
feb 4/7 2022
shelat

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \star\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right]=
$$

$$
\begin{aligned}
{\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \star\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right] } & =\left[\begin{array}{cc}
5+14 & 6+16 \\
15+28 & 18+32
\end{array}\right] \\
& =\left[\begin{array}{ll}
19 & 22 \\
43 & 50
\end{array}\right]
\end{aligned}
$$

$$
\left[\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\
\vdots & & & \\
a_{n, 1} & a_{n, 2} & \cdots & a_{n, n}
\end{array}\right]\left[\begin{array}{cccc}
b_{1,1} & b_{1,2} & \cdots & b_{1, n} \\
b_{2,1} & b_{2,2} & \cdots & b_{2, n} \\
\vdots & & & \\
b_{n, 1} & b_{n, 2} & \cdots & b_{n, n}
\end{array}\right]=\left[\begin{array}{cccc}
c_{1,1} & c_{1,2} & \cdots & c_{1, n} \\
c_{2,1} & c_{2,2} & \cdots & c_{2, n} \\
\vdots & & & \\
c_{n, 1} & c_{n, 2} & \cdots & c_{n, n}
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\
\vdots & & & \\
a_{n, 1} & a_{n, 2} & \cdots & a_{n, n}
\end{array}\right]\left[\begin{array}{cccc}
b_{1,1} & b_{1,2} & \cdots & b_{1, n} \\
b_{2,1} & b_{2,2} & \cdots & b_{2, n} \\
\vdots & & & \\
b_{n, 1} & b_{n, 2} & \cdots & b_{n, n}
\end{array}\right]=\left[\begin{array}{cccc}
c_{1,1} & c_{1,2} & \cdots & c_{1, n} \\
c_{2,1} & c_{2,2} & \cdots & c_{2, n} \\
\vdots & & & \\
c_{n, 1} & c_{n, 2} & \cdots & c_{n, n}
\end{array}\right]} \\
& n \\
& c_{i, j}= \\
& \sum a_{i, k} \cdot b_{k, j} \\
& k=1
\end{aligned}
$$

$$
\left[\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\
\vdots & & & \\
a_{n, 1} & a_{n, 2} & \cdots & a_{n, n}
\end{array}\right]\left[\begin{array}{cccc}
b_{1,1} & b_{1,2} & \cdots & b_{1, n} \\
b_{2,1} & b_{2,2} & \cdots & b_{2, n} \\
\vdots & & & \\
b_{n, 1} & b_{n, 2} & \cdots & b_{n, n}
\end{array}\right]=\left[\begin{array}{cccc}
c_{1,1} & c_{1,2} & \cdots & c_{1, n} \\
c_{2,1} & c_{2,2} & \cdots & c_{2, n} \\
\vdots & & & \\
c_{n, 1} & c_{n, 2} & \cdots & c_{n, n}
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{cc}
E & F \\
G & H
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] \times\left[\begin{array}{cc}
E & F \\
G & H
\end{array}\right]} \\
& \quad=\left[\begin{array}{ll}
A E+B G & A F+B H \\
C E+D G & C F+D H
\end{array}\right]
\end{aligned}
$$

$$
\begin{gathered}
{\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{cc}
E & F \\
G & H
\end{array}\right]} \\
=\left[\begin{array}{cc}
A E+B G & A F+B H \\
C E+D G & C F+D H
\end{array}\right] \\
T(n)=8 T(n / 2)+\Theta\left(n^{2}\right) \\
\Theta\left(n^{3}\right)
\end{gathered}
$$

$$
=\left[\begin{array}{cc}
A E+B G & A F+B H \\
C E+D G & C F+D H
\end{array}\right]
$$

[Strassen]

$$
\begin{aligned}
& P_{1}=A(F-H) \\
& P_{2}=(A+B) H \\
& P_{3}=(C+D) E \\
& P_{4}=D(G-E) \\
& P_{5}=(A+D)(E+H) \\
& P_{6}=(B-D)(G+H) \\
& P_{7}=(A-C)(E+F)
\end{aligned}
$$

$\stackrel{R=P_{5}+P_{4}-P_{2}+P_{6}}{=}\left[\begin{array}{cc}A E+B G & A F+B H S \\ C E+D G & C F+D H \\ T=P_{3}+P_{4} & U=P_{5}+P_{1}-P_{3}-P_{7}\end{array}\right]=P_{1}+P_{2}$

[strassen]

$$
\begin{aligned}
& P_{1}=A(F-H) \\
& P_{2}=(A+B) H \\
& P_{3}=(C+D) E \\
& P_{4}=D(G-E) \\
& P_{5}=(A+D)(E+H) \\
& P_{6}=(B-D)(G+H) \\
& P_{7}=(A-C)(E+F)
\end{aligned}
$$

$\stackrel{R=P_{5}+P_{4}-P_{2}+P_{6}}{=}\left[\begin{array}{cc}A E+B G & A F+B H S \\ C E+D G & C F+D H \\ T=P_{3}+P_{4} & U=P_{5}+P_{1}-P_{3}-P_{7}\end{array}\right]=P_{1}+P_{2}$

[strassen]

$$
\begin{aligned}
& P_{1}=A(F-H) \\
& P_{2}=(A+B) H \\
& P_{3}=(C+D) E \\
& P_{4}=D(G-E) \\
& P_{5}=(A+D)(E+H) \\
& P_{6}=(B-D)(G+H) \\
& P_{7}=(A-C)(E+F)
\end{aligned}
$$

taking this idea further

3×3 matricies [Laderman'75] in 23 mults

1978 victor pan method

70x70 matrix using 143640 mults
what is the recurrence:

NEMAAN
problem: given a list of n elements, find the element of rank $\mathrm{n} / 2$. (half are larger, half are smaller)
problem: given a list of n elements, find the element of rank (612). (half are larger, half are smaller) can generalize to i

first solution: sort and pluck.

problem: given a list of n elements, find the element of rank i.
key insight:
we do not have to "fully" sort. semi sort can suffice.

00000000000000000000
pick first element
partition list about this one see where we stand

review: how to partition a list

review: how to partition a list

GOAL: start with THIS LIST and END with THAT LIST

review: how to partition a list

partitioning a list about an element takes linear time.

select $(i, A[1, \ldots, n])$
select $(i, A[1, \ldots, n])$
-handle base case of 1 element. partition list about first element \leftarrow if pivot \underline{p} is position i, return pivot else if pivot p is in position $>\mathrm{i}$ select $(i, A[1, \ldots, p-1])$ else select $((i-p-1), A[p+1, \ldots, n])$
handle base case.
partition list about first element if pivot is position i, return pivot else if pivot is in position $>\mathbf{i}$ select $(i, A[1, \ldots, p-1])$ else select $((i-p-1), A[p+1, \ldots, n])$

Assume our partition always splits list into two eql parts
handle base case.
partition list about first element if pivot is position i , return pivot
else if pivot is in position $>\mathrm{i}$ select $(i, A[1, \ldots, p-1])$ else select $((i-p-1), A[p+1, \ldots, n])$

$$
T(n)=T(n / 2)+O(n)
$$

problem: what if we always pick bad partitions?

problem: what if we always pick bad partitions?

problem: what if we always pick bad partitions?
select $(i, A[1, \ldots, n])$
handle base case.
partition list about first element if pivot is position i, return pivot
else if pivot is in position $>\mathbf{i}$ select $(i, A[1, \ldots, p-1])$ else select $((i-p-1), A[p+1, \ldots, n])$
handle base case.
partition list about first element
if pivot is position i , return pivot
else if pivot is in position $>\mathrm{i}$ select $(i, A[1, \ldots, p-1])$ else select $((i-p-1), A[p+1, \ldots, n])$

$$
\begin{gathered}
T(n)=\frac{T(n-1)}{} \begin{array}{c}
(n+O(n) \\
\Theta\left(n^{2}\right)
\end{array}
\end{gathered}
$$

a good partition element
partition $(\underline{A[1, \ldots, n]})$
a good partition element
partition $(A[1, \ldots, n])$
produce an element where 30\% smaller, 30\% larger

solution: bootstrap

partition $(A[1, \ldots, n])$
$(12) 13(3) 7(19)(11)(13)(2)$

divide list into groups of 5 elements find median of each small list using brute force gather all medians
return the median of this new list
"Median - of -medians"

use the median of this
smaller list as the partition element
partition $(A[1, \ldots, n])$

Base case: if list <5 elements divide list into groups of 5 elements find median of each small list using brute forcegather all medians call select(...) on this sublist to find median $\rightarrow S\left(\left[\frac{n}{5}\right]\right)$ return the result

$$
P(n)=\theta(n)+S\left(\left\lceil\Gamma_{5}^{n}\right\rceil\right)
$$

Base case
divide list into groups of 5 elements
find median of each small list
gather all medians
call select(...) on this sublist to find median return the result

$$
P(n)=S(\lceil n / 5\rceil)+O(n)
$$

a nice property of our partition

a nice property of our partition

SWITCH TO A BIGGER EXAMPLE

SWITCH TO A BIGGER EXAMPLE
These yellow elements are all smaller than the median. How many are there?

$$
3\left(\frac{\left\lceil\frac{n}{5}\right]}{2}-2\right)
$$

T
\# if colurers in the yellow area excluding first \& last

These yellow elements are all smaller than the median. How many are there?

$$
\begin{gathered}
3\left(\left\lceil\frac{1}{2}\lceil n / 5\rceil\right\rceil-2\right) \\
\geq \frac{3 n}{10}-6
\end{gathered}
$$

There are $\lceil n / 5\rceil / 2$ columns. Ignoring the first and last, each column has 3 elements in it that are smaller than the median.

$$
\begin{aligned}
& n-\left(\frac{3 n}{10}-6\right) \\
\leqslant & \frac{7 n}{10}+6 \text { element are large }
\end{aligned}
$$

a nice property of our partition

$$
\begin{gathered}
3\left(\left\lceil\frac{1}{2}\lceil n / 5\rceil\right\rceil-2\right) \\
\geq \frac{3 n}{10}-6
\end{gathered}
$$

$$
\text { loverbou-d } 10
$$

this implies there are at most $\frac{7 n}{10}+6$ numbers
larger than /smaller
T these are

$$
\begin{aligned}
& \text { larger than } \\
& \text { partition }
\end{aligned}
$$

a nice property of our partition

The median-of-medians is guaranteed to have a linear fraction of the input that is smaller and larger than it.
select $(i, A[1, \ldots, n])$
handle base case for small list else pivot $=$ FindPartitionValue $(A, n) \leftarrow P(n)$ partition list about pivot $\theta(n)$ if pivot is position i , return pivot else if pivot is in position $>\mathrm{i}$ select $(i, A[1, \ldots, p-1]) \cdot S\left(\frac{Z_{1}}{c_{0}}+6\right)$ else select $((i-p-1), A[p+1, \ldots, n]) \cdot S\left(\frac{\eta_{n}}{10}+6\right)$

$$
\begin{aligned}
S(n) & =S\left(\left[\frac{7 n}{10}+6\right\rceil\right)+\underline{\underline{P(n)}}+\theta(n) \\
& =S\left(\left\lceil\frac{7 n}{10}+7\right\rceil\right)+S\left(\left\lceil\frac{n}{5}\right\rceil\right)+\theta(n)=\theta(n)
\end{aligned}
$$

FindPartition $(A[1, \ldots, n])$
divide list into groups of 5 elements find median of each small list gather all medians
call select(...) on this sublist to find median return the result

$$
P(n)=S(\lceil n / 5\rceil)+O(n)
$$

handle base case for small list else pivot = FindPartitionValue(A,n) partition list about pivot if pivot is position i , return pivot else if pivot is in position $>\mathrm{i}$ select $(i, A[1, \ldots, p-1])$ else select $((i-p-1), A[p+1, \ldots, n])$

$$
S(n)=S(\lceil n / 5\rceil)+\Theta(n)+S(\lceil 7 n / 10+6\rceil)
$$

$\Theta(n)$
You can use induction like in the homework problem.

How to get intuition for $S(n)$

Fourier transforms are used in signals processing and EE. We are going to present a CS interpretation of the technique.

1. Changing representation from

Imporant polynomial (coefficient form) into polynomial (point-wise form)
2. Clever divide and conquer

$$
\left.\begin{array}{ll}
f(x)=5+2 x+x^{2} \\
\underline{\underline{f(x)}}=5 \\
f(5)=40 &
\end{array} \quad \begin{array}{c}
\text { corficict } \\
\text { reprasentation } \\
f(2)
\end{array}\right)
$$

$$
\begin{aligned}
y & =a x^{2}+b x+c \\
-5 & =a 0+b \phi+c \\
30 & =a\left(5^{2}\right)=b 5+c \\
515 & =a\left(10^{2}\right)+b 10+c
\end{aligned}
$$

$$
\begin{aligned}
& y=a x^{2}+b x+c \\
& -5=a 0+b \varphi+c \\
& \rightarrow \quad 30=a\left(5^{2}\right) \cdot b 5+c \\
& 515=a\left(10^{2}\right)+b 10+c \\
& \text { Solving this system yields } \\
& y=7 x^{2}-38 x-5
\end{aligned}
$$

$$
A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x-\frac{n-1}{}
$$

This is a polynomial. Its standard representation is given by its coefficients.
or
iTS evaluation at n different points

Two ways to represent a polynomial.

FFT
input: $\underline{a_{0}}, a_{1}, a_{2}, \ldots, a_{n-1} \quad n$ coefficient

$$
\overline{A(x)}=a_{0}+a_{1} x+\bar{a}_{2} x^{2}+\cdots+a_{n-1} x^{n-1}
$$

output: evaluation of A at n different pinits.

FFT

$$
\begin{aligned}
& \text { input: } a_{0}, a_{1}, a_{2}, \ldots, a_{n-1} \\
& \qquad A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}
\end{aligned}
$$

output: evaluate polynomial A at (any) n different points.

Later, we shall see that the same ideas for FFT can be used to implement Inverse-FFT.

Inverse FFT: Given n-points,

The same ideas for FFT can be used to implement Inverse-FFT.

Inverse FFT: Given n-points,

$$
y_{0}, y_{1}, \ldots, y_{n-1}
$$

find a degree n polynomial A such that

$$
y_{i}=A\left(\omega_{i}\right)
$$

EFT

$$
\begin{aligned}
& \text { input: } a_{0}, a_{1}, a_{2}, \ldots, a_{n-1} \\
& \qquad A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}
\end{aligned}
$$

output: evaluate polynomial A at (any) n different points.

Brute force \& evaluate at

$$
1,2,3, \ldots n \Rightarrow n \cdot n=\theta\left(n^{2}\right)
$$

algorithm

$$
A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}
$$

Brute force method to evaluate A at n points:

$$
\theta\left(n^{2}\right)
$$

solve the large problem by solving smaller problems and combining solutions

$$
\begin{aligned}
& \text { Am for this } \\
& \quad T(n)=T\left(\frac{n}{2}\right)+\theta(n)=\theta(n \log n)
\end{aligned}
$$

$$
\begin{aligned}
A(x) & =a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1} \\
& =a_{0}+\begin{array}{c}
a_{2} x^{2}+a_{4} x^{4}+\cdots a_{n-2} x^{n-2} \\
a_{1} x^{2}+a_{3} x^{3}+a_{5} x^{5}+\cdots a_{n-1} x^{n-1}
\end{array}
\end{aligned}
$$

Define:

$$
\begin{aligned}
& A_{e}(x)=a_{0}+a_{2} x+a_{4} x^{2}+\cdots+a_{n-2} x^{(n-2 / 2)} \\
& A_{0}(x)=a_{1}+a_{3} x+a_{5} x^{2}+\cdots+a_{n-1} x^{(n-2) / 2}
\end{aligned} \begin{gathered}
\text { Both are } \\
\text { degree } \\
\left(\frac{n-2}{2}\right)
\end{gathered}
$$

$$
A(x)=A_{e}\left(x^{2}\right)+x-A_{0}\left(x^{2}\right)
$$

$$
\begin{aligned}
A(x)= & a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1} \\
= & a_{0}+a_{2} x^{2}+a_{4} x^{4}+\cdots+a_{n-2} x^{n-2} \\
& +a_{1} x+a_{3} x^{3}+a_{5} x^{5}+\cdots+a_{n-1} x^{n-1}
\end{aligned}
$$

$$
\begin{aligned}
& A_{e}(x)=a_{0}+a_{2} x+a_{4} x^{2}+\cdots+a_{n} x^{(n-2) / 2} \\
& A_{o}(x)=a_{1}+a_{3} x+a_{5} x^{2}+\cdots+a_{n-1} x^{(n-2) / 2}
\end{aligned}
$$

$$
A(x)=A_{e}\left(x^{2}\right)+x A_{o}\left(x^{2}\right)
$$

$$
A(x)=A_{e}\left(x^{2}\right)+x A_{o}\left(x^{2}\right)
$$

suppose we had already had eval of A_{e}, A_{o} on the values $\{4,9,16,25\}$
$A_{e}(4) \quad A_{0}(4)$
$A_{e}(9) \quad A_{0}(9)$
$A_{e}(16) \quad A_{0}(16)$
$A_{e}(25) \quad A_{0}(25)$

$$
\begin{aligned}
& A(2)=A_{e}(4)+2 \cdot A_{0}(4) \\
& A(-2)=A_{e}(4)-2 \cdot A_{0}(4) \\
& A(3)=A_{e}(q)+3 \cdot A_{0}(q) \\
& A(-3)=A_{e}(q)-3 \cdot A_{0}(q)
\end{aligned}
$$

$$
A(x)=A_{e}\left(x^{2}\right)+x A_{o}\left(x^{2}\right)
$$

suppose we had already had eval of Ae,Ao on $\{4,9,16,25\}$

$$
\begin{cases}A_{e}(4) & A_{0}(4) \\ A_{e}(9) & A_{0}(9) \\ A_{e}(16) & A_{0}(16) \\ A_{e}(25) & A_{0}(25)\end{cases}
$$

Then we could compute 8 terms:

$$
\begin{aligned}
& A(2)=A_{e}(4)+2 A_{o}(4) \\
& A(-2)=A_{e}(4)+(-2) A_{o}(4) \\
& A(3)=A_{e}(9)+3 A_{o}(9) \\
& A(-3)=A_{e}(9)+(-3) A_{o}(9) \\
& \ldots A(4), A(-4), A(5), A(-5)
\end{aligned}
$$

What we need

We could compute

$$
\begin{array}{r}
A(2) \\
A(-2) \\
A(3) \\
A(-3) \\
A(4) \\
A(-4) \\
A(5) \\
A(-5) \\
\text { 8, degree } n
\end{array}
$$

What we need

We could compute If we had...

$\left.\left.\begin{array}{rl}A(2) \\ A(-2) \\ A(3) \\ A(-3) \\ A(4) \\ A(-4) \\ A(5) \\ A(-5)\end{array}\right] \quad \begin{array}{l}A_{e}(4), A_{o}(4) \\ A_{e}(9), A_{o}(9) \\ A_{e}(16), A_{o}(16) \\ A_{e}(25), A_{o}(25)\end{array}\right] \quad$ Aee 16$) A_{e o}(16)$	
8, degree n	

What we need

| We could compute | If we had... |
| :---: | :---: | | Which we |
| :--- |
| could compute | If we had...

What we need

We could compute
A(2)
$A(-2)$
A(3)
A(-3)
A(4)
A(-4)
A(5)
$A(-5)$

If we had...

$$
A_{e}(4), A_{o}(4)
$$

$$
A_{e}(9), A_{o}(9)
$$

$A_{e}(16), A_{o}(16)$
$A_{e}(25), A_{o}(25)$

Which we could compute

If we had...

$$
\begin{array}{r}
A_{e e}(16), A_{e o}(16), A_{o e}(16), A_{o o}(16) \\
\left.\overline{A_{e e}(81)}\right), A(81), A_{o o}(81), A\left(\begin{array}{l}
o o \\
(81)
\end{array}\right. \\
A_{e e}(256), A_{e o}(256), A_{o e}(256), A_{o o}(256) \\
A_{e e}(625), A_{e o}(625), A_{o e}(625), A_{o o}(625)
\end{array}
$$

What we need

We could compute
A(2)
A(-2)
A(3)
A(-3) A(4)
A(-4)
A(5)
A(-5)

Which we could compute

If we had...
$A_{e}(4), A_{o}(4)$
$A_{e}(9), A_{o}(9)$
$A_{e}(16), A_{o}(16)$
$A_{e}(25), A_{o}(25)$
$A_{e e}(16), A_{e o}(16), A_{o e}(16), A_{o o}(16)$

$$
A_{e e}(81), A_{e o}(81), A_{o e}(81), A_{o o}(81)
$$

$$
A_{e e}(256), A_{e o}(256), A_{o e}(256), A_{o o}(256)
$$

$$
A_{e e}(625), A_{e o}(625), A_{o e}(625), A_{o o}(625)
$$

We need a better way to pick the points. The FFT uses the roots of unity.

8 degree $n / 2$ 16 degree $n / 4$

Roots of unity

$$
x^{n}=1
$$

should have n solutions what are they?

$$
\begin{aligned}
& \text { Remember this? } \\
& e^{2 \pi i}=1
\end{aligned}
$$

$$
\begin{aligned}
& x^{n}=1 \\
& \text { the } \mathrm{n} \text { solutions are: } \\
& \begin{array}{l}
\text { jun }[0, n-1]
\end{array} \quad \text { consider }\left\{1, e^{2 \pi i / n} e^{2 \pi i 2 / n}, e^{2 \pi i 3 / n}, \ldots, e^{2 \pi i(n-1) / n}\right\}, \begin{array}{l}
n^{\text {th }} \\
\text { roots of } \\
\text { Unity }
\end{array} \\
& {\left[e^{2 \pi i \cdot j / n}\right]^{n}=\left(e^{2 \pi i}\right)^{j}=1^{j}=1}
\end{aligned}
$$

$$
x^{n}=1
$$

the n solutions are:
consider

$$
e^{2 \pi i j / n} \quad \text { for } j=0,1,2,3, \ldots, \mathrm{n}-\mathrm{I}
$$

$$
\left[e^{(2 \pi i / n) j}\right]^{n}=\left[e^{(2 \pi i / n) n}\right]^{j}=\left[e^{2 \pi i}\right]^{j}=1^{j}
$$

$$
\underbrace{e^{2 \pi i j / n}}=\underbrace{\omega_{j, n}^{\text {omega }},} \text { is an } n^{\text {th }} \text { root of unity }
$$

$$
\omega_{0, n}, \omega_{2, n}, \ldots, \omega_{n-1, n}
$$

What is this number?

$$
\begin{aligned}
& e^{2 \pi i j / n}=\omega_{j, n} \text { is an nh root of unity } \\
& \omega_{1,8}=e^{2 \pi i / 8} \quad \text { what is this ?? }
\end{aligned}
$$

What is this number?

$e^{2 \pi i j / n}=\omega_{j, n}$ is an $n^{\text {th }}$ root of unity
$\underline{e}^{i x}=\underline{\cos (x)+i \sin (x)}$

$$
e^{2 \pi i j / n}=\cos (2 \pi j / n)+i \sin (2 \pi j / n)
$$

$$
\begin{aligned}
& e^{2 \pi i j / n}=\omega_{j, n} \text { is an nth root of unity } \\
& \omega_{0, n}, \omega_{2, n}, \ldots, \omega_{n-1, n}
\end{aligned}
$$

Lets compute $\omega_{1,8}$

$$
\cos (45)=\frac{\sqrt{2}}{2}=\frac{1}{\sqrt{2}}
$$

$$
\begin{aligned}
\omega_{1,8} & =\cos (2 \pi / g)+i \cdot \sin (2 \pi / g) \\
& =\cos \left(45^{\circ}\right)+i \cdot \sin \left(45^{\circ}\right) \\
& =\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)^{y}=1
\end{aligned}
$$

Compute all 8 roots of unity

$e^{2 \pi \cdot 0}=\underline{\omega_{0}} \underline{\omega}^{\omega_{1}} e^{\frac{\omega_{2}}{2 \pi \cdot 2 / 8}}=e^{\pi / 2}=\cos (90)+i \cdot \sin (90)$

Then graph them

roots of unity
 $$
x^{n}=1
$$

should have n solutions

$$
e^{2 \pi i j / n}=\cos (2 \pi j / n)+i \sin (2 \pi j / n)
$$

roots of unity
 $$
x^{n}=1
$$

should have n solutions

$$
e^{2 \pi i j / n}=\cos (2 \pi j / n)+i \sin (2 \pi j / n)
$$

Squaring the $n^{\text {th }}$ roots of unity $x^{n}=1$

$$
\begin{aligned}
& \omega_{0} \quad \omega_{1}^{2}{ }_{2}^{2} \quad \omega_{2}^{2-1} \quad \omega_{3}^{2}=-\quad \omega_{4}^{2}=1 \quad \omega_{5}^{2}=\omega_{6}^{2} \quad \omega_{5}^{2}=1 \quad \omega_{7}^{2}=-i \\
& 1 \frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}} \quad \underline{i}-\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}} \quad-1-\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}} \quad-i \quad \frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}
\end{aligned}
$$

The: Squaring an $n^{\text {th }}$ root produces an $n / 2^{\text {th }}$ root.

$$
\begin{gathered}
\text { example: } \omega_{1,8}^{2}=\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)^{2} \\
=\frac{1}{2}+\frac{2 i}{2}+\frac{i^{2}}{2}=\frac{1}{2}+i+\frac{-1}{2}=i \\
\omega_{3, p}=\left(\frac{-1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)^{2}=\frac{1}{2}-\frac{2 i}{2}+\frac{i^{2}}{2}=\frac{1}{2}-i-\frac{1}{2}=-i
\end{gathered}
$$

Thm: Squaring an $\mathrm{n}^{\text {th }}$ root produces an $\mathrm{n} / 2^{\text {th }}$ root.
example: $\quad \omega_{1,8}=\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)$

$$
\begin{aligned}
\omega_{1,8}^{2}=\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)^{2} & =\left(\frac{1}{\sqrt{2}}\right)^{2}+2\left(\frac{1}{\sqrt{2}} \frac{i}{\sqrt{2}}\right)+\left(\frac{i}{\sqrt{2}}\right)^{2} \\
& =1 / 2+i-1 / 2 \\
& =i
\end{aligned}
$$

- Squaring the $\mathrm{n}^{\text {th }}$ roots of unity
 produces the $n / 2$ th roots of unity

$$
A(x)=A_{e}\left(x^{2}\right)+x A_{o}\left(x^{2}\right)
$$

evaluate at a root of unity

$$
A(x)=A_{e}\left(x^{2}\right)+x A_{o}\left(x^{2}\right)
$$

evaluate at a root of unity

$$
\begin{aligned}
& \text { dy" }{ }^{1 / 2} \quad d_{\text {g } / 2 / 2} \\
& A\left(\omega_{i, n}\right)=A_{e}\left(\omega_{i, n}^{2}\right)+\omega_{i, n} A_{o}\left(\omega_{i, n}^{2}\right) \\
& \text { all _ er root } \\
& \text { of unity }
\end{aligned}
$$

$$
T(n)=2 T\left(\frac{n}{2}\right)+\theta(n)
$$

$\operatorname{FFT}(\mathrm{f}=\mathrm{a}[\mathrm{I}, \ldots, \mathrm{n}])$
Evaluates degree \mathbf{n} poly on the $\mathbf{n}^{\text {th }}$ roots of unity
Base case: if A is degree 1 , seton $A(1)$
$E[\ldots]=F F_{T}\left(A_{e}\right)$ // returns te evaluated at the
$0[\ldots]=\operatorname{FFT}\left(A_{0}\right)$ n/2 roots of unity

Combine for $j=0 \ldots n-1$:

$$
A\left(w_{j, n}\right)=E\left[\left(w_{j, n}\right)^{2}\right]+w_{j, n} \cdot O\left[\left(w_{j, n}\right)^{2}\right]
$$

Retune the n results

FFT(f=a[I,..,n])

Evaluates degree \mathbf{n} poly on the $\mathbf{n}^{\text {th }}$ roots of unity
Base case if $\mathrm{n}<=2$
$E[. .]<.-\operatorname{FFT}\left(A_{e}\right) \quad / /$ eval $A e$ on $n / 2$ roots of unity
$\mathrm{O}[. .]<.-\mathrm{FFT}\left(\mathrm{A}_{0}\right) \quad / /$ eval Ao on $\mathrm{n} / 2$ roots of unity
$0, \ldots n-1$
For combine results using equation:

$$
\begin{aligned}
& A\left(\omega_{i, n}\right)=A_{e}\left(\omega_{i, n}^{2}\right)+\omega_{i, n} A_{o}\left(\omega_{i, n}^{2}\right) \\
& A\left(\omega_{i, n}\right)=A_{e}\left(\omega_{i} \bmod n / 2, \frac{n}{2}\right)+\omega_{i, n} A_{o}\left(\omega_{i} \bmod n / 2, \frac{n}{2}\right)
\end{aligned}
$$

Return n points.

$\operatorname{FFT}(4,1,3,2,2,3,1,4)$ the inpet
What does this function compute?

FFT(4, 1, 3, 2, 2, 3, 1, 4) Defines a polynomial A
What does this function compute?

$$
A(x)=
$$

It evaluates $4+1 x+3 x^{2}+2 x^{3}+2 x^{4}+3 x^{5}+1 x^{6}+4 x^{7}$
on the 8th roots of unity, which are

$$
\begin{aligned}
& A\left(w_{0}, 8\right), A(w, 8), A\left(w_{2}, 8\right) \cdots A(w \neq q) \\
& \text { ir } \theta(n \log n) \text { time }
\end{aligned}
$$

$\operatorname{FFT}(4,1,3,2,2,3,1,4)$
What does this function compute?

$$
A(x)=
$$

It evaluates $\underbrace{4+1 x+3 x^{2}+2 x^{3}+2 x^{4}+3 x^{5}+1 x^{6}+4 x^{7}}$
on the 8th roots of unity, which are

ω_{1}	ω_{2}	ω_{3}	ω_{4}	ω_{5}	ω_{6}	ω_{7}	ω_{8}
1	$\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}$	i	$\frac{-1}{\sqrt{2}}+\frac{i}{\sqrt{2}}$	-1	$\frac{-1}{\sqrt{2}}+\frac{-i}{\sqrt{2}}$	$-i$	$\frac{1}{\sqrt{2}}+\frac{-i}{\sqrt{2}}$

$$
\begin{aligned}
& A(x)=4+1 x+3 x^{2}+2 x^{3}+2 x^{4}+3 x^{5}+1 x^{6}+4 x^{7} \\
& A_{e}(x)=4+3 x+2 x^{2}+x^{3} \\
& A_{0}(x)=1+2 x+3 x^{2}+4 x^{3}
\end{aligned}
$$

The FFT will evalude te e the 4 th roots if unity' AD

Ht roots $\{1,-1, i,-i)$

$$
1^{4}=1,-1^{4}=1, i^{4}=\left(i^{2}\right)^{2}=(-1)^{2}=1(-i)^{4}=1
$$

EFT on

$$
A(x)=4+1 x+3 x^{2}+2 x^{3}+2 x^{4}+3 x^{5}+1 x^{6}+4 x^{7}
$$

$$
\begin{aligned}
& A_{e}(x)>4+3 x+2 x^{2}+I x^{3} \\
& A_{0}(x)=1+2 x+3 x^{2}+4 x^{3}
\end{aligned}
$$

$$
F F T\left(A_{l}\right) \stackrel{\text { returns }}{=}\left\{\begin{array}{cccl}
1 & i & -1 & -i \\
10 & 2+2 i & 2 & 2-2 i
\end{array}\right\}
$$

th rooks of unity are $\{1, i,-1,-i\}$

$$
F F T\left(A_{0}\right) \stackrel{\text { returns }}{=}\left\{\begin{array}{cccc}
1 & i & -1 & -i \\
10 & -2-2 i & -2 & -2+2 i
\end{array}\right\}
$$

What can you do with the
 FFT?

$$
\begin{aligned}
& A(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0} \\
& B(x)=b_{3} x^{3}+b_{2} x^{2}+b_{1} x+b_{0}
\end{aligned}
$$

$$
\begin{aligned}
& a_{3} b_{3} x^{6}+ \\
& \left(a_{3} b_{2}+a_{2} b_{3}\right) x^{5}+ \\
& \left(a_{3} b_{1}+a_{2} b_{2}+a_{1} b_{3}\right) x^{4}+ \\
C(x)= & \left(a_{3} b_{0}+a_{2} b_{1}+a_{1} b_{2}+a_{0} b_{3}\right) x^{3}+ \\
& \left(a_{2} b_{0}+a_{1} b_{1}+a_{0} b_{2}\right) x^{2}+ \\
& \left(a_{1} b_{0}+a_{0} b_{1}\right) x+ \\
& a_{0} b_{0}
\end{aligned}
$$

$$
C(10)=A(10) \cdot B C(0)=a \cdot b
$$

$$
\begin{aligned}
& A(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+0 x^{4}+0 x^{5}+0 x^{6}+0 x^{7} \\
& B(x)=b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+0 x^{4}+0 x^{5}+0 x^{6}+0 x^{7}
\end{aligned}
$$

FFT(A)
」 n points

FFT(B).
a points
\rightarrow multiply these points together

- Run IFFT on the results

23

$$
A(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+0 x^{4}+0 x^{5}+0 x^{6}+0 x^{7}
$$

$$
B(x)=b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+0 x^{4}+0 x^{5}+0 x^{6}+0 x^{7}
$$

$$
A\left(\omega_{0}\right) \quad A\left(\omega_{1}\right) \quad A\left(\omega_{2}\right)
$$

$$
\ldots \quad A\left(\omega_{7}\right)
$$

$$
\begin{aligned}
& A(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+0 x^{4}+0 x^{5}+0 x^{6}+0 x^{7} \\
& B(x)=b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+0 x^{4}+0 x^{5}+0 x^{6}+0 x^{7}
\end{aligned}
$$

$A\left(\omega_{0}\right)$	$A\left(\omega_{1}\right)$	$A\left(\omega_{2}\right)$	\ldots	$A\left(\omega_{7}\right)$	EET
$B\left(\omega_{0}\right)$	$B\left(\omega_{1}\right)$	$B\left(\omega_{2}\right)$	\cdots	$B\left(\omega_{7}\right)$	EEX

a3

$$
A(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+0 x^{4}+0 x^{5}+0 x^{6}+0 x^{7}
$$

$$
B(x)=b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+0 x^{4}+0 x^{5}+0 x^{6}+0 x^{7}
$$

$A\left(\omega_{0}\right)$	$A\left(\omega_{1}\right)$	$A\left(\omega_{2}\right)$	\ldots	$A\left(\omega_{7}\right)$
$\stackrel{\ominus}{B}\left(\omega_{0}\right)$	$B\left(\omega_{1}\right)$	$\stackrel{8}{B\left(\omega_{2}\right)}$	$B\left(\omega_{7}\right)$
(d)	,	(1		(1)
$C\left(\omega_{0}\right)$	$C\left(\omega_{1}\right)$	$C\left(\omega_{2}\right)$	$C\left(\omega_{7}\right)$

a3

$$
\begin{aligned}
& A(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+0 x^{4}+0 x^{5}+0 x^{6}+0 x^{7} \\
& B(x)=b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+0 x^{4}+0 x^{5}+0 x^{6}+0 x^{7}
\end{aligned}
$$

$$
\begin{array}{lllll}
A\left(\omega_{0}\right) & A\left(\omega_{1}\right) & A\left(\omega_{2}\right) & \ldots & A\left(\omega_{7}\right) \text { EET } \\
B\left(\omega_{0}\right) & B\left(\omega_{1}\right) & B\left(\omega_{2}\right) & \ldots & B\left(\omega_{7}\right) \text { EET } \\
C\left(\omega_{0}\right) & C\left(\omega_{1}\right) & C\left(\omega_{2}\right) & \ldots & C\left(\omega_{7}\right)
\end{array}
$$

$$
C(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots c_{7} x^{7}
$$

IEET

application to mult

$$
\Theta\left(\underline{n^{\log _{2} 3}}\right)
$$

application to mult

$$
\begin{aligned}
& T(n)=3 T(n / 2)+6 O(n) \\
& \Theta\left(n^{\log _{2} 3}\right)
\end{aligned}
$$

Multiplying n-bit numbers

Schönhage-Strassen '71
Fürer 'o7
Harvey-van der Hoeven '20 \uparrow

$O\left(n \log n 4^{\log ^{*}(n)}\right)$
$O(n \log n)$

GMP-BASED IMPLEMENTATION OF SCHÖNHAGE-STRASSEN'S

 JARGE INTEGER MULTIPLICATION ALGORITHMPIERRICK GAUDRY, ALEXANDER KRUPPA, AND PAUL ZIMMERMANN

Abstract

Schönhage-Strassen's algorithm is one of the best known algorithms for multiplying large integers. Implementing it efficiently is of utmost importance, since many other algorithms rely on it as a subroutine. We present here an improved implementation, based on the one distributed within the GMP library. The following ideas and techniques were used or tried: faster arithmetic modulo $2^{n}+1$, improved cache locality, Mersenne transforms, Chinese Remainder Reconstruction, the $\sqrt{2}$ trick, Harley's and Granlund's tricks, improved tuning. We also discuss some ideas we plan to try in the future.

INTRODUCTION

Since Schönhage and Strassen have shown in 1971 how to multiply two N-bit integers in $O(N \log N \log \log N)$ time [21], several authors showed how to reduce other operations inverse, division, square root, gcd, base conversion, elementary functions - to multiplication, possibly with $\log N$ multiplicative factors [5, 8, 17, 18, 20, 23]. It has now become common practice to express complexities in terms of the cost $M(N)$ to multiply two N-bit numbers, and many researchers tried hard to get the best possible constants in front of $M(N)$ for the above-mentioned operations (see for example $[6,16]$).

Strangely, much less effort was made for decreasing the implicit constant in $M(N)$ itself, although any gain on that constant will give a similar gain on all multiplication-based operations. Some authors reported on implementations of large integer arithmetic for specific hardware or as part of a number-theoretic project [2, 10]. In this article we concentrate on the question of an optimized implementation of Schönhage-Strassen's algorithm on a classical workstation.

Applications of FFT

Applications of FFT

String matching with *

 CCTGGAGGGTGGCCCCACCGGCCGAGACAGCGAGCATTTGCAGGAAGCGGCAGGAATAAGGAAAAGCAGC СТССТGАСТTССТСССТЕGTGGTTGAGTGGACCTCCCAGGCCAGTGCCGGGCCCTTCATAGGAGAGG AAGCTCGGGAGGTGCCAGGCGGCAGGAAGCCCCACCCCCCCAGCAATCCGCGCGCCGGGCAGATGCC
 ІІтаАТТАСАGACTGGA

Looking for all occurrences of
$66 C^{*} 6 A G^{*} C^{*} 6 C$
where I don't care what the * symbol is.

