)

4. Mohawk = { Scan P, add pts that are <delta from q.x }

5. For each point p in Mohawk (in y-order):
Compute distance between p and its next 15 neighbors

Update delta,r,j if any pair (x,y) is < delta

)

6. Return (delta,r,j)

Base Case: If <8 points, brute force.

// returns the minimum distance delta

// and the closest pair Romeo, Juliet

Closest(P)

1. Let q be the “middle-element” of points
2. Divide P into Left, Right according to q
3. delta,r,j = MIN(Closest(Left) , Closest(Right)

4. Mohawk = { Scan P, add pts that are <delta from q.x }

5. For each point p in Mohawk (in y-order):
Compute distance between p and its next 15 neighbors

Update delta,r,j if any pair (x,y) is < delta

)

6. Return (delta,r,j)

Base Case: If <8 points, brute force.

Can be reduced to 7!

// returns the minimum distance delta

// and the closest pair Romeo, Juliet

1 2

49

5

3

7

6

8

10

11

12

13

14

Details: How to do step 1?

1 2

49

5

3

7

6

8

10

11

12

13

14

Points sorted in X: 13 1 5 14 9 10 7 6 8 11 2 3 4 12
Points sorted in Y: 6 5 12 11 10 3 13 4 9 8 7 2 1 14

1 2

49

5

3

7

6

8

10

11

12

13

14

sorted in X: 13 1 5 14 9 10 7 9 8 11 2 3 4 12
sorted in Y: 6 5 12 11 10 3 13 4 9 8 7 2 1 14

ClosestPair(P)
Compute Sorted-in-X list SX
Compute Sorted-in-Y list SY
Closest(P,SX,SY)

Closest(P,SX,SY)
Let q be the middle-element of SX
Divide P into Left, Right according to q
delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY)

Mohawk = { Scan SY, add pts that are delta from q.x }

For each point p in Mohawk (in order):
Compute distance between p and its next 15 neighbors

Update delta,r,j if any pair (x,y) is < delta

)

Return (delta,r,j)

Closest(P,SX,SY)
Let q be the middle-element of SX
Divide P into Left, Right according to q
delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY)

Mohawk = { Scan SY, add pts that are delta from q.x }

For each point p in Mohawk (in order):
Compute distance between p and its next 15 neighbors

Update delta,r,j if any pair (x,y) is < delta

Can be reduced to 7!

)

Return (delta,r,j)

1 2

49

5

3

7

6

8

10

11

12

13

14

sorted in X: 13 1 5 14 9 10 7 9 8 11 2 3 4 12
sorted in Y: 6 5 12 11 10 3 13 4 9 8 7 2 1 14

Closest(P,SX,SY)
Let q be the middle-element of SX
Divide P into Left, Right according to q. Scan to get LY, RY.
delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY)

Mohawk = { Scan SY, add pts that are delta from q.x }

For each point p in Mohawk (in order):
Compute distance between p and its next 15 neighbors

Update delta,r,j if any pair (x,y) is < delta

)

Return (delta,r,j)

Closest(P,SX,SY)
Let q be the middle-element of SX
Divide P into Left, Right according to q. Scan to get LY, RY.
delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY)

Mohawk = { Scan SY, add pts that are delta from q.x }

For each point p in Mohawk (in order):
Compute distance between p and its next 15 neighbors

Update delta,r,j if any pair (x,y) is < delta

Can be reduced to 7!

)

Return (delta,r,j)

1 2

49

5

3

7

6

8

10

11

12

13

14

sorted in X: 13 1 5 14 9 10 7 9 8 11 2 3 4 12
sorted in Y: 6 5 12 11 10 3 13 4 9 8 7 2 1 14

Closest(P,SX,SY)
Let q be the middle-element of SX
Divide P into Left, Right according to q. Scan to get LY, RY.
delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY)

Mohawk = { Scan SY, add pts that are delta from q.x }

For each point p in Mohawk (in order):
Compute distance between p and its next 15 neighbors

Update delta,r,j if any pair (x,y) is < delta

)

Return (delta,r,j)

Closest(P,SX,SY)
Let q be the middle-element of SX
Divide P into Left, Right according to q. Scan to get LY, RY.
delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY)

Mohawk = { Scan SY, add pts that are delta from q.x }

For each point p in Mohawk (in order):
Compute distance between p and its next 15 neighbors

Update delta,r,j if any pair (x,y) is < delta

Can be reduced to 7!

)

Return (delta,r,j)

T (n) =
Running time for Closest pair algorithm

T (n) =
Running time for Closest pair algorithm

T (n) = 2T (n/2) + �(n) = �(n log n)

 // find closest pair of points in pointsByX[lo..hi]

 // precondition: pointsByX[lo..hi] and pointsByY[lo..hi] are the same sequence of points, sorted by x,y-coord

 private double closest(Point2D[] pointsByX, Point2D[] pointsByY, Point2D[] aux, int lo, int hi) {

 if (hi <= lo) return Double.POSITIVE_INFINITY;

 int mid = lo + (hi - lo) / 2;

 Point2D median = pointsByX[mid];

 // compute closest pair with both endpoints in left subarray or both in right subarray

 double delta1 = closest(pointsByX, pointsByY, aux, lo, mid);

 double delta2 = closest(pointsByX, pointsByY, aux, mid+1, hi);

 double delta = Math.min(delta1, delta2);

 // merge back so that pointsByY[lo..hi] are sorted by y-coordinate

 merge(pointsByY, aux, lo, mid, hi);

 // aux[0..M-1] = sequence of points closer than delta, sorted by y-coordinate

 int M = 0;

 for (int i = lo; i <= hi; i++) {

 if (Math.abs(pointsByY[i].x() - median.x()) < delta)

 aux[M++] = pointsByY[i];

 }

 // compare each point to its neighbors with y-coordinate closer than delta

 for (int i = 0; i < M; i++) {

 // a geometric packing argument shows that this loop iterates at most 7 times

 for (int j = i+1; (j < M) && (aux[j].y() - aux[i].y() < delta); j++) {

 double distance = aux[i].distanceTo(aux[j]);

 if (distance < delta) {

 delta = distance;

 if (distance < bestDistance) {

 bestDistance = delta;

 best1 = aux[i];

 best2 = aux[j];

 // StdOut.println("better distance = " + delta + " from " + best1 + " to " + best2);

 }

 }

 }

 }

 return delta;

 }

@author Robert Sedgewick
@author Kevin Wayne

public ClosestPair(Point2D[] points) {

 int N = points.length;

 if (N <= 1) return;

 // sort by x-coordinate (breaking ties by y-coordinate)

 Point2D[] pointsByX = new Point2D[N];

 for (int i = 0; i < N; i++)

 pointsByX[i] = points[i];

 Arrays.sort(pointsByX, Point2D.X_ORDER);

 // check for coincident points

 for (int i = 0; i < N-1; i++) {

 if (pointsByX[i].equals(pointsByX[i+1])) {

 bestDistance = 0.0;

 best1 = pointsByX[i];

 best2 = pointsByX[i+1];

 return;

 }

 }

 // sort by y-coordinate (but not yet sorted)

 Point2D[] pointsByY = new Point2D[N];

 for (int i = 0; i < N; i++)

 pointsByY[i] = pointsByX[i];

 // auxiliary array

 Point2D[] aux = new Point2D[N];

 closest(pointsByX, pointsByY, aux, 0, N-1);

 }

http://algs4.cs.princeton.edu/99hull/ClosestPair.java.html

Matrixmultiplication

=★

=★

ci,j =
nX

k=1

ai,k · bk,j

=
�

AE + BG AF + BH
CE + DG CF + DH

⇥

P7 = (A� C)(E + F)

P6 = (B �D)(G + H)

P5 = (A + D)(E + H)

P4 = D(G� E)

P3 = (C + D)E

P2 = (A + B)H

P1 = A(F �H)
[Strassen]

[strassen]

[strassen]

taking this idea further
3x3 matricies [Laderman’75] in 23 multe

1978 victor pan method
70x70 matrix using 143640 mults

what is the recurrence:

y = n3

y = n2.81

y = n2.3728596

https://en.wikipedia.org/wiki/File:Bound_on_matrix_multiplication_omega_over_time.svg

Median

problem: given a list of n elements, find the element

of rank n/2. (half are larger, half are smaller)

problem: given a list of n elements, find the element

of rank n/2. (half are larger, half are smaller)

first solution: sort and pluck.

can generalize to i

key insight:
we do not have to “fully” sort.
semi sort can suffice.

problem: given a list of n elements, find the element

of rank i.

pick first element

partition list about this one

see where we stand

review: how to partition a list

review: how to partition a list

GOAL: start with THIS LIST and END with THAT LIST

less than greater than

review: how to partition a list

review: how to partition a list

review: how to partition a list

review: how to partition a list

review: how to partition a list

review: how to partition a list

partitioning a list about an element takes linear time.

select

handle base case of 1 element.

partition list about first element

if pivot p is position i, return pivot

else if pivot p is in position > i
else

select
select

select

Assume our partition always

splits list into two eql parts

handle base case.

partition list about first element

if pivot is position i, return pivot

else if pivot is in position > i
else

select

select
select

Assume our partition always

splits list into two eql parts

handle base case.

partition list about first element

if pivot is position i, return pivot

else if pivot is in position > i
else

select

select
select

 problem: what if we always pick bad partitions?

problem: what if we always pick bad partitions?

problem: what if we always pick bad partitions?

problem: what if we always pick bad partitions?

handle base case.

partition list about first element

if pivot is position i, return pivot

else if pivot is in position > i
else

select

select
select

T (n) = T (n� 1) +O(n)

⇥(n2)

handle base case.

partition list about first element

if pivot is position i, return pivot

else if pivot is in position > i
else

select

select
select

Needed:
a good partition element

partition

Needed:
a good partition element

partition produce an element where

30% smaller, 30% larger

solution:

bootstrap

image: gucci

image: d&g

image: mark nason

partition

partition

partition

divide list into groups of 5 elements
find median of each small list using brute force
gather all medians

partition

select

median of
each group

form a
smaller list

use the median of this
smaller list as the
partition element

divide list into groups of 5 elements
find median of each small list using brute force
gather all medians
call select(...) on this sublist to find median
return the result

partition

partition

divide list into groups of 5 elements
find median of each small list
gather all medians
call select(...) on this sublist to find median
return the result

a nice property of our partition

a nice property of our partition

Imagine rearranging the
elements by sorting each
column and then also sorting
the medians.

a nice property of our partition

Imagine rearranging the
elements by sorting each
column and then also sorting
the medians.

SWITCH TO A BIGGER EXAMPLE

SWITCH TO A BIGGER EXAMPLE

These yellow elements are all smaller
than the median. How many are there?

SWITCH TO A BIGGER EXAMPLE

These yellow elements are all smaller
than the median. How many are there?

There are columns. Ignoring the first and
last, each column has 3 elements in it that are
smaller than the median.

⌈n/5⌉/2

 < < < <

<
<

<
<

<
<

<

this implies there are

at most numbers

larger than
/smaller

a nice property of our partition

a nice property of our partition

The median-of-medians is guaranteed to
have a linear fraction of the input that is
smaller and larger than it.

select
handle base case for small list

else pivot = FindPartitionValue(A,n)

partition list about pivot

if pivot is position i, return pivot

else if pivot is in position > i
else

select
select

FindPartition

divide list into groups of 5 elements
find median of each small list
gather all medians
call select(...) on this sublist to find median
return the result

select
handle base case for small list

else pivot = FindPartitionValue(A,n)

partition list about pivot

if pivot is position i, return pivot

else if pivot is in position > i
else

select
select

S(n) = S(⌈n/5⌉) + Θ(n) + S(⌈7n/10 + 6⌉)

You can use induction like in the
homework problem.

How to get intuition for S(n)

Fast
Fourier
Transform

big ideas:

big ideas:
1. Changing representation from

polynomial (coefficient form) into
polynomial (point-wise form)

2. Clever divide and conquer

-12.5 -10 -7.5 -5 -2.5 0 2.5 5 7.5 10

25

50

75

f(x) = 5 + 2x+ x2

-12.5 -10 -7.5 -5 -2.5 0 2.5 5 7.5 10

25

50

75

f(x) = 5 + 2x+ x2

degree
polynomial

n points on a curve

a0, a1, a2, . . . , an�1

FFT
input:

output:

a0, a1, a2, . . . , an�1

output: evaluate polynomial A at (any) n different points.

n points on a curve

FFT
input:

Later, we shall see that the same

ideas for FFT can be used to
implement Inverse-FFT.

Inverse FFT: Given n-points,

yi = A(!i)

Later, we shall see that the same

ideas for FFT can be used to
implement Inverse-FFT.

Inverse FFT: Given n-points,

find a degree n polynomial A such that

y0, y1, . . . , yn�1

