
L8 5800
feb 11/14 2022

shelat

Billboard problem

I-93

x1 x2 xn

v1 v2 vn

D
distance parameter
Cannot place ads that are closer than D miles apart

X

location

vicus

I-93
x1 x2

v1 v2

D
x3

v3

x4

v4

x10

v10

x9

v9

x8

v8

x7

v7

x6

v6

x5

v5

Bestn =

((x1, . . . , xn)(v1, . . . , vn), D)Input is locations Iwcounty
distance

the maximum of viewers for your campaign on 193
subject to the D repetition rule ie do

not place ads within D feetof one
another

I-93
x1 x2

v1 v2

D
x3

v3

x4

v4

x10

v10

x9

v9

x8

v8

x7

v7

x6

v6

x5

v5

Bestn =

((x1, . . . , xn)(v1, . . . , vn), D)Input is

Max viewers for a campaign that uses
billboards {1…n} with separation D.

I-93
x1 x2

v1 v2

D
x3

v3

x4

v4

x10

v10

x9

v9

x8

v8

x7

v7

x6

v6

x5

v5

Bestn =

((x1, . . . , xn)(v1, . . . , vn), D)Input is

Max viewers for a campaign that uses
billboards {1…n} with separation D.

Bestn =

I

p
t closest co indexof

theclosestbilbo

mi
Best if youdontplace

mad a billboard

Viot Bestclosest n

I-93
x1 x2

v1 v2

D
x3

v3

x4

v4

x10

v10

x9

v9

x8

v8

x7

v7

x6

v6

x5

v5

Bestn =

((x1, . . . , xn)(v1, . . . , vn), D)Input is

Max viewers for a campaign that uses
billboards {1…n} with separation D.

Bestn = max {
Bestn−1

vn + BestclosestD(n)

Familiar?

Familiar?

Bestn =

Familiar?

Bestn = max {
Bestn−1

vn + BestclosestD(n)

Familiar?

Bestn = max {
Bestn−1

vn + BestclosestD(n)

This equation is very similar to the log-
cutter equation, with one difference.
We cannot simply use the price to pick
the sub-problem, we have to use D:

I-93
x1 x2

v1 v2

D

Best1 =

x3

v3

x4

v4

x10

v10

x9

v9

x8

v8

x7

v7

x6

v6

x5

v5

Best2 =

location

a

max Best Vi
V2 Best

Itcz
v

Best max
Best

V34 Bestclose z

Benz

user

I-93
x1 x2

v1 v2

D

Best1 =

x3

v3

x4

v4

x10

v10

x9

v9

x8

v8

x7

v7

x6

v6

x5

v5

Best2 =

Best3 =

T T
closest 5

Billboard Problem

for i=1 to n

bestj = max

⇢
bestj�1

vj + bestcl(j)

best[0] = 0

return best[n]

Billboard Problem

for i=1 to n

bestj = max

⇢
bestj�1

vj + bestcl(j)

best[0] = 0

cl = i-1
while((x[i]-x[cl])< D && cl>0) cl=cl-1

best[i] = max(best[i-1], vi+best[cl])

return best[n]

thisline cold
take

Cti

If
tations

If
we implementthe

f closestC function

runningtime n n EE

Billboard Problem

for i=1 to n

bestj = max

⇢
bestj�1

vj + bestcl(j)

best[0] = 0

cl = i-1
while((x[i]-x[cl])< D && cl>0) cl=cl-1

best[i] = max(best[i-1], vi+best[cl])

return best[n]

This line can take
steps in the worst case.

Θ(i)

Running time (worst case): Θ(n2)

Billboard Problem

for i=1 to n

bestj = max

⇢
bestj�1

vj + bestcl(j)

best[0] = 0

cl = i-1
while((x[i]-x[cl])< D && cl>0) cl=cl-1

best[i] = max(best[i-1], vi+best[cl])

return best[n]

This line can take
steps in the worst case.

Θ(i)

Running time (worst case): Θ(n2)
How can we improve?

I-93
x1 x2

v1 v2

D
x3

v3

x4

v4

x10

v10

x9

v9

x8

v8

x7

v7

x6

v6

x5

v5

Pre-process to find every board’s buddy.
right = n, left = n

Faster way to find each billboard’s buddy:

I-93
x1 x2

v1 v2

D
x3

v3

x4

v4

x10

v10

x9

v9

x8

v8

x7

v7

x6

v6

x5

v5

Pre-process to find every board’s buddy.
right = n, left = n

buddy[right] = left
move left until dist(x[right], x[left]) > D

b[10]=8

Faster way to find each billboard’s buddy: o

I-93
x1 x2

v1 v2

D
x3

v3

x4

v4

x10

v10

x9

v9

x8

v8

x7

v7

x6

v6

x5

v5

Pre-process to find every board’s buddy.
right = n, left = n

buddy[right] = left
move left until dist(x[right], x[left]) > D

move right to right

b[10]=8

Faster way to find each billboard’s buddy:
as

I-93
x1 x2

v1 v2

D
x3

v3

x4

v4

x10

v10

x9

v9

x8

v8

x7

v7

x6

v6

x5

v5

Pre-process to find every board’s buddy.
right = n, left = n

buddy[right] = left
move left until dist(x[right], x[left]) > D

move right to right

while right and left are valid

b[10]=8

Faster way to find each billboard’s buddy:

9997

I-93
x1 x2

v1 v2

D
x3

v3

x4

v4

x10

v10

x9

v9

x8

v8

x7

v7

x6

v6

x5

v5

Pre-process to find every board’s buddy.
right = n, left = n

buddy[right] = left
move left until dist(x[right], x[left]) > D

move right to right

while right and left are valid

handle all of the remaining buddies for right

b[10]=8

Faster way to find each billboard’s buddy:

Ocn

Better Billboard

for i=1 to n

bestj = max

⇢
bestj�1

vj + bestcl(j)

best[0] = 0

cl = i-1
while((x[i]-x[cl])< D && cl>0) cl=cl-1

best[i] = max(best[i-1], v[j]+best[buddy[i]])

return best[n]

<Preprocess buddies>

y
Oct

TypesettingBRIEF ARTICLE

THE AUTHOR

It was the best of times, it was the worst of
times, it was the age of wisdom, it was the age of
foolishness, it was the epoch of belief, it was the
epoch of incredulity, it was the season of Light,
it was the season of Darkness, it was the spring
of hope, it was the winter of despair, we had ev-
erything before us, we had nothing before us,
we were all going direct to heaven, we were all
going direct the other way - in short, the period
was so far like the present period, that some of
its noisiest authorities insisted on its being re-
ceived, for good or for evil, in the superlative
degree of comparison only.

1

It was the best of times, it was the
worst of times, it was the age of wisdom, it was the
age of foolishness, it was the epoch of belief, it
was the epoch of incredulity, it was the season of
Light, it was the season of Darkness, it was the
spring of hope, it was the winter of despair, we had
everything before us, we had nothing before us, we
were all going direct to heaven, we were all going
direct the other way - in short, the period was so
far like the present period, that some of its
noisiest authorities insisted on its being received,
for good or for evil, in the superlative degree of
comparison only.

First rule of typesetting
never print in the margin!

are simply not allowed

It was the best of times, it was the worst
of times, it was the age of wisdom, it was
the age of foolishness, it was the epoch__
of belief, it was the epoch of____________
incredulity, it was the season of Light,__
it was the season of Darkness, it was the_
spring of hope, it was the winter of______
despair, we had everything before us, we__
had nothing before us, we were all going__
direct to heaven, we were all going direct
the other way - in short, the period was
so far like the present period, that some of its
noisiest authorities insisted on its being received,
for good or for evil, in the superlative degree of
comparison only.

is....____________

It was the best of times, it was the worst
of times, it was the age of wisdom, it was
the age of foolishness, it was the epoch__
of belief, it was the epoch of____________
incredulity, it was the season of Light,__
it was the season of Darkness, it was the_
spring of hope, it was the winter of______
despair, we had everything before us, we__
had nothing before us, we were all going__
direct to heaven, we were all going direct
the other way - in short, the period was
so far like the present period, that some of its
noisiest authorities insisted on its being received,
for good or for evil, in the superlative degree of
comparison only.

0
0

12
2
1
6
2
2
0

2
0
0

144
4
1

36
4
4
0

4

197

It was the best of times, it was the______
worst of times, it was the age of wisdom,_
it was the age of foolishness, it was the_
epoch of belief, it was the epoch of______
incredulity, it was the season of Light,__
it was the season of Darkness, it was the_
spring of hope, it was the winter of______
despair, we had everything before us, we__
had nothing before us, we were all going__
direct to heaven, we were all going direct
the other way - in short, the period was
so far like the present period, that some
of its noisiest authorities insisted on
its being received, for good or for evil,
in the superlative degree of comparison
only.

1
6

6
2
1
6
2
2
0

1
1

36

36
4
1

36
4
4
0

1

123

Typesetting problem
input:

output:

such that

Typesetting problem

output:

such that

input:

Typesetting problem
W = {w1, w2, w3, . . . , wn}

output:

such that

M
L = (w1, . . . , w⇤1), (w⇤1+1, . . . , w⇤2), . . . , (w⇤x+1,...,wn)

ci =

0

@
`i+1X

j=`i+1

|wj |

1

A+ (`i+1 � `i � 1)

ci M 8i

min
X

(M � ci)
2

input:

how to solve
define the right variable:

Imagine optimal solution

Imagine optimal solution

 last line

Some word has to be
the first-word-of-last-line
(fwoll)

 last line
fwoll is

slack when line starts with

Imagine optimal solution

 last line
fwoll is

slack when line starts with

 w`�1

Imagine optimal solution

How many candidates
are there for the fwoll?

Is w1 fwoll?

there is no slack (no solution even)
because words go beyond edge!

define if this happens

Is w2 fwoll?

Is wj fwoll?

Which word is fwoll?

best0 + S2
1,n

best1 + S2
2,n

best2 + S2
3,n

bestn�1 + S2
n,n

best⇥�1 + S2
⇥,n

Which word is fwoll?

...

...

How to compute

slack when line
starts with
and ends

Simplest case

slack when line
starts with wi
and ends wi

S1,1
wi

Simplest case

slack when line
starts with wi
and ends w2

S1,2
wi wi

how to compute

slack when line
starts with
and ends

S1,1

S2,2

S3,3

S4,4

S1,n

 int infty = M*M*2;

 // compute S_ij
 int S[][] = new int[n+1][n+1];
 for(int i=1;i<=n;i++) {
 S[i][i] = M - lens[i];
 for(int j=i+1; j<=n; j++) {
 S[i][j] = S[i][j-1] - lens[j] - 1;
 if (S[i][j]<0) {
 while(j<=n) { S[i][j++] = infty; }
 }
 }
 }

Typesetting algorithm
make table for

Typesetting algorithm
make table for

 // compute best_0,...,best_n
 int best[] = new int[n+1];
 int choice[] = new int[n+1];
 best[0] = 0;
 for(int i=1;i<=n;i++) {
 int min = infty;
 int ch = 0;
 for(int j=0;j<i;j++) {
 int t = best[j] + S[j+1][i]*S[j+1][i];
 if (t<min) { min = t; ch = j;}
 }
 best[i] = min;
 choice[i] = ch;
 }

for i=1 to n

best[i] = min{ best[j] + s[j+1][i]2 }

Example
It was the best of times, it was the worst of times; it was the age of
wisdom, it was the age of foolishness; it was the epoch of belief, it was
the epoch of incredulity; it was the season of

2 3 3 4 2 6 2 3 3 5 2 6 2 3 3 3 2 7 2 3 3 3
2 12 2 3 3 5 2 7 2 3 3 5 2 12 2 3 3 6 2

first step: make
?1

1

2 3 3 4 2 6 2 3 3 5 2 6 2 3 3 3 2 7 2 3 3 3
2 12 2 3 3 5 2 7 2 3 3 5 2 12 2 3 3 6 2

2 3 4 5 6 7 8 9 10 11 12 ...

Si,j

M = 42

Si,i = M � |wi|
Si,j = Si,j�1 � 1� |wj |

First step: make
401

1

36

2

32 27 24 17 14 10 6 0 99 99 99

3 4 5 6 7 8 9 10 11 12 13

2

M = 42

Si,i = M � |wi|
Si,j = Si,j�1 � 1� |wj |

Si,j

2 3 3 4 2 6 2 3 3 5 2 6 2 3 3 3 2 7 2 3 3 3
2 12 2 3 3 5 2 7 2 3 3 5 2 12 2 3 3 6 2

3

First step: make
401

1

36

2

32 27 24 17 14 10 6 0 99 99 99

3 4 5 6 7 8 9 10 11 12 13

39 35 30 27 20 17 13 9 3 0 99 992

Si,j

3

2 3 3 4 2 6 2 3 3 5 2 6 2 3 3 3 2 7 2 3 3 3
2 12 2 3 3 5 2 7 2 3 3 5 2 12 2 3 3 6 2

Si,i = M � |wi|
Si,j = Si,j�1 � 1� |wj |

second step: compute
best

1 2 3 4 5 6 7 8 9 10 ...

401

1

36

2

32 27 24 17 14 10 6 0 99 99 99

3 4 5 6 7 8 9 10 11 12 13

39 35 30 27 20 17 13 9 3 0 99 992

0

0

besti =
i�1
min
j=0

�
bestj + S2

j+1,i

⇥

best 1600

1 2 3 4 5 6 7 8 9 10

401

1

36

2

32 27 24 17 14 10 6 0 99 99 99

3 4 5 6 7 8 9 10 11 12 13

39 35 30 27 20 17 13 9 3 0 99 992

0

0

besti =
i�1
min
j=0

�
bestj + S2

j+1,i

⇥

choice 0 0 0 0 0 0 0 0 0 0 0

aa

It

11 12 13

best 1600

1 2 3 4

1296

5 6 7 8 9 10

401

1

36

2

32 27 24 17 14 10 6 0 99 99 99

3 4 5 6 7 8 9 10 11 12 13

39 35 30 27 20 17 13 9 3 0 99 992

0

0

besti =
i�1
min
j=0

�
bestj + S2

j+1,i

⇥

choice 0 0 0 0 0 0 0 0 0 0 0

aa

It was

11 12 13

best 1600

1 2 3 4

1296 1024

5 6 7 8 9 10

401

1

36

2

32 27 24 17 14 10 6 0 99 99 99

3 4 5 6 7 8 9 10 11 12 13

39 35 30 27 20 17 13 9 3 0 99 992

0

0

besti =
i�1
min
j=0

�
bestj + S2

j+1,i

⇥

choice 0 0 0 0 0 0 0 0 0 0 0

aa

It was the

11 12 13

best 1600

1 2 3 4

1296 1024 729 576 289 196 100 36 0

5 6 7 8 9 10

0

0

besti =
i�1
min
j=0

�
bestj + S2

j+1,i

⇥

choice 0 0 0 0 0 0 0 0 0 0 0

aa

It was the best

11 12 13

401

1

36

2

32 27 24 17 14 10 6 0 99 99 99

3 4 5 6 7 8 9 10 11 12 13

39 35 30 27 20 17 13 9 3 0 99 992

best 1600

1 2 3 4

1296 1024 729 576 289 196 100 36 0

5 6 7 8 9 10

0

0

besti =
i�1
min
j=0

�
bestj + S2

j+1,i

⇥

choice 0 0 0 0 0 0 0 0 0 0 0

aa

It was the best of

11 12 13

401

1

36

2

32 27 24 17 14 10 6 0 99 99 99

3 4 5 6 7 8 9 10 11 12 13

39 35 30 27 20 17 13 9 3 0 99 992

best 1600

1 2 3 4

1296 1024 729 576 289 196 100 36 0

5 6 7 8 9 10

0

0

besti =
i�1
min
j=0

�
bestj + S2

j+1,i

⇥

choice 0 0 0 0 0 0 0 0 0 0 0

aa

It was the best of times, it was the worst

11 12 13

best 1600

1 2 3 4

1296 1024 729 576 289 196 100 36 0

5 6 7 8 9 10

0

0

besti =
i�1
min
j=0

�
bestj + S2

j+1,i

⇥

choice 0 0 0 0 0 0 0 0 0 0 0

aa

It was the best of times, it was the worst

of

Best11 = min {

11 12 13

best 1600

1 2 3 4

1296 1024 729 576 289 196 100 36 0

5 6 7 8 9 10

0

0

besti =
i�1
min
j=0

�
bestj + S2

j+1,i

⇥

choice 0 0 0 0 0 0 0 0 0 0 0

aa

It was the best of times, it was the

worst of

11 12 13

best11 = min

8
>>>>>><

>>>>>>:

best10 + S2
11,11

best9 + S2
10,11

best8 + S2
9,11

best7 + S2
8,11

best6 + S2
7,11

. . .

best 1600

1 2 3 4

1296 1024 729 576 289 196 100 36 0

5 6 7 8 9 10

0

0

besti =
i�1
min
j=0

�
bestj + S2

j+1,i

⇥

choice 0 0 0 0 0 0 0 0 0 0 0

aa

It was the best of times, it was

the worst of

11 12 13

best11 = min

8
>>>>>><

>>>>>>:

best10 + S2
11,11

best9 + S2
10,11

best8 + S2
9,11

best7 + S2
8,11

best6 + S2
7,11

. . .

best 1600

1 2 3 4

1296 1024 729 576 289 196 100 36 0 818

5 6 7 8 9 10

0

0

besti =
i�1
min
j=0

�
bestj + S2

j+1,i

⇥

choice 0 0 0 0 0 0 0 0 0 0 0

aa

It was the best of times,

it was the worst of

11 12 13

best11 = min

8
>>>>>><

>>>>>>:

best10 + S2
11,11

best9 + S2
10,11

best8 + S2
9,11

best7 + S2
8,11

best6 + S2
7,11

. . .

best 1600

1 2 3 4

1296 1024 729 576 289 196 100 36 0 818

5 6 7 8 9 10

0

0

besti =
i�1
min
j=0

�
bestj + S2

j+1,i

⇥

545

choice 0 0 0 0 0 0 0 0 0 0 0

aa

It was the best of times,

it was the worst of

11 12 13

times,

6 6

it

best13 = min

8
>>>><

>>>>:

best12 + S2
13,13

best11 + S2
12,13

. . .
best7 + S2

8,13

best6 + S2
7,13

best 1600

1 2 3 4

1296 1024 729 576 289 196 100 36 0 818

5 6 7 8 9 10

0

0

besti =
i�1
min
j=0

�
bestj + S2

j+1,i

⇥

545

choice 0 0 0 0 0 0 0 0 0 0 0

aa

It was the best of times, it

was the worst of

11 12 13

times,

6 6

it

best13 = min

8
>>>><

>>>>:

best12 + S2
13,13

best11 + S2
12,13

. . .
best7 + S2

8,13

best6 + S2
7,13

d-172-25-159-219:typeset abhi$ java typeset charly 42
0 best: 0 ch 0
1 best: 1600 ch 0
2 best: 1296 ch 0
3 best: 1024 ch 0
4 best: 729 ch 0
5 best: 576 ch 0
6 best: 289 ch 0
7 best: 196 ch 0
8 best: 100 ch 0
9 best: 36 ch 0
10 best: 0 ch 0
11 best: 818 ch 6
12 best: 545 ch 6
13 best: 452 ch 7
14 best: 340 ch 7
15 best: 244 ch 8
16 best: 164 ch 8
17 best: 117 ch 9
18 best: 37 ch 9
19 best: 16 ch 10
20 best: 0 ch 10
21 best: 509 ch 14
22 best: 413 ch 15
23 best: 344 ch 15
24 best: 133 ch 17
25 best: 118 ch 17
26 best: 62 ch 18
27 best: 32 ch 19
28 best: 4 ch 20
29 best: 444 ch 23
30 best: 348 ch 23
31 best: 277 ch 24
32 best: 197 ch 24
33 best: 149 ch 24
34 best: 87 ch 26
35 best: 66 ch 26
36 best: 446 ch 31
37 best: 377 ch 31
38 best: 297 ch 32
39 best: 233 ch 32

0 best: 0 ch 0
1 best: 1600 ch 0 It
2 best: 1296 ch 0 It was
3 best: 1024 ch 0 It was the
4 best: 729 ch 0 It was the best
5 best: 576 ch 0 It was the best of
6 best: 289 ch 0 It was the best of times,
7 best: 196 ch 0 It was the best of times, it
8 best: 100 ch 0 It was the best of times, it was
9 best: 36 ch 0 It was the best of times, it was the
10 best: 0 ch 0 It was the best of times, it was the worst
11 best: 818 ch 6 It was the best of times,\nit was the worst of
12 best: 545 ch 6 It was the best of times,\nit was the worst of times,
13 best: 452 ch 7 It was the best of times, it\nwas the worst of times, it
14 best: 340 ch 7 It was the best of times, it\nwas the worst of times, it was
15 best: 244 ch 8 It was the best of times, it was\nthe worst of times, it was the
16 best: 164 ch 8 It was the best of times, it was\nthe worst of times, it was the age
17 best: 117 ch 9 It was the best of times, it was the\nworst of times, it was the age of
18 best: 37 ch 9 It was the best of times, it was the\nworst of times, it was the age of wisdom,
19 best: 16 ch 10 It was the best of times, it was the worst\nof times, it was the age of wisdom, it
20 best: 0 ch 10 It was the best of times, it was the worst\nof times, it was the age of wisdom, it was
21 best: 509 ch 14 It was the best of times, it\nwas the worst of times, it was\nthe age of wisdom, it was the
22 best: 413 ch 15 It was the best of times, it was\nthe worst of times, it was the\nage of wisdom, it was the age
23 best: 344 ch 15 It was the best of times, it was\nthe worst of times, it was the\nage of wisdom, it was the age of
24 best: 133 ch 17 It was the best of times, it was the\nworst of times, it was the age of\nwisdom, it was the age of foolishness,
25 best: 118 ch 17 It was the best of times, it was the\nworst of times, it was the age of\nwisdom, it was the age of foolishness, it
26 best: 62 ch 18 It was the best of times, it was the\nworst of times, it was the age of wisdom,\nit was the age of foolishness, it was

 // read input

 try {
 BufferedReader bin = new BufferedReader(new FileReader(args[0]));
 String line = bin.readLine();
 String words[] = line.split(" ");
 int n = words.length;
 int M = Integer.parseInt(args[1]);
 int lens[] = new int[n+1];
 for(int i=1;i<=n; i++) {
 lens[i] = words[i-1].length();
 if (lens[i]>M) {
 System.out.println("word too long");
 System.exit(1);
 }
 }

 int infty = M*M*2;

 // compute S_ij
 int S[][] = new int[n+1][n+1];
 for(int i=1;i<=n;i++) {
 S[i][i] = M - lens[i];
 for(int j=i+1; j<=n; j++) {
 S[i][j] = S[i][j-1] - lens[j] - 1;
 if (S[i][j]<0) {
 while(j<=n) { S[i][j++] = infty; }
 }
 }
 }

 for(int i=1;i<=n; i++) {
 lens[i] = words[i-1].length();
 if (lens[i]>M) {
 System.out.println("word too long");
 System.exit(1);
 }
 }

 int infty = M*M*2;

 // compute S_ij
 int S[][] = new int[n+1][n+1];
 for(int i=1;i<=n;i++) {
 S[i][i] = M - lens[i];
 for(int j=i+1; j<=n; j++) {
 S[i][j] = S[i][j-1] - lens[j] - 1;
 if (S[i][j]<0) {
 while(j<=n) { S[i][j++] = infty; }
 }
 }
 }

 // compute best_0,...,best_n
 int best[] = new int[n+1];
 int choice[] = new int[n+1];
 best[0] = 0;
 for(int i=1;i<=n;i++) {
 int min = infty;
 int ch = 0;
 for(int j=0;j<i;j++) {
 int t = best[j] + S[j+1][i]*S[j+1][i];
 if (t<min) { min = t; ch = j;}
 }
 best[i] = min;
 choice[i] = ch;
 }

 for(int i=1;i<=n; i++) {
 lens[i] = words[i-1].length();
 if (lens[i]>M) {
 System.out.println("word too long");
 System.exit(1);
 }
 }
 int infty = M*M*2;

 // compute S_ij
 int S[][] = new int[n+1][n+1];
 for(int i=1;i<=n;i++) {
 S[i][i] = M - lens[i];
 for(int j=i+1; j<=n; j++) {
 S[i][j] = S[i][j-1] - lens[j] - 1;
 if (S[i][j]<0) {
 while(j<=n) { S[i][j++] = infty; }
 }
 }
 }

 for(int i=1;i<=n; i++) {
 lens[i] = words[i-1].length();
 if (lens[i]>M) {
 System.out.println("word too long");
 System.exit(1);
 }
 }
 int infty = M*M*2;

 // compute S_ij
 int S[][] = new int[n+1][n+1];
 for(int i=1;i<=n;i++) {
 S[i][i] = M - lens[i];
 for(int j=i+1; j<=n; j++) {
 S[i][j] = S[i][j-1] - lens[j] - 1;
 if (S[i][j]<0) {
 while(j<=n) { S[i][j++] = infty; }
 }
 }
 }

 // compute best_0,...,best_n
 int best[] = new int[n+1];
 int choice[] = new int[n+1];
 best[0] = 0;
 for(int i=1;i<=n;i++) {
 int min = infty;
 int ch = 0;
 for(int j=0;j<i;j++) {
 int t = best[j] + S[j+1][i]*S[j+1][i];
 if (t<min) { min = t; ch = j;}
 }
 best[i] = min;
 choice[i] = ch;
 }

 // backtrack to output linebreaks
 int end = n;
 int start = choice[end]+1;
 String lines[] = new String[n];
 int cnt = 0;
 while (end>0) {
 StringBuffer buf = new StringBuffer();
 for(int j=start; j<=end; j++) {
 buf.append(words[j-1] + " ");
 }
 lines[cnt++] = buf.toString();
 end = start-1;
 start = choice[end]+1;
 }

Knapsack

Sack has Capacity W

W

w1 v1

w2 v2

w3 v3

Each item
has a weight wi
and a value vi

Goal is to select
a set of items that
“fit” into the Knapsack
and have the greatest
value.

Consider the very first item. Is it part of the max solution?

w1 v1

Define a quantity that captures the optimal solution:

Best({1,…,n}, C) :

Consider the very first item. Is it part of the max solution?

w1 v1

Define a quantity that captures the optimal solution:

Best({1,…,n}, C) : max value obtainable from items
{1…n} that fit in sack of size C

Consider the very first item. Is it part of the max solution?

w1 v1

Define a quantity that captures the optimal solution:

Best({1,…,n}, C) : max value obtainable from items
{1…n} that fit in sack of size C

B(1…n, C) = max { B(2…n, C) if not included
v1 + B(2…n − 1,C − w1) if in }

Recursive structure

B({i…n}, C) = max

Either the best solution doesn’t include item i

Or, it includes item i and the best solution for the
remaining space, C-wi

Recursive structure

B({i…n}, C) = max{ B({i+1…n} , C)

vi + B({i+1…n} , C - wi)

Either the best solution doesn’t include item i

Or, it includes item i and the best solution for the
remaining space, C-wi

Pick an order
Start from the last item

B({ }, 0…W)

B({ n }, 0…W)

0 0 0 0 0 00 0 0 0 0 0 …
0 W

…
0 Wwn

Pick an order

B({n}, C) = max { B({} , C)

vn + B({} , C - wn)

Start from the last item

B({ }, 0…W)

B({ n }, 0…W)

0 0 0 0 0 00 0 0 0 0 0 …
0 W

…
0 Wwn

Pick an order

B({n}, C) = max { B({} , C)

vn + B({} , C - wn)

Start from the last item

B({ }, 0…W)

B({ n }, 0…W)

0 0 0 0 0 00 0 0 0 0 0 …
0 W

vn vn vn vn vn vn0 0 0 0 0 0 …
0 Wwn

Pick an order
Start from the last item

B({ }, 0…W)

B({ n }, 0…W)

0 0 0 0 0 00 0 0 0 0 0 …
0 W

…
0 Wwn

vn vn vn vn vn vn0 0 0 0 0 0 …
0 Wwn

B({ n-1…n }, 0…W) …
0 Wwn wn-1

15 17 40

Pick an order

B({i…n}, C) = max{ B({i+1…n} , C)

vi + B({i+1…n} , C - wi)

Start from the last item

B({ }, 0…W)

B({ n }, 0…W)

0 0 0 0 0 00 0 0 0 0 0 …
0 W

…
0 Wwn

vn vn vn vn vn vn0 0 0 0 0 0 …
0 Wwn

B({ n-1…n }, 0…W) …
0 Wwn wn-1

15 17 40

Initialize B({n-1}, 0…W) = 0

for i from n to 1

for j from 0 to W

Knapsack({wi,vi}n, W)

B(i, j) = max { B(i+1 , j)

vi + B(i+1, j - wi)
as long as j > wi
because otherwise,
this term is negative

Return B(1,W)

Initialize B({n-1}, 0…W) = 0

for i from n to 1

for j from 0 to W

Knapsack({wi,vi}n, W)

B(i, j) = B(i+1, j)

Return B(1,W)

How can we determine WHICH items are selected?

if j > wi and B(i+1, j-wi)+ vi > S(i, j)
B(i,j) = B(i+1, j-wi)+ vi

Initialize B({n-1}, 0…W) = 0

for i from n to 1

for j from 0 to W

Knapsack({wi,vi}n, W)

B(i, j) = B(i+1, j)

//Backtrack to find solution

if j > wi and B(i+1, j-wi)+ vi > B(i, j)
B(i,j) = B(i+1, j-wi)+ vi

pick(i, j) = false

pick(i, j) = true

cap = W, sol = {}
for i from 1 to n

if picked(i,cap) = true { sol = sol + {i}; cap = cap - wi; }

PROBLEM: REDUCE IMAGE WIDTH

scaling: distortion
deleting column: distortion
delete the most invisible seam

http://www.youtube.com/watch?v=qadw0BRKeMk

http://www.youtube.com/watch?v=qadw0BRKeMk

http://www.youtube.com/watch?v=qadw0BRKeMk

http://www.youtube.com/watch?v=qadw0BRKeMk
http://www.youtube.com/watch?v=qadw0BRKeMk

DEMO?

http://rsizr.com/

http://rsizr.com

WHICH SEAM TO DELETE?

ENERGY OF AN IMAGE

“magnitude of gradient at a pixel”

energy of sample image
thanks to Jason Lawrence for gradient software

BEST SEAM HAS LOWEST ENERGY

FINDING LOWEST ENERGY SEAM?

Si(j)

DEFINE A VARIABLE:

Sn(j)

n
n-1

1
2

definition:

 n
n-1

1
2

best seam ending at (n,j)
definition:

BEST SEAM TO DELETE HAS TO
BE THE BEST AMONG

IDEA: COMPUTE + COMPARE

n
n-1

....

IMAGINE YOU HAVE THE
SOLUTION TO THE
FIRST N-1 ROWS

Sn�1(1) Sn�1(2) Sn�1(3) Sn�1(m)

n

n-1

n

n-1

Sn�1(1) Sn�1(2) Sn�1(3) Sn�1(m)

n

n-1

Sn�1(1) Sn�1(2) Sn�1(3) Sn�1(m)

i

i-1

j

n

n-1

j

ALGORITHM

 1

start at bottom of picture

ALGORITHM

 1

start at bottom of picture. initialize

ALGORITHM

 1

 2

start at bottom of picture. initialize
for i=2 to n use formula to compute

 1

start at bottom of picture. initialize

 2

for i=2,n use formula to compute

......
 n

ALGORITHM

 1

start at bottom of picture. initialize

 2

for i=2,n use formula to compute

......
 n

pick best among top row, backtrack.

ALGORITHM

RUNNING TIME
start at bottom of picture. initialize
for i=2,n use formula to compute

pick best among top row, backtrack.

