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Examples we will discuss
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Algorithms Lecture 2: Divide and Conquer

The control of a large force is the same principle as the control of a few men:
it is merely a question of dividing up their numbers.

— Sun Zi, The Art of War (c. 400 C.E.), translated by Lionel Giles (1910)

2 Divide and Conquer

2.1 MergeSort

Mergesort is one of the earliest algorithms proposed for sorting. According to Knuth, it was sug-
gested by John von Neumann as early as 1945.

1. Divide the array A[1 .. n] into two subarrays A[1 ..m] and A[m + 1 .. n], where m = ⇥n/2⇤.
2. Recursively mergesort the subarrays A[1 ..m] and A[m + 1 .. n].

3. Merge the newly-sorted subarrays A[1 ..m] and A[m + 1 .. n] into a single sorted list.

Input: S O R T I N G E X A M P L
Divide: S O R T I N G E X A M P L

Recurse: I N O S R T A E G L M P X
Merge: A E G I L M N O P S R T X

A Mergesort example.

The first step is completely trivial; we only need to compute the median index m. The second
step is also trivial, thanks to our friend the recursion fairy. All the real work is done in the final
step; the two sorted subarrays A[1 ..m] and A[m + 1 .. n] can be merged using a simple linear-time
algorithm. Here’s a complete specification of the Mergesort algorithm; for simplicity, we separate
out the merge step as a subroutine.

MERGESORT(A[1 .. n]):
if (n > 1)

m � ⇥n/2⇤
MERGESORT(A[1 ..m])
MERGESORT(A[m + 1 .. n])
MERGE(A[1 .. n],m)

MERGE(A[1 .. n],m):
i � 1; j � m + 1
for k � 1 to n

if j > n
B[k] � A[i]; i � i + 1

else if i > m
B[k] � A[j]; j � j + 1

else if A[i] < A[j]
B[k] � A[i]; i � i + 1

else
B[k] � A[j]; j � j + 1

for k � 1 to n
A[k] � B[k]

To prove that the algorithm is correct, we use our old friend induction. We can prove that
MERGE is correct using induction on the total size of the two subarrays A[i ..m] and A[j .. n] left to
be merged into B[k .. n]. The base case, where at least one subarray is empty, is straightforward;
the algorithm just copies it into B. Otherwise, the smallest remaining element is either A[i] or A[j],
since both subarrays are sorted, so B[k] is assigned correctly. The remaining subarrays—either
A[i + 1 ..m] and A[j .. n], or A[i ..m] and A[j + 1 .. n]—are merged correctly into B[k + 1 .. n] by the
inductive hypothesis.1 This completes the proof.

1“The inductive hypothesis” is just a technical nickname for our friend the recursion fairy.
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1 n
input: array of n numbers

goal:



Main idea

Find the best arbitrage opportunity in LEFT and in RIGHT.


Then look for opportunities when you buy on the 
left and sell on the right.



first attempt

arbit(A[1...n])



first attempt
arbit(A[1...n])

base case if |A|<=2
lg = arbit(left(A))
rg = arbit(right(A))
minl = min(left(A))
maxr = max(right(A))

return max{maxr-minl,lg,rg}

T(n) =



first attempt: time 

arbit(A[1...n])
base case if |A|<=2
lg = arbit(left(A))
rg = arbit(right(A))
minl = min(left(A))
maxr = max(right(A))

return max{maxr-minl,lg,rg}

⇥(n log n)

T(n) = 2T(n/2) + Θ(n)



better approach

These are the steps that are 
taking Θ(n)time



better approach
Can we find a solution that has T(n) = 2T(n/2) + O(1) ?

These are the steps that are 
taking Θ(n)time



better approach

minl = min(left(A))
maxr = max(right(A))

return max{maxr-minl,lg,rg}

Can we find a solution that has T(n) = 2T(n/2) + O(1) ?

These are the steps that are 
taking Θ(n)time



first attempt
arbit(A[1...n])



second attempt
arbit2(A[1…n])
base case if |A|<=2

// Returns {best trade,min,max}



second attempt
arbit2(A[1...n])

base case if |A|<=2, …
(lg,minl,maxl) = arbit2(left(A))
(rg,minr,maxr) = arbit2(right(A))

return max{maxr-minl,lg,rg},

 min{minl, minr},

 max{maxl, maxr}


// Returns {best trade,min,max}



second attempt
arbit2(A[1...n])

base case if |A|<=2, …
(lg,minl,maxl) = arbit2(left(A))
(rg,minr,maxr) = arbit2(right(A))

return max{maxr-minl,lg,rg},

 min{minl, minr},

 max{maxl, maxr}


// Returns {best trade,min,max}

New runtime is T(n) = 2T(n/2) + Θ(1) = Θ(n)
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Simple brute force approach takes Θ(n2)

Assume all 
points have 
distinct x & y 
coordinates.



solve the large problem by
solving smaller problems
and combining solutions
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Divide & Conquer

Find closest 
pair on the 
left half.

Find closest 
pair on the 
right half.
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Divide & Conquer

winner!

�
Find closest 
pair on the 
left half.

Find closest 
pair on the 
right half.
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Now look for 
pairs 
between the 
left and right 
that are 
closer.
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Divide & Conquer

winner!
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Now look for 
pairs 
between the 
left and right 
that are 
closer.



What if the input 
points are like 
this?



�

� �
Then all of the 
points are within 

 of the middle.

If we need to 
check all of the 
points, we are 
back to  

δ

O(n2)



� �
But we have extra 
information! The only 
candidates for 
closest pair are 
within  of each 
other. How can we 
use this info?

δ
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Imagine

there is

a grid of

cubbies

starting at

the lowest

Y point
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A grid this size has a 
diagonal that is smaller 
than delta.That means 
each grid box can only 
have 1 point in it.
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FACT: At

most 1 point

in each 
cubby

Claim: If there is 
another point 
closer than , 
then it must be 
among the next 
15 points sorted 
by y-coordinate.

δ
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Start


Check the 
next 15 
points


Visit its

by y-order




� �
�/2

�/2

Next

Check the 
next 15 
points




� �
�/2

�/2

Next

Check the 
next 15 
points




Closest(P)

)



Closest(P)

1. Let q be the “middle-element” of points
2. Divide P into Left, Right according to q
3. delta,r,j = MIN(Closest(Left) ,    Closest(Right)

4. Mohawk = { Scan P, add pts that are <delta from q.x }

5. For each point p in Mohawk (in y-order):
Compute distance between p and its next 15 neighbors

Update delta,r,j if any pair (x,y) is < delta

)

6. Return (delta,r,j)

Base Case: If <8 points, brute force.

// returns the minimum distance delta

// and the closest pair Romeo, Juliet




Closest(P)

1. Let q be the “middle-element” of points
2. Divide P into Left, Right according to q
3. delta,r,j = MIN(Closest(Left) ,    Closest(Right)

4. Mohawk = { Scan P, add pts that are <delta from q.x }

5. For each point p in Mohawk (in y-order):
Compute distance between p and its next 15 neighbors

Update delta,r,j if any pair (x,y) is < delta

)

6. Return (delta,r,j)

Base Case: If <8 points, brute force.

Can be reduced to 7!

// returns the minimum distance delta

// and the closest pair Romeo, Juliet
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Details: How to do step 1?
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Points sorted in Y: 6 5 12 11 10 3 13 4 9 8 7 2 1 14
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sorted in X: 13 1 5 14 9 10 7 9 8 11 2 3 4 12
sorted in Y: 6 5 12 11 10 3 13 4 9 8 7 2 1 14



ClosestPair(P)
Compute Sorted-in-X list SX
Compute Sorted-in-Y list SY
Closest(P,SX,SY)



Closest(P,SX,SY)
Let q be the middle-element of SX
Divide P into Left, Right according to q
delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY)

Mohawk = { Scan SY, add pts that are delta from q.x }

For each point p in Mohawk (in order):
Compute distance between p and its next 15 neighbors

Update delta,r,j if any pair (x,y) is < delta

)

Return (delta,r,j)



Closest(P,SX,SY)
Let q be the middle-element of SX
Divide P into Left, Right according to q
delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY)

Mohawk = { Scan SY, add pts that are delta from q.x }

For each point p in Mohawk (in order):
Compute distance between p and its next 15 neighbors

Update delta,r,j if any pair (x,y) is < delta

Can be reduced to 7!

)

Return (delta,r,j)
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Closest(P,SX,SY)
Let q be the middle-element of SX
Divide P into Left, Right according to q. Scan to get LY, RY.
delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY)

Mohawk = { Scan SY, add pts that are delta from q.x }

For each point p in Mohawk (in order):
Compute distance between p and its next 15 neighbors

Update delta,r,j if any pair (x,y) is < delta

)

Return (delta,r,j)
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)

Return (delta,r,j)
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Let q be the middle-element of SX
Divide P into Left, Right according to q. Scan to get LY, RY.
delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY)

Mohawk = { Scan SY, add pts that are delta from q.x }

For each point p in Mohawk (in order):
Compute distance between p and its next 15 neighbors

Update delta,r,j if any pair (x,y) is < delta

)

Return (delta,r,j)



Closest(P,SX,SY)
Let q be the middle-element of SX
Divide P into Left, Right according to q. Scan to get LY, RY.
delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY)

Mohawk = { Scan SY, add pts that are delta from q.x }

For each point p in Mohawk (in order):
Compute distance between p and its next 15 neighbors

Update delta,r,j if any pair (x,y) is < delta

Can be reduced to 7!

)

Return (delta,r,j)



T (n) =
Running time for Closest pair algorithm



T (n) =
Running time for Closest pair algorithm

T (n) = 2T (n/2) + �(n) = �(n log n)



    // find closest pair of points in pointsByX[lo..hi]

    // precondition:  pointsByX[lo..hi] and pointsByY[lo..hi] are the same sequence of points, sorted by x,y-coord

   private double closest(Point2D[] pointsByX, Point2D[] pointsByY, Point2D[] aux, int lo, int hi) {

        if (hi <= lo) return Double.POSITIVE_INFINITY;


        int mid = lo + (hi - lo) / 2;

        Point2D median = pointsByX[mid];


        // compute closest pair with both endpoints in left subarray or both in right subarray

        double delta1 = closest(pointsByX, pointsByY, aux, lo, mid);

        double delta2 = closest(pointsByX, pointsByY, aux, mid+1, hi);

        double delta = Math.min(delta1, delta2);


        // merge back so that pointsByY[lo..hi] are sorted by y-coordinate

        merge(pointsByY, aux, lo, mid, hi);


        // aux[0..M-1] = sequence of points closer than delta, sorted by y-coordinate

        int M = 0;

        for (int i = lo; i <= hi; i++) {

            if (Math.abs(pointsByY[i].x() - median.x()) < delta)

                aux[M++] = pointsByY[i];

        }


        // compare each point to its neighbors with y-coordinate closer than delta

        for (int i = 0; i < M; i++) {

            // a geometric packing argument shows that this loop iterates at most 7 times

            for (int j = i+1; (j < M) && (aux[j].y() - aux[i].y() < delta); j++) {

                double distance = aux[i].distanceTo(aux[j]);

                if (distance < delta) {

                    delta = distance;

                    if (distance < bestDistance) {

                        bestDistance = delta;

                        best1 = aux[i];

                        best2 = aux[j];

                        // StdOut.println("better distance = " + delta + " from " + best1 + " to " + best2);

                    }

                }

            }

        }

        return delta;

    }


@author Robert Sedgewick
@author Kevin Wayne

public ClosestPair(Point2D[] points) {

        int N = points.length;

        if (N <= 1) return;


        // sort by x-coordinate (breaking ties by y-coordinate)

        Point2D[] pointsByX = new Point2D[N];

        for (int i = 0; i < N; i++)

            pointsByX[i] = points[i];

        Arrays.sort(pointsByX, Point2D.X_ORDER);


        // check for coincident points

        for (int i = 0; i < N-1; i++) {

            if (pointsByX[i].equals(pointsByX[i+1])) {

                bestDistance = 0.0;

                best1 = pointsByX[i];

                best2 = pointsByX[i+1];

                return;

            }

        }


        // sort by y-coordinate (but not yet sorted) 

        Point2D[] pointsByY = new Point2D[N];

        for (int i = 0; i < N; i++)

            pointsByY[i] = pointsByX[i];


        // auxiliary array

        Point2D[] aux = new Point2D[N];


        closest(pointsByX, pointsByY, aux, 0, N-1);

    }


http://algs4.cs.princeton.edu/99hull/ClosestPair.java.html



Matrixmultiplication



=★



=★





ci,j =
nX

k=1

ai,k · bk,j











=
�

AE + BG AF + BH
CE + DG CF + DH

⇥

P7 = (A� C)(E + F )

P6 = (B �D)(G + H)

P5 = (A + D)(E + H)

P4 = D(G� E)

P3 = (C + D)E

P2 = (A + B)H

P1 = A(F �H)
[Strassen]



 

[strassen]



 

[strassen]



taking this idea further
3x3 matricies [Laderman’75] in 23 multe



1978 victor pan method
70x70 matrix using 143640 mults

what is the recurrence:



y = n3

y = n2.81

y = n2.3728596



https://en.wikipedia.org/wiki/File:Bound_on_matrix_multiplication_omega_over_time.svg



Median



                      

problem: given a list of n elements, find the element

of rank n/2. (half are larger, half are smaller)



                      

problem: given a list of n elements, find the element

of rank n/2. (half are larger, half are smaller)

 

first solution: sort and pluck.

can generalize to i



                      

 

key insight:
we do not have to “fully” sort.
semi sort can suffice.

problem: given a list of n elements, find the element

of rank i. 



                      

pick first element

partition list about this one

see where we stand



                      
review: how to partition a list   



                      
review: how to partition a list   

GOAL: start with THIS LIST and END with THAT LIST

                     
less than greater than 

 



                      
review: how to partition a list   
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review: how to partition a list   

                      

  

                      

  
                      

  

 
partitioning a list about an element takes linear time.



                      

  

select



                      

  

handle base case of 1 element.

partition list about first element

if pivot p is position i, return pivot

else if pivot p is in position > i
else

select
select

select



Assume our partition always 

splits list into two eql parts

handle base case.

partition list about first element

if pivot is position i, return pivot

else if pivot is in position > i
else

select

select
select



Assume our partition always 

splits list into two eql parts

handle base case.

partition list about first element

if pivot is position i, return pivot

else if pivot is in position > i
else

select

select
select



  problem: what if we always pick bad partitions?
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problem: what if we always pick bad partitions?



  

problem: what if we always pick bad partitions?

                      

                      

                    

  

                   

 



handle base case.

partition list about first element

if pivot is position i, return pivot

else if pivot is in position > i
else

select

select
select



T (n) = T (n� 1) +O(n)

⇥(n2)
 

handle base case.

partition list about first element

if pivot is position i, return pivot

else if pivot is in position > i
else

select

select
select



Needed:
a good partition element

partition



Needed:
a good partition element

partition produce an element where 

30% smaller, 30% larger

 



solution:

bootstrap

image: gucci

image: d&g

image: mark nason



                 

partition

     



                      

partition



                      

partition

    

    

 

 

divide list into groups of 5 elements
find median of each small list using brute force
gather all medians



                      

partition

    

 

    

 

 

select  

 

median of 
each group

form a 
smaller list

use the median of this 
smaller list as the 
partition element



                      

divide list into groups of 5 elements
find median of each small list using brute force
gather all medians
call select(...) on this sublist to find median
return the result

partition



                      

partition

divide list into groups of 5 elements
find median of each small list
gather all medians
call select(...) on this sublist to find median
return the result



                      
a nice property of our partition



                      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a nice property of our partition

Imagine rearranging the 
elements by sorting each 
column and then also sorting 
the medians.



                      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a nice property of our partition

Imagine rearranging the 
elements by sorting each 
column and then also sorting 
the medians.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SWITCH TO A BIGGER EXAMPLE
 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SWITCH TO A BIGGER EXAMPLE
 

 

 

 

 

 

 

 

 

 

 

These yellow elements are all smaller 
than the median. How many are there?



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SWITCH TO A BIGGER EXAMPLE
 

 

 

 

 

 

 

 

 

 

 

These yellow elements are all smaller 
than the median. How many are there?

There are  columns. Ignoring the first and 
last, each column has 3 elements in it that are 
smaller than the median.

⌈n/5⌉/2
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this implies there are 

at most numbers

larger than
/smaller

a nice property of our partition

 



                       
a nice property of our partition



                       

 

The median-of-medians is guaranteed to 
have a linear fraction of the input that is 
smaller and larger than it.



select
handle base case for small list

else pivot = FindPartitionValue(A,n)

partition list about pivot

if pivot is position i, return pivot

else if pivot is in position > i
else

select
select

                      

  



                      
FindPartition

divide list into groups of 5 elements
find median of each small list
gather all medians
call select(...) on this sublist to find median
return the result



                      

  

select
handle base case for small list

else pivot = FindPartitionValue(A,n)

partition list about pivot

if pivot is position i, return pivot

else if pivot is in position > i
else

select
select

S(n) = S(⌈n/5⌉) + Θ(n) + S(⌈7n/10 + 6⌉)

You can use induction like in the 
homework problem.



How to get intuition for S(n)



Fast
Fourier
Transform









big ideas:



big ideas:
1. Changing representation from 

polynomial (coefficient form) into 
polynomial (point-wise form)


2. Clever divide and conquer
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degree  
polynomial

 
 

n points on a curve

 
  

 

 



a0, a1, a2, . . . , an�1

FFT
input: 

output:



a0, a1, a2, . . . , an�1

output: evaluate polynomial A at (any) n different points.

 
 

n points on a curve

 
  

 

 

FFT
input: 

 



Later, we shall see that the same

ideas for FFT can be used to 
implement Inverse-FFT.


Inverse FFT: Given n-points, 



yi = A(!i)

Later, we shall see that the same

ideas for FFT can be used to 
implement Inverse-FFT.


Inverse FFT: Given n-points, 

find a degree n polynomial A such that

y0, y1, . . . , yn�1

 


