
L6 5800
feb 4/7 2022

shelat

Matrixmultiplication

=★

=★

ci,j =
nX

k=1

ai,k · bk,j

=
�

AE + BG AF + BH
CE + DG CF + DH

⇥

[Strassen]

[strassen]

[strassen]

taking this idea further
3x3 matricies [Laderman’75] in 23 mults

1978 victor pan method
70x70 matrix using 143640 mults

what is the recurrence:

y = n3

y = n2.81

y = n2.3728596

https://en.wikipedia.org/wiki/File:Bound_on_matrix_multiplication_omega_over_time.svg

Median

problem: given a list of n elements, find the element
of rank n/2. (half are larger, half are smaller)

problem: given a list of n elements, find the element
of rank n/2. (half are larger, half are smaller)

first solution: sort and pluck.

can generalize to i

key insight:
we do not have to “fully” sort.
semi sort can su!ce.

problem: given a list of n elements, find the element
of rank i.

pick first element
partition list about this one
see where we stand

review: how to partition a list

review: how to partition a list

GOAL: start with THIS LIST and END with THAT LIST

less than greater than

review: how to partition a list

review: how to partition a list

review: how to partition a list

review: how to partition a list

review: how to partition a list

review: how to partition a list

partitioning a list about an element takes linear time.

select

handle base case of 1 element.
partition list about first element
if pivot p is position i, return pivot
else if pivot p is in position > i
else

select
select

select

I

s

Assume our partition always
splits list into two eql parts

handle base case.
partition list about first element
if pivot is position i, return pivot
else if pivot is in position > i
else

select

select
select

Assume our partition always
splits list into two eql parts

handle base case.
partition list about first element
if pivot is position i, return pivot
else if pivot is in position > i
else

select

select
select

 problem: what if we always pick bad partitions?

problem: what if we always pick bad partitions?

 I 234 56 25

problem: what if we always pick bad partitions?

problem: what if we always pick bad partitions?

handle base case.
partition list about first element
if pivot is position i, return pivot
else if pivot is in position > i
else

select

select
select

T (n) = T (n� 1) +O(n)

⇥(n2)

handle base case.
partition list about first element
if pivot is position i, return pivot
else if pivot is in position > i
else

select

select
select

O

t

Needed:
a good partition element

partition

Needed:
a good partition element

partition produce an element where
30% smaller, 30% larger

solution:
bootstrap

image: gucci

image: d&g

image: mark nason

12 13 3

partition
7 6 19 11 1 4 8 13 17 2 3 9 14 15 2 19 211 I 1

partition
12 13 3 7 6 19 11 1 4 8 13 17 2 3 9 14 15 2 19 21 5 15

1 n I l
M

partition

7 8 9 15

15

divide list into groups of 5 elements
find median of each small list using brute force
gather all medians

12 13 3 7 6 19 11 1 4 8 13 17 2 3 9 14 15 2 19 21 5 15

T's

return the median of this new list

Median of medians

partition

select

median of
each group

form a
smaller list

use the median of this
smaller list as the
partition element

divide list into groups of 5 elements
find median of each small list using brute force
gather all medians
call select(...) on this sublist to find median
return the result

partition

Base case if list 5 element

D Oln

SCH

P n O cult SEE7

partition

divide list into groups of 5 elements
find median of each small list
gather all medians
call select(...) on this sublist to find median
return the result

Base case

a nice property of our partition
12 13 3 7 6 19 11 1 4 8 13 17 2 3 9 14 15 2 19 21 5 15

Hffment draweach 7
group D D D
vertically I 5 So
I

D
sont

5 0

B B B
Lo

a nice property of our partition

Imagine rearranging the
elements by sorting each
column and then also sorting
the medians.

12 13 3 7 6 19 11 1 4 8 13 17 2 3 9 14 15 2 19 21 5 15

12

13

3

7

6

19

11

8

1

4

13

17

2

3

9

14

15

2

19

21

5

15

S I g

s are less than

element

SWITCH TO A BIGGER EXAMPLE

SWITCH TO A BIGGER EXAMPLE

These yellow elements are all smaller
than the median. How many are there? isq

ignore

3 EI z
or

t
of columns in the

yellow area excluding frit last

SWITCH TO A BIGGER EXAMPLE

These yellow elements are all smaller
than the median. How many are there?

There are columns. Ignoring the first and
last, each column has 3 elements in it that are
smaller than the median.

⌈n/5⌉/2

s

that at most

n H o

Tothe elements
are larger

 < < < <

<
<

<
<

<
<

<

this implies there are
at most numbers

larger than
/smaller

a nice property of our partition

lowerbood

T these are

larger than

partition

a nice property of our partition

Yet É
I 34 6 744 6

The median-of-medians is guaranteed to
have a linear fraction of the input that is
smaller and larger than it.

select
handle base case for small list
else pivot = FindPartitionValue(A,n)
partition list about pivot
if pivot is position i, return pivot
else if pivot is in position > i
else

select
select

Pln
n

ghoubig

SI ot6
S Mot6

SCn SCFot6DtRI tO cn

S fEeo7ltSCFs1 t0cn D n

FindPartition

divide list into groups of 5 elements
find median of each small list
gather all medians
call select(...) on this sublist to find median
return the result

select
handle base case for small list
else pivot = FindPartitionValue(A,n)
partition list about pivot
if pivot is position i, return pivot
else if pivot is in position > i
else

select
select

S(n) = S(⌈n/5⌉) + Θ(n) + S(⌈7n/10 + 6⌉)
You can use induction like in the
homework problem.

How to get intuition for S(n)
On a

É I EE.tn
11 IL

Itt C's7.1

11 11 11 A CEE n

Fast
Fourier
Transform

Fourier transforms are used in signals processing and EE.
We are going to present a CS interpretation of the technique.

big ideas:

big ideas:
1. Changing representation from

polynomial (coefficient form) into
polynomial (point-wise form)

2. Clever divide and conquer

Important

-12.5 -10 -7.5 -5 -2.5 0 2.5 5 7.5 10

25

50

75

f(x) = 5 + 2x+ x2
coefficient

representation

Flo 5

FI Yo

f 2 13

-12.5 -10 -7.5 -5 -2.5 0 2.5 5 7.5 10

25

50

75

f(x) = 5 + 2x+ x2

point we
as

5,40

I

Y c thx e a

5 0

we can solvefor abic

515 cycas no

ti sunknowns

30 Ct 5 5 252

Solving this system yields
y = 7x2 − 38x − 5

This is a polynomial. Its standard
representation is given by its coefficients.

or

les evaluation at n different points

degree
polynomial

n − 1

n points on a curve

Two ways to represent a polynomial.

pointwise formcoefficient

form

a0, a1, a2, . . . , an�1

FFT
input:

output:

n coefficient

evaluation of A at n different points

a0, a1, a2, . . . , an�1

output: evaluate polynomial A at (any) n different points.

n points on a curve

FFT
input:

I FFT

Later, we shall see that the same
ideas for FFT can be used to
implement Inverse-FFT.

Inverse FFT: Given n-points,

yi = A(!i)

The same ideas for FFT can be
used to implement Inverse-FFT.

Inverse FFT: Given n-points,

find a degree n polynomial A such that

y0, y1, . . . , yn�1

a0, a1, a2, . . . , an�1

output: evaluate polynomial A at (any) n different points.

n points on a curve

FFT
input:

Bruteface evaluate at

12,3 n N n Ocn
algorithm

Brute force method to evaluate A at n points:

Cuz

solve the large problem by
solving smaller problems
and combining solutions

T(n)=
Aim for this

I E t Een 0 Calogn

I Aot 92 2 f aye e an2 x
h

a x t 93 3 I ages I an it

Define A x g eazy t aux e am
degree

A x 9 t ask t ask y i am xp ay

th

E

A x Aew ex A x

A0(4)
A0(9)
A0(16)
A0(25)Ae(25)

Ae(16)
Ae(9)
Ae(4)

suppose we had already had eval of on the values {4,9,16,25} Ae, Ao

A 2 Ae 4 t 2 A 4

AC 2 Ae 4 Z Ao 4

A 3 Ae 9 t 3 Ao 9

AL 3 Ae 9 3 Ao 9

A(2) = Ae(4) + 2Ao(4)

A(�2) = Ae(4) + (�2)Ao(4)

A(�3) = Ae(9) + (�3)Ao(9)
A(3) = Ae(9) + 3Ao(9)

Then we could compute 8 terms:

…A(4), A(-4), A(5), A(-5)

A0(4)
A0(9)
A0(16)
A0(25)Ae(25)

Ae(16)
Ae(9)
Ae(4)

suppose we had already had eval of Ae,Ao on {4,9,16,25}

100 n

What we need

A(2)
A(−2)

A(3)
A(−3)

A(4)
A(−4)

A(5)
A(−5)

We could compute

8, degree n

What we need

A(2)
A(−2)

A(3)
A(−3)

A(4)
A(−4)

A(5)
A(−5)

We could compute

Ae(4), Ao(4)
Ae(9), Ao(9)

Ae(16), Ao(16)
Ae(25), Ao(25)

If we had…

8 degree n/28, degree n

É

What we need

A(2)
A(−2)

A(3)
A(−3)

A(4)
A(−4)

A(5)
A(−5)

We could compute Which we
could compute

If we had…

Ae(4), Ao(4)
Ae(9), Ao(9)

Ae(16), Ao(16)
Ae(25), Ao(25)

If we had…

8 degree n/28, degree n

What we need

A(2)
A(−2)

A(3)
A(−3)

A(4)
A(−4)

A(5)
A(−5)

We could compute Which we
could compute

If we had…

Ae(4), Ao(4)
Ae(9), Ao(9)

Ae(16), Ao(16)
Ae(25), Ao(25)

If we had…

8 degree n/2

Aee(16), Aeo(16), Aoe(16), Aoo(16)
Aee(81), Aeo(81), Aoe(81), Aoo(81)

Aee(256), Aeo(256), Aoe(256), Aoo(256)
Aee(625), Aeo(625), Aoe(625), Aoo(625)

16 degree n/48, degree n

o

What we need

A(2)
A(−2)

A(3)
A(−3)

A(4)
A(−4)

A(5)
A(−5)

We could compute Which we
could compute

If we had…

Ae(4), Ao(4)
Ae(9), Ao(9)

Ae(16), Ao(16)
Ae(25), Ao(25)

If we had…

8 degree n/2

Aee(16), Aeo(16), Aoe(16), Aoo(16)
Aee(81), Aeo(81), Aoe(81), Aoo(81)

Aee(256), Aeo(256), Aoe(256), Aoo(256)
Aee(625), Aeo(625), Aoe(625), Aoo(625)

16 degree n/48, degree n

We need a better way to pick the points.
The FFT uses the roots of unity.

0

Roots of unity

should have n solutions
what are they?if

e2⇡i = 1

Remember this?

ett ht is an nth root ofunity

consider
n
1, e2⇡i/n, e2⇡i2/n, e2⇡i3/n, . . . , e2⇡i(n�1)/n

o
the n solutions are:

rootsof
jin fan y t unity

eztti.in Ceti s Is I

consider

is an nth root of unity=

for j=0,1,2,3,...,n-1

the n solutions are:
n

What is this number?
is an nth root of unity=

W q eZTi 8 what is this

What is this number?
is an nth root of unity=

e2pij/n = cos(2p j/n) + i sin(2p j/n)

IT D

is an nth root of unity=

Lets compute !1,8

418 005127 8 Tsin zag
0565 E I

Cos 45 i sin 45

t g
8

I

Compute all 8 roots of unity

Then graph them

ω0 ω1 ω2 ω3 ω4 ω5 ω6 ω7

�1 �0.71 0 0.71 1

�1

�0.71

0

0.71

1

1

w

I É

q

g
Wait

Wilf
Waff

Wyq

a
W518

Wo

Wtf

should have n solutions

roots of unity

e2pij/n = cos(2p j/n) + i sin(2p j/n)

ω2,8

should have n solutions

roots of unity

e2pij/n = cos(2p j/n) + i sin(2p j/n)

ω2,8
ω3,8

ω4,8

ω5,8
ω6,8

ω7,8

Squaring the nth roots of unity

ω0 ω1 ω2 ω3 ω4 ω5 ω6 ω7

1 1
2

+ i
2

i −1 −i− 1
2

+ i
2

− 1
2

− i
2

1
2

− i
2

i

r

2 1 2 1 E C 2 5 I I E I

so
I

Thm: Squaring an nth root produces an n/2th root.

!1,8 =

✓
1p
2
+

ip
2

◆
example: 2 2

It It E E it i

Wsa Eet I E E I i i

Thm: Squaring an nth root produces an n/2th root.

!1,8 =

✓
1p
2
+

ip
2

◆

!2
1,8 =

✓
1p
2
+

ip
2

◆2

=

✓
1p
2

◆2

+ 2

✓
1p
2

ip
2

◆
+

✓
ip
2

◆2

= 1/2 + i� 1/2

= i

example:

Squaring the nth roots of unity

Squaring all of the nth roots of unity
produces the n/2th roots of unity

If n=16

ooh 7th 2nd

evaluate at a root of unity

A wi o AeC i.o t waAo wa these are4th
roots of
unity

A(!i,n) = Ae(!
2
i,n) + !i,nAo(!

2
i,n)

evaluate at a root of unity

nth root
of unity

n/2th root
of unity

n/2th root
of unity

dega 12 desk

I
Ts 2T E t Ocn

FFT(f=a[1,...,n])
Evaluates degree n poly on the nth roots of unity

Base case if A is degree I reton ALI

ET Fft CAe yreturnAe
evaluated atthe

4 2 roots ofunity0 I FFT Ao
Combine for j o n t

A Wj n EL i a J t win O Win
Return the n results

FFT(f=a[1,...,n])

E[...] <- FFT(Ae) // eval Ae on n/2 roots of unity

For 1..n, combine results using equation:

O[...] <- FFT(Ao) // eval Ao on n/2 roots of unity

Return n points.

Base case if n<=2
Evaluates degree n poly on the nth roots of unity

É

Example
FFT(4, 1, 3, 2, 2, 3, 1, 4)

What does this function compute?

the input

Example
FFT(4, 1, 3, 2, 2, 3, 1, 4)

What does this function compute?

4 + 1x + 3x2 + 2x3 + 2x4 + 3x5 + 1x6 + 4x7 It evaluates

on the 8th roots of unity, which are

Defines a polynomialA

Act

A wooo Alwine A woo A wya
in QCuloga time

Example
FFT(4, 1, 3, 2, 2, 3, 1, 4)

What does this function compute?

4 + 1x + 3x2 + 2x3 + 2x4 + 3x5 + 1x6 + 4x7 It evaluates

on the 8th roots of unity, which are

problem 3 Compute the FFT on the values (4, 1, 3, 2, 2, 3, 1, 4). Illustrate the steps for the first

level of recursion, you can assume the base case occurs at n = 4. You can leave your answers in

terms of w1, w3, w5, w7, i.e., without multiplying those roots out.

Solution: Recall that the purpose of the FFT is to evaluate the polynomial

A(x) = 4 + 1x + 3x
2 + 2x

3 + 2x
4 + 3x

5 + 1x
6 + 4x

7

on the 8 roots of unity which are

w1 w2 w3 w4 w5 w6 w7 w8

1 1p
2
+ ip

2
i

�1p
2
+ ip

2
�1 �1p

2
+ �ip

2
�i

1p
2
+ �ip

2

Following the lecture method, we first divide A into two polynomials of half the degree

Ae(x) = 4 + 3x + 2x
2 + 1x

3

Ao(x) = 1 + 2x + 3x
2 + 4x

3

The FFT calls itself on both of these smaller polynomials. Those recursive calls evaluate
Ae, Ao on the 4 roots of unity w1, w3, w5, w7 which are {1, i,�1,�i}. These calls return:

1 i -1 -i
FFT on Ae: { 10, 2 + 2i, 2, 2 � 2i }
FFT on Ao: { 10, �2 � 2i, �2, �2 + 2i }

Finally, in order to combine these sub-results, we use the equation

A(x) = Ae(x
2) + xAo(x

2)

A(w1) = Ae(w
2
1) + w1 Ao(w

2
1) = Ae(1) + 1Ao(1) = 10 + 1 · 10 = 20

A(w2) = Ae(w
2
2) + w2 Ao(w

2
2) = Ae(i) + w2 Ao(i) = (2 + 2i) + w2(�2 � 2i)

A(w3) = Ae(i
2) + iAo(i

2) = 2 � 2i

A(w4) = Ae(�i) + w4 Ao(�i) = (2 � 2i) + w4(�2 + 2i)

A(w5) = Ae(1)� Ao(1) = 10 � 10 = 0
A(w6) = Ae(i) + w6 Ao(i) = (2 + 2i) + w6(�2 � 2i)

A(w7) = Ae(�1)� iAo(�1) = 2 + 2i

A(w8) = Ae(�i) + w8 Ao(�i) = (2 � 2i) + w8(�2 + 2i)

problem 4 Lasers!

The NASA Near Earth Object Program lists potential future Earth impact events that the
JPL Sentry System has detected based on currently available observations. Sentry is a
highly automated collision monitoring system that continually scans the most current
asteroid catalog for possibilities of future impact with Earth over the next 100 years.

This system allows us to predict that i years from now, there will be xi tons of asteroid
material that has near-Earth trajectories. In the mean time, we can build a space laser
that can blast asteroids. However, each laser blast will require exajoules of energy, and so
there will need to be a recharge period on the order of years between each use of the laser.
The longer the recharge period, the stronger the laser blast; e.g. after j years of charging,
the laser will have enough power to obliterate dj tons of asteroid material. This problem
explores the best way to use such a laser.

H3-3

Alf

A(x) = 4 + 1x + 3x2 + 2x3 + 2x4 + 3x5 + 1x6 + 4x7

Ae x It 35 21 E
Ao x It 2x 3 2 4

3

The Fft will evaluate Ae the 4th roots ofunity
Ao a e

a e c

4throots 1,4 i

14 1 1 1 i i 1 31 Ei I

A(x) = 4 + 1x + 3x2 + 2x3 + 2x4 + 3x5 + 1x6 + 4x7

What can you
do with the

FFT?

a1a2a3

b1b2b3

a0

b0
★

a3b3 a2b3 a1b3 a0b3

a3b2 a2b2 a1b2 a0b2

a3b1 a2b1 a1b1 a0b1

a3b0 a2b0 a1b0 a0b0

JAY
dot axe art east

C(x) =

a3b3x6+
(a3b2 + a2b3)x5+
(a3b1 + a2b2 + a1b3)x4+
(a3b0 + a2b1 + a1b2 + a0b3)x3+
(a2b0 + a1b1 + a0b2)x2+
(a1b0 + a0b1)x+
a0b0

A(x) = a3x
3 + a2x

2 + a1x+ a0

B(x) = b3x
3 + b2x

2 + b1x+ b0

10 Acro Boo 9 b

y=x+1

y=2x+1
it 21

e If
3
in

n

y=x+1

y=2x+1

IM 231

21

I 2

★a0a1a2a3 b3 b2 b1 b0

A(x) = a0 + a1x+ a2x
2 + a3x

3 + 0x4 + 0x5 + 0x6 + 0x7

B(x) = b0 + b1x+ b2x
2 + b3x

3 + 0x4 + 0x5 + 0x6 + 0x7i
FFT CA FFTCB

points n points

if these points together

Run iffy on the results

★a0a1a2a3 b3 b2 b1 b0

A(!0) A(!1) A(!2) A(!7)....

A(x) = a0 + a1x+ a2x
2 + a3x

3 + 0x4 + 0x5 + 0x6 + 0x7

B(x) = b0 + b1x+ b2x
2 + b3x

3 + 0x4 + 0x5 + 0x6 + 0x7

★a0a1a2a3 b3 b2 b1 b0

A(!0) A(!1) A(!2) A(!7)....

A(x) = a0 + a1x+ a2x
2 + a3x

3 + 0x4 + 0x5 + 0x6 + 0x7

B(x) = b0 + b1x+ b2x
2 + b3x

3 + 0x4 + 0x5 + 0x6 + 0x7

B(!7)B(!0) B(!1) B(!2)
....

FFT

FFT

★a0a1a2a3 b3 b2 b1 b0

A(!0) A(!1) A(!2) A(!7)....

C(!2)C(!0) C(!1) C(!7)
....

A(x) = a0 + a1x+ a2x
2 + a3x

3 + 0x4 + 0x5 + 0x6 + 0x7

B(x) = b0 + b1x+ b2x
2 + b3x

3 + 0x4 + 0x5 + 0x6 + 0x7

B(!7)B(!0) B(!1) B(!2)
....

FFT

FFT
o d o

11 I l

★a0a1a2a3 b3 b2 b1 b0

A(!0) A(!1) A(!2) A(!7)....

C(!2)C(!0) C(!1) C(!7)
....

A(x) = a0 + a1x+ a2x
2 + a3x

3 + 0x4 + 0x5 + 0x6 + 0x7

B(x) = b0 + b1x+ b2x
2 + b3x

3 + 0x4 + 0x5 + 0x6 + 0x7

B(!7)B(!0) B(!1) B(!2)
....

FFT

FFT

C(x) = c0 + c1x+ c2x
2 + · · · c7x7

IFFT

evaluate at base 10

application to mult
7 8 9 4 3 21 1★

a b c dka
ra

ts
ub

a

application to mult
7 8 9 4 3 21 1★

a b c dka
ra

ts
ub

a

https://en.wikipedia.org/wiki/File:Integer_multiplication_by_FFT.svg

Schönhage–Strassen ‘71

Fürer ‘07

O(n log n log log n)

Multiplying n-bit
numbers

Harvey-van der Hoeven ‘20 O(n log n)
O(n log n4log*(n))
0

p

https://en.wikipedia.org/wiki/File:Integer_multiplication_by_FFT.svg

A GMP-BASED IMPLEMENTATION OF SCHÖNHAGE-STRASSEN’S
LARGE INTEGER MULTIPLICATION ALGORITHM

PIERRICK GAUDRY, ALEXANDER KRUPPA, AND PAUL ZIMMERMANN

Abstract. Schönhage-Strassen’s algorithm is one of the best known algorithms for multi-
plying large integers. Implementing it efficiently is of utmost importance, since many other
algorithms rely on it as a subroutine. We present here an improved implementation, based
on the one distributed within the GMP library. The following ideas and techniques were
used or tried: faster arithmetic modulo 2n + 1, improved cache locality, Mersenne trans-
forms, Chinese Remainder Reconstruction, the

√
2 trick, Harley’s and Granlund’s tricks,

improved tuning. We also discuss some ideas we plan to try in the future.

Introduction

Since Schönhage and Strassen have shown in 1971 how to multiply two N -bit integers in
O(N log N log log N) time [21], several authors showed how to reduce other operations —
inverse, division, square root, gcd, base conversion, elementary functions — to multiplication,
possibly with log N multiplicative factors [5, 8, 17, 18, 20, 23]. It has now become common
practice to express complexities in terms of the cost M(N) to multiply two N -bit numbers,
and many researchers tried hard to get the best possible constants in front of M(N) for the
above-mentioned operations (see for example [6, 16]).

Strangely, much less effort was made for decreasing the implicit constant in M(N) itself,
although any gain on that constant will give a similar gain on all multiplication-based op-
erations. Some authors reported on implementations of large integer arithmetic for specific
hardware or as part of a number-theoretic project [2, 10]. In this article we concentrate on
the question of an optimized implementation of Schönhage-Strassen’s algorithm on a classical
workstation.

In the last years, the multiplication of large integers has found several new applications
in “real life”, and not only in computing billions of digits of π. One such application is the
segmentation method (called Kronecker substitution in [25]) to reduce the multiplication of
polynomials with integer coefficients to one huge integer multiplication; this is used for exam-
ple in the GMP-ECM software [27]. Another example is the multiplication or factorization
of multivariate polynomials [23, 24].

In this article we detail several ideas or techniques that may be used to implement
Schönhage-Strassen’s algorithm (SSA) efficiently. As a consequence, we obtain what we
believe is the best existing implementation of SSA on current processors; this implementa-
tion might be used as a reference to compare with other algorithms based on Fast Fourier
Transform, in particular those using complex floating-point numbers.

The paper is organized as follows: §1 revisits the original SSA and defines the notations
used in the rest of the paper; §2 describes the different ideas and techniques we tried, explains
which ones were useful, and which ones were not; finally §3 provides timing figures and graphs
obtained with our new GMP implementation, and compares it to other implementations.

1

Applications of FFT

Applications of FFT

418.127418.222 417.929 414.795 400.868408.15398.417 397.617 401.902 405.7328 411.8386

1 6 10 10 6 1}
408.201

418.127418.222 417.929 414.795 400.868408.15398.417 397.617 401.902 405.7328 411.8386

1 6 10 10 6 1}
408.201

1 6 10 10 6 1}

418.127418.222 417.929 414.795 400.868408.15398.417 397.617 401.902 405.7328 411.8386

1 6 10 10 6 1}
408.201

1 6 10 10 6 1}
1 6 10 10 6 1}

418.127418.222 417.929 414.795 400.868408.15398.417 397.617 401.902 405.7328 411.8386

1 6 10 10 6 1}
408.201

1 6 10 10 6 1}
1 6 10 10 6 1}

1 6 10 10 6 1}
1 6 10 10 6 1}

1 6 10 10 6 1}

String matching with *
ACAAGATGCCATTGTCCCCCGGCCTCCTGCTGCTGCTGCTCTCCGGGGCCACGGCCACCGCTGCCCTGCC
CCTGGAGGGTGGCCCCACCGGCCGAGACAGCGAGCATATGCAGGAAGCGGCAGGAATAAGGAAAAGCAGC
CTCCTGACTTTCCTCGCTTGGTGGTTTGAGTGGACCTCCCAGGCCAGTGCCGGGCCCCTCATAGGAGAGG
AAGCTCGGGAGGTGGCCAGGCGGCAGGAAGGCGCACCCCCCCAGCAATCCGCGCGCCGGGACAGAATGCC
CTGCAGGAACTTCTTCTGGAAGACCTTCTCCTCCTGCAAATAAAACCTCACCCATGAATGCTCACGCAAG
TTTAATTACAGACCTGAA

Looking for all occurrences of

GGC*GAG*C*GC

where I don't care what the * symbol is.

