
feb 11/14 2022
shelat

Billboard problem

distance parameter
Cannot place ads that are closer than D miles apart

locations viewership C distance
Input is $\left(\left(x_{1}, \ldots, x_{n}\right)\left(v_{1}, \ldots, v_{n}\right), D\right)$ constraint
$\underline{\text { Best }_{n}}=$ maximum viewer one can obtain for an ad that appears no closer than D along the highway. using billboards 1...n.

Input is $\left(\left(x_{1}, \ldots, x_{n}\right)\left(v_{1}, \ldots, v_{n}\right), D\right)$
Best $_{n}=\quad$ Max viewers for a campaign that uses billboards $\{1 \ldots \mathrm{n}\}$ with separation D .

Input is $\left(\left(x_{1}, \ldots, x_{n}\right)\left(v_{1}, \ldots, v_{n}\right), D\right)$
Best $_{n}=\quad$ Max viewers for a campaign that uses billboards $\{1 \ldots n\}$ with separation D.
Best $_{n}=\max \left\{\begin{array}{l}\text { Best }_{n-1} \\ v_{n}+\text { Bert }_{\text {claxfor }}^{0}(n)\end{array}\right.$

Input is $\left(\left(x_{1}, \ldots, x_{n}\right)\left(v_{1}, \ldots, v_{n}\right), D\right)$
Best $_{n}=\quad$ Max viewers for a campaign that uses billboards $\{1 \ldots . . n\}$ with separation D.

Best $_{n}=\max \left\{\begin{array}{c}B e s t_{n-1} \\ v_{n}+\text { Best }_{\text {closest }_{D}(n)}\end{array}\right.$

Familiar?

Familiar?

Best $_{n}=$

Familiar?

Best $_{n}=\max \left\{\begin{array}{c}\text { Best }_{n-1} \\ v_{n}+\text { Best }_{\text {closest }_{D}(n)}\end{array}\right.$

Familiar?

Best $_{n}=\max \left\{\begin{array}{c}\text { Best }_{n-1} \\ v_{n}+\text { Best }_{\text {closesțD }}(n)\end{array}\right.$
This equation is very similar to the log-
cutter equation, with one difference.
We cannot simply use the price to pick
the sub-problem, we have to use D:

Best $_{1}=$
Best $_{2}=$

$$
\text { Best }_{3}=\max \left\{\begin{array}{l}
\text { Best }_{2} \\
v_{3}+\text { Best, }
\end{array}\right.
$$

Billboard Problem

$$
\mathrm{BEST}_{j}=\max \left\{\begin{array}{l}
\mathrm{BEST}_{j-1} \\
v_{j}+\mathrm{BEST}_{c l(j)}
\end{array}\right.
$$

best [0] $=0$
for $i=1$ to n

$$
c l=i-1
$$

while $\left(x_{i}-x_{c 1}<D\right.$ and $\left.c \mid>0\right) \quad\{c|=c|-1\}$

$$
\begin{aligned}
& \text { Best }_{i}=\max \left(\text { Best }_{i-1}, v_{i}+\text { Best }_{\frac{\square}{?}}\right) \\
& \text { nest }[n]
\end{aligned}
$$

return best [n]

Billboard Problem

$$
\operatorname{BEST}_{j}=\max \left\{\begin{array}{l}
\operatorname{BEST}_{j-1} \\
v_{j}+\operatorname{BEST}_{c l(j)}
\end{array}\right.
$$

best [0] = 0
for $i=1$ to $n \longrightarrow$ loop has n iterations
$\mathrm{cl}=\mathrm{i}-1$
while $(x[i]-x[c l])<D \quad \& \& \quad c l>0) \quad c l=c l-1$
best [i] $=\max \left(\right.$ best $[i-1], v_{i}+$ best[cl])
return best [n]
Total worse case sunning tine:
$\theta\left(n^{2}\right)$

Billboard Problem
 $$
\operatorname{BEST}_{j}=\max \left\{\begin{array}{l} \mathrm{BEST}_{j-1} \\ v_{j}+\operatorname{BEST}_{c l(j)} \end{array}\right.
$$

```
best[0] = 0
for i=1 to n
    cl = i-1
    while( (x[i]-x[cl])< D && cl>0) cl=cl-1
    best[i] = max(best[i-1], vi+best[cl])
return best[n]
```

Running time (worst case): $\Theta\left(n^{2}\right)$

Billboard Problem

$$
\operatorname{BEST}_{j}=\max \left\{\begin{array}{l}
\mathrm{BEST}_{j-1} \\
v_{j}+\mathrm{BEST}_{c l(j)}
\end{array}\right.
$$

best[0] = 0
for $\mathrm{i}=1$ to n

$$
C l=i-1
$$

$$
\text { while }((x[i]-x[c l]) \leq D \quad \& \& \quad c l>0) \quad c l=c l-1]
$$

This line can take $\Theta(i)$ steps in the worst case.
best[i] $=\max \left(b e s t[i-1], v_{i}+\right.$ best[cl])
return best[n]
How can we improve?
Running time (worst case): $\Theta\left(n^{2}\right)$

Pre-process to find every board's buddy.

$$
\text { right }=\mathrm{n}, \text { left }=\mathrm{n}
$$

|-93

Faster way to find each billboard's buddy:
Pre-process to find every board's buddy.

$$
\text { right }=\mathrm{n}, \text { left }=\mathrm{n}
$$

move left until dist(\times [right $], x[$ left $]) \geqslant \mathrm{D}$ buddy[right] = left

Faster way to find each billboard's buddy:

Pre-process to find every board's buddy.

$$
b[10]=8
$$

$$
\text { right }=\mathrm{n}, \text { left }=\mathrm{n}
$$

move left until dist(x[right], $x[$ left $]) \geqslant D$ buddy[right] = left move right to right

|-93

D

Faster way to find each billboard's buddy:

Pre-process to find every board's buddy.
right $=\mathrm{n}$, left $=\mathrm{n}$
while right and left are valid
move left until dist(x[right], $x[$ left $]) \geqslant D$ buddy[right] = left move right to right

X1	X2	$\mathrm{X}_{3} \mathrm{X}_{4}$	X5	X6	X_{7}	X8	X9	X10
V_{1}	V 2	$\mathrm{V}_{3} \mathrm{~V}_{4}$	V5	V6	V7	V8	V9	V10
way to find each billboard's buddy:								

Faster way to find each billboard's buddy:

Pre-process to find every board's buddy.
right $=\mathrm{n}$, left $=\mathrm{n}$
while right and left are valid
move left until dist(x[right], $x[$ left $]) \geqslant D$ buddy[right] = left move right to right
handle all of the remaining buddies for right

Better Billlboard

<Preprocess buddies>

$$
\mathrm{BEST}_{j}=\max \left\{\begin{array}{l}
\mathrm{BEST}_{j-1} \\
v_{j}+\mathrm{BEST}_{c l(j)}
\end{array}\right.
$$

best[0] = 0
for $i=1$ to n
$\epsilon \underline{l}=i-1$
While $(x[i]-x[c l])<D \quad$ \&\& $\quad c l>0) \quad c l=c l-1$
best[i] $=\max (\underbrace{\text { best[i-1 }]}, ~ v[j$ ji] $+\underbrace{\text { best [buddy[i]] })} \theta(1)$
return best[n]
the billbarad index that
rumring time: $\theta(n)$

$$
\text { is } \geqslant D \text { away. }
$$

Typesetting

It was the best ${ }^{\prime}$ of ${ }^{\prime}$ times, it_was_the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season of Light, it was the season of Darkness, it was the spring of hope, it was the winter of despair, we had everything before us, we had nothing before us, we were all going direct to heaven, we were all going direct the other way - in short, the period was so far like the present period, that some of its noisiest authorities insisted on its being received, for good or for evil, in the superlative degree of comparison only.

First rule of typesetting

never print in the margin!
\longleftrightarrow are simply not allowed

It was the best of times, it was the worst ${ }^{\downarrow}$ of times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of \qquad incredulity, it was the season of Light; .. it was the season of Darkness, it was the_ spring of hope, it was the winter of \qquad despair, we had everything before us, we had nothing before us, we were all going direct to heaven, we were all going direct the other way - in short, the period was so far like the present period, that some of noisiest authorities insisted on its being redefyed, for good or for evil, in the superlative degree oof comparison only.

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch_ of belief, it was the epoch of incredulity, it was the season of Light, it was the season of Darkness, it was the_ spring of hope, it was the winter of \qquad despair, we had everything before us, we had nothing before us, we were all going direct to heaven, we were all going direct the other way - in short, the period was so far like the present period, that some of its noisiest authorities insisted on its being received, for good or for evil, in the superlative degree of comparison only.

Penalty is the square of the total slack.

\rightarrow It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of \qquad incredulity, it was the season of Light, it was the season of Darkness, it was the_ spring of hope, it was the winter of \qquad despair, we had everything before us, we \qquad had nothing before us, we were all going direct to heaven, we were all going direct the other way - in short, the period was so far like the present period, that some of noisiest authorities insisted on its being
\qquad
\qquad

s

 -

144
its

0	0
0	0
2	4
12	144
2	4
1	1
6	36
2	4
2	4
0	0

0

4 4 1

$$
1
$$ 4 for good or for evil, in the superlative degree of comparison only.

Typesetting problem
input: word list, $W=\left\{w_{1}, w_{2}, w_{3} \ldots \omega_{n}\right\}$, Margin M
output: list if words for each line, $L=\left(w_{1} \ldots w_{l_{1}}\right),\left(w_{l_{111}} \ldots w_{l 2}\right) \ldots$
such that

$$
c_{i}=M \quad \text { and } \quad \min \sum\left(M-c_{i}\right)^{2}
$$

over all ways to typeset.

$$
\begin{aligned}
& c_{i}=\sum_{\substack{j=l_{i+1} \\
\\
\text { sum of wail length on } \\
\text { the line. }}}^{\left.l_{i+1}+l_{i+1}-l_{i}-1\right)} \\
& \text { the line. }
\end{aligned}
$$

Typesetting problem

input:

$$
W=\left\{w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right\} \quad M
$$

output: $\quad L=\left(w_{1}, \ldots, w_{\ell_{1}}\right),\left(w_{\ell_{1}+1}, \ldots, w_{\ell_{2}}\right), \ldots,\left(w_{\ell_{x+1}, \ldots, w_{n}}\right)$
such that

Typesetting problem
 $$
W=\underset{\substack{\left\{w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right\}}}{\substack{\text { words }}} \quad M
$$

input:
output: $L=\left(w_{1}, \ldots, w_{\ell_{1}}\right),\left(w_{\ell_{1}+1}, \ldots, w_{\ell_{2}}\right), \ldots,\left(w_{\ell_{x+1}, \ldots, w_{n}}\right)$

$$
c_{i}=\left(\sum_{j=\ell_{i}+1}^{\ell_{i+1}}\left|w_{j}\right|\right)+\left(\ell_{i+1}-\ell_{i}-1\right)
$$

such that

$$
\begin{aligned}
& \underline{c_{i} \leq M} \\
& \min \sum\left(M-c_{i}\right)^{2}
\end{aligned}
$$

how to solve
define the right variable:
Best $_{n}=$ min penalty for typesetting the first n words.

Imagine optimal solution

Some word has to be the first-word-of-last-line (fwoll)

Innagine optimal solution
 $w_{\ell-1}$
 w_{ℓ}
 fwoll is w_{ℓ}
 slack when line starts with w_{ℓ}
 $$
\operatorname{BEST}_{n}=\operatorname{BEST}_{\ell-1}+S_{\ell, n}^{2}
$$

How many candidates are there for the fwoll?

Is w_{t} fwoll?

there is no slack (no solution even) because words go beyond edge!
define $S_{\underline{1, n}}=\infty$ if this happens

Which word is fol?

Which word is fwoll?

How to compute $S_{i, j}$

 $\underbrace{w_{i}} \overbrace{\text { slack when line }}^{\text {starts with } w_{j}}$ and ends w_{j}
Simplest case

Simplest case

how to compute $S_{i, j}$ $S_{i, j}$
slack when line starts with and ends w_{j}

$S_{1, n}$

$$
\text { S2,2 } \square
$$

\square

int infty $=\mathrm{M} * \mathrm{M} * 2$;
$\mathrm{S}_{4,4}$

$$
\left(M-\left(\begin{array}{ll}
1
\end{array}\right)\right.
$$

\square
// compute S_ij
int $S[][]=$ new int $[n+1][n+1]$;
for(int $i=1 ; i<=n ; i++)$ \{
S[i][i] = M - lens[i];
for (int $j=i+1 ; j<=n ; j++$)
S[i][j] $=S[i][j-1]-\operatorname{lens}[j]-1$;
if (S[i][j]<0)
while(j<=n) \{ S[i][j++]=infty; \}
\}
$\}$

Typesetting algorithm
make table for $S_{i, j}$

$$
\begin{aligned}
& \text { for } i=1 \ldots n \\
& \qquad \text { best } i=\min _{j=1 \ldots i_{i-1}}\left\{\text { best }+\left(S_{j \times 1, i}\right)^{2}\right\}
\end{aligned}
$$

Typesetting algorithm

make table for $S_{i, j}$
for $i=1$ to n

$$
\operatorname{best}[i]=\min \left\{\operatorname{best}[j]+s[j+1][i]^{2}\right\}
$$

```
// compute best_0,...,best_n
int best[] = new int[n+1];
int choice[] = new int[n+1];
    best[0] = 0;
    for(int i=1;i<=n;i++) {
        int min = infty;
        int ch = 0;
        for(int j=0;j<i;j++) {
        int t = best[j] + S[j+1][i]*S[j+1][i];
        if (t<min) { min = t; ch = j;}
        }
        best[i] = min;
        choice[i] = ch;
    }
```


Example

It was the best of times, it was the worst of times; it was the age of wisdom, it was the age of foolishness; it was the epoch of belief, it was the epoch of incredulity; it was the season of

$$
W=\left\{\begin{array}{llllllllllllllllllllll}
2 & 3 & 3 & 4 & 2 & 6 & 2 & 3 & 3 & 5 & 2 & 6 & 2 & 3 & 3 & 3 & 2 & 7 & 2 & 3 & 3 & 3 \\
2 & 12 & 2 & 3 & 3 & 5 & 2 & 7 & 2 & 3 & 3 & 5 & 2 & 12 & 2 & 3 & 3 & 6 & 2 & &
\end{array}\right\} \quad M=42
$$

first step: make $S_{i, j}$

$$
\begin{aligned}
& S_{i, i}=M-\left|w_{i}\right| \\
& S_{i, j}=S_{i, j-1}-1-\left|w_{j}\right|
\end{aligned}
$$

First step: make $S_{i, j}$

$$
S_{i, i}=M-\left|w_{i}\right|
$$ than the values in nor input.

$$
S_{i, j}=S_{i, j-1}-1-\left|w_{j}\right|
$$

$$
M=42
$$

First step: make $S_{i, j}$
1

40	36	32	27	24	17	14	10	6	0	99	99

| 2 | 39 | 35 | 30 | 27 | 20 | 17 | 13 | 9 | 3 | 0 | 99 | 99 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

3

$$
\left.\begin{array}{lllllllllllllllllllll}
2 & 3 & 3 & 4 & 2 & 6 & 2 & 3 & 3 & 5 & 2 & 6 & 2 & 3 & 3 & 3 & 2 & 7 & 2 & 3 & 3
\end{array}\right]
$$

$$
S_{i, i}=M-\left|w_{i}\right|
$$

$$
S_{i, j}=S_{i, j-1}-1-\left|w_{j}\right|
$$

second step: compute

best 01600

$$
\min \left\{\begin{array}{l}
\text { Bestot }\left(S_{1,2}\right)^{2}=0+36^{2}=1296 \\
\text { Best }+\left(S_{2,2}\right)^{2}=1600+392
\end{array}\right.
$$

$$
\text { Bert } 0+\left(S_{1,1}\right)^{2}=0+42^{2}=1600
$$

$$
\operatorname{BEST}_{i}=\min _{j=0}^{i-1}\left\{\operatorname{BEST}_{j}+S_{j+1, i}^{2}\right\}
$$

		1	2	3	4	5	6	7	8	9	10	11	12	13
1	40	36	32	27	24	17	14	10	6	0	99	99	99	

$\operatorname{BEST}_{i}=\min _{j=0}^{i-1}\left\{\operatorname{BEST}_{j}+S_{j+1, i}^{2}\right\}$

$\operatorname{BEST}_{i}=\min _{j=0}^{i-1}\left\{\operatorname{BEST}_{j}+S_{j+1, i}^{2}\right\}$

aa
It was the

| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 40 | 36 | 32 | 27 | 24 | 17 | 14 | 10 | 6 | 0 | 99 | 99 | 99 |
| 2 | | 39 | 35 | 30 | 27 | 20 | 17 | 13 | 9 | 3 | 0 | 99 | 99 |

$\operatorname{BEST}_{i}=\min _{j=0}^{i-1}\left\{\operatorname{BEST}_{j}+S_{j+1, i}^{2}\right\}$

| | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| best | 0 | 1600 | 1296 | 1024 | 729 | 576 | 289 | 196 | 100 | 36 | 0 | \square | | \square |

$\operatorname{BEST}_{i}=\min _{j=0}^{i-1}\left\{\operatorname{BEST}_{j}+S_{j+1, i}^{2}\right\}$

| | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| best | 0 | 1600 | 1296 | 1024 | 729 | 576 | 289 | 196 | 100 | 36 | 0 | \square | \square | |

$\mathrm{BEST}_{i}=\min _{j=0}^{i-1}\left\{\operatorname{BEST}_{j}+S_{j+1, i}^{2}\right\}$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	
best	0	1600	1296	1024	729	576	289	196	100	36	0		-	\square	\square

aaaaaaaaaaaaaaaaaaaaaaaaaaaдaaaaaaaaaaaaaa
It was the best of times, it was the worst
$\operatorname{BEST}_{i}=\min _{j=0}^{i-1}\left\{\operatorname{BEST}_{j}+S_{j+1, i}^{2}\right\}$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13													
best	0	1600	1296	1024	729	576	289	196	100	36	0		\square	\square		\square											
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:																
choice	0	0	0	0	0	0	0	0	0	0	0																

aa
It was the best of times, it was the worst

$$
\operatorname{Best}_{10}+\left(S_{1,, 11}\right)^{2}=0+40^{2}=1600
$$

Best $_{11}=$ min $\{$

$$
\operatorname{BEST}_{i}=\min _{j=0}^{i-1}\left\{\operatorname{BEST}_{j}+S_{j+1, i}^{2}\right\}
$$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13													
best	0	1600	1296	1024	729	576	289	196	100	36	0		\square	\square		\square											
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:																
choice	0	0	0	0	0	0	0	0	0	0	0																

aa

It was the best of times, it was the worst of

$$
\mathrm{BEST}_{11}=\min \left\{\begin{array}{l}
\mathrm{BEST}_{10}+S_{11,11}^{2}=160 \\
\mathrm{BEST}_{9}+S_{10,11}^{2} \\
{\underset{\mathrm{BEST}}{8}}+S_{9,11}^{2} \\
\mathrm{BEST}_{7}+S_{8,11}^{2} \\
\mathrm{BEST}_{6}+S_{7,11}^{2} \\
\cdots
\end{array}\right.
$$

$\operatorname{BEST}_{i}=\min _{j=0}^{i-1}\left\{\operatorname{BEST}_{j}+S_{j+1, i}^{2}\right\}$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13
best	0	1600	1296	1024	729	576	289	196	100	36	0	\square		

aa

It was the best of times, it was the worst of

$$
\mathrm{BEST}_{11}=\min \left\{\begin{array}{l}
\mathrm{BEST}_{10}+S_{11,11}^{2} \\
\mathrm{BEST}_{9}+S_{10,11}^{2} \\
\mathrm{BEST}_{8}+S_{9,11}^{2} \\
\mathrm{BEST}_{7}+S_{8,11}^{2} \\
\mathrm{BEST}_{6}+S_{7,11}^{2} \\
\cdots
\end{array}\right.
$$

$$
\operatorname{BEST}_{i}=\min _{j=0}^{i-1}\left\{\operatorname{BEST}_{j}+S_{j+1, i}^{2}\right\}
$$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13
best	0	1600	1296	1024	729	576	289	196	100	36	0	818		
choice	0	0	0	0	0	0	0	0	0	0	0			

$|$| It. was the best of times, |
| :--- |
| it. was the worst. of |

$$
\operatorname{BEST}_{11}=\min \left\{\begin{array}{l}
\operatorname{BEST}_{10}+S_{11,11}^{2} \\
\operatorname{BEST}_{9}+S_{10,11}^{2} \\
\operatorname{BEST}_{8}+S_{9,11}^{2} \\
\operatorname{BEST}_{7}+S_{8,11}^{2} \\
\operatorname{BEST}_{6}+S_{7,11}^{2}=299+23^{2}=289+569- \\
\cdots
\end{array}\right.
$$

$$
\operatorname{BEST}_{i}=\min _{j=0}^{i-1}\left\{\operatorname{BEST}_{j}+S_{j+1, i}^{2}\right\}
$$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13
best	0	1600	1296	1024	729	576	289	196	100	36	0	818	545	
oice	0	0	0	0	0	0	0	0	0	0	0	,	6	

aa

It was the best of times,
it was the worst, of times, it

$$
\operatorname{BEST}_{13}=\min \left\{\begin{array}{l}
\operatorname{BEST}_{12}+S_{13,13}^{2} \\
\operatorname{BEST}_{11}+S_{12,13}^{2} \\
\cdots \\
\operatorname{BEST}_{7}+S_{8,13}^{2} \\
\operatorname{BEST}_{6}+S_{7,13}^{2}
\end{array}\right.
$$

aa

It was the best of times, it
was the worst of times, it

$$
\operatorname{BEST}_{13}=\min \left\{\begin{array}{l}
\operatorname{BEST}_{12}+S_{13,13}^{2} \\
\operatorname{BEST}_{11}+S_{12,13}^{2} \\
\cdots \\
\operatorname{BEST}_{7}+S_{8,13}^{2} \\
\operatorname{BEST}_{6}+S_{7,13}^{2}
\end{array}\right.
$$

4 best: 729 ch 0
5 best: 576 ch 0
6 best: 289 ch 0
7 best: 196 ch 0
8 best: 100 ch 0
9 best: 36 ch 0
10 best: 0 ch 0
11 best: 818 ch 6
12 best: 545 ch 6
13 best: 452 ch 7
14 best: 340 ch 7
15 best: 244 ch 8
16 best: 164 ch 8
17 best: 117 ch 9
18 best: 37 ch 9
19 best: 16 ch 10
20 best: 0 ch 10
21 best: 509 ch 14
22 best: 413 ch 15
23 best: 344 ch 15
24 best: 133 ch 17
25 best: 118 ch 17
26 best: 62 ch 18
27 best: 32 ch 19
28 best: 4 ch 20
29 best: 444 ch 23
30 best: 348 ch 23
31 best: 277 ch 24
32 best: 197 ch 24
33 best: 149 ch 24
34 best: 87 ch 26
34 best: 87 ch 26
35 best: 66 ch 26
36 best: 446 ch 31
37 best: 377 ch 31
38 best: 297 ch 32
39 best: 233 ch 32

\downarrow

0 best: 0 ch 0
1 best: 1600 ch 0
2 best: 1296 ch 0
3 best: 1024 ch 0
4 best: 729 ch 0
5 best: 576 ch 0
6 best: 289 ch 0
7 best: 196 ch 0
8 best: 100 ch 0
9 best: 36 ch 0
-10 best: 0 ch 0
11 best: 818 ch 6
12 best: 545 ch 6
13 best: 452 ch 7 .
14 best: 340 ch 7
15 best: 244 ch 8
16 best: 164 ch 8
17 best: 117 ch 9
17 best: 117 ch 9
18 best: 37 ch 9
19 best: 16 ch 10
20 best: 0 ch 10
21 best: 509 ch 14
22 best: 413 ch 15
23 best: 344 ch 15 24 best: 133 ch 17 25 best: 118 ch 17 26 best: 62 ch 18

It
It was
It was the
It was the best
It was the best of
It was the best of times,
It was the best of times,
It was the best of times, it was
It was the best of times, it was the
It was the best of times, it was the worst
It was the best of times, Init was the worst of
It was the best of times, Init was the worst of times,
It was the best of times, it\nwas the worst of times,
It was the best of times, it $\backslash n w a s$ the worst of times, it was
It was the best of times, it was $\backslash n$ the worst of times, it was the
It was the best of times, it was $\backslash n$ the worst of times, it was the age
It was the best of times, it was the $\backslash n w o r s t$ of times, it was the age of
It was the best of times, it was the \nworst of times, it was the age of wisdom,
It was the best of times, it was the worst\nof times, it was the age of wisdom,
It was the best of times, it was the worst\nof times, it was the age of wisdom, it was
It was the best of times, it\nwas the worst of times, it was $\backslash n$ the age of wisdom, it was the
It was the best of times, it was \nthe worst of times, it was the \nage of wisdom, it was the age
It was the best of times, it was $\backslash n t h e$ worst of times, it was the $\backslash n a g e$ of wisdom, it was the age of
It was the best of times, it was the $\backslash n w o r s t ~ o f ~ t i m e s, ~ i t ~ w a s ~ t h e ~ a g e ~ o f ~ \ n w i s d o m, ~ i t ~ w a s ~ t h e ~ a g e ~ o f ~ f o o l i s h n e s s, ~$

It was the best of times, it was the $\$ nworst of times, it was the age of wisdom, \nit was the age of foolishness, it was
// read input

```
try {
BufferedReader bin = new BufferedReader(new FileReader(args[0]));
String line = bin.readLine();
String words[] = line.split(" ");
int n = words.length;
int M = Integer.parseInt(args[1]);
int lens[] = new int[n+1];
for(int i=1;i<=n; i++) {
    lens[i] = words[i-1].length();
    if (lens[i]>M) {
        System.out.println("word too long");
        System.exit(1);
    }
}
int infty = M*M*2;
// compute S_ij
int S[][] = new int[n+1][n+1];
for(int i=1;i<=n;i++) {
    S[i][i] = M - lens[i];
    for(int j=i+1; j<=n; j++) {
        S[i][j] = S[i][j-1] - lens[j] - 1;
        if (S[i][j]<0) {
            while(j<=n) { S[i][j++] = infty; }
        }
    }
}
```

```
// compute best_0,...,best_n
int best[] = new int[n+1];
int choice[] = new int[n+1];
best[0] = 0;
for(int i=1;i<=n;i++) {
    int min = infty;
    int ch = 0;
    for(int j=0;j<i;j++) {
    int t = best[j] + S[j+1][i]*S[j+1][i];
    if (t<min) { min = t; ch = j;}
    }
    best[i] = min;
    choice[i] = ch;
}
// backtrack to output linebreaks
int end = n;
int start = choice[end]+1;
String lines[] = new String[n];
int cnt = 0;
while (end>0) {
    StringBuffer buf = new StringBuffer();
    for(int j=start; j<=end; j++) {
        buf.append(words[j-1] + " ");
    }
    lines[cnt++] = buf.toString();
    end = start-1;
    start = choice[end]+1;
}
```


Knapsack

Sack has Capacity W

Define a quantity that captures the optimal solution:

$$
\operatorname{Best}(\{1, \ldots, n\}, C):
$$

Consider the very first item. Is it part of the max solution?

Define a quantity that captures the optimal solution:

$$
\operatorname{Best}(\{1, \ldots, n\}, C): \begin{aligned}
& \max \text { value obtainable from items } \\
& \{1 \ldots n\} \text { that fit in sack of size } C
\end{aligned}
$$

Consider the very first item. Is it part of the max solution?

Define a quantity that captures the optimal solution:

$$
\operatorname{Best}(\{1, \ldots, n\}, C): \begin{aligned}
& \text { max value obtainable from items } \\
& \{1 \ldots n\} \text { that fit in sack of size } C
\end{aligned}
$$

Consider the very first item. Is it part of the max solution?

$$
B(1 \ldots n, C)=\max \left\{\begin{array}{cc}
B(2 \ldots n, C) & \text { if not included } \\
v_{1}+B\left(2 \ldots n-1, C-w_{1}\right) & \text { if in }
\end{array}\right\}
$$

Recursive structure

Either the best solution doesn't include item i
$B(\{i \ldots n\}, W)=\max$

Or, it includes item i and the best solution for the remaining space, W - w_{i}

Recursive structure

Either the best solution doesn't include item i

$$
B(\{i \ldots n\}, W)=\max \left\{\begin{array}{l}
B(\{i+1 \ldots n\}, W) \\
v_{i}+B\left(\{i+1 \ldots n\}, W-w_{i}\right) \quad \text { If } W-w_{i}>0
\end{array}\right.
$$

Or, it includes item i and the best solution for the remaining space, W - w_{i}

Pick an order

Start from the last item

$$
\begin{aligned}
& \begin{array}{ll|l|l|l|l|l|l|l|l|ll|l|l|}
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
\hline
\end{array} \\
& B(\{n\}, 0 \ldots W)
\end{aligned}
$$

If $W-w_{n}>0$

Pick an order

Start from the last item

$$
\begin{aligned}
& B(\}, 0 \ldots W)
\end{aligned}
$$

$$
\begin{aligned}
& B(\{n\}, 0 \ldots W) \\
& B(\{n\}, W)=\max \left\{\begin{array}{l}
B(\{ \}, W) \\
v_{n}+B\left(\{ \}, W-w_{n}\right) \quad \text { If } W-w_{n}>0
\end{array}\right.
\end{aligned}
$$

Pick an order

Start from the last item

$$
\begin{aligned}
& B(\}, 0 . . . W)
\end{aligned}
$$

$$
\begin{aligned}
& B(\{n\}, 0 \ldots W)
\end{aligned}
$$

$$
\begin{aligned}
& B(\{n\}, W)=\max \left\{\begin{array}{l}
B(\{ \}, W) \\
v_{n}+B\left(\{ \}, W-W_{n}\right) \quad \text { If } W-w_{n}>0
\end{array}\right.
\end{aligned}
$$

Pick an order

Start from the last item

$$
\begin{aligned}
& \begin{array}{ll|l|l|l|l|l|l|l|l|ll|l|l|}
\hline 0 & B & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
\end{aligned}
$$

Pick an order

Start from the last item

$$
\begin{aligned}
& B(\}, 0 \ldots W)
\end{aligned}
$$

$$
B(\{i \ldots n\}, W)=\max \left\{\begin{array}{l}
B(\{i+1 \ldots n\}, W) \\
v_{i}+B\left(\{i+1 \ldots n\}, W-w_{i}\right)
\end{array}\right.
$$

Example

$$
\begin{aligned}
& \begin{array}{llllllll}
v_{i} & 4 & 5 & 9 & 1 & 10 & 3 & C=15
\end{array} \\
& \begin{array}{lllllll}
w_{i} & 1 & 3 & 2 & 4 & 7 & 2
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& B(\{6\}, \ldots) \\
& B(\{i \ldots n\}, W)=\max \left\{\begin{array}{l}
B(\{i+1 \ldots n\}, W) \\
v_{i}+B\left(\{i+1 \ldots n\}, W-w_{i}\right) \quad \text { If } W-w_{i}>0
\end{array}\right.
\end{aligned}
$$

Example

$$
\begin{array}{lllll}
\begin{array}{ccccccccc}
v_{i} & 4 & 5 & 9 & 1 & 10 & 3 & & C=15
\end{array} \\
w_{i} & 1 & 3 & 2 & 4 \\
7 & 7 & 2 &
\end{array}
$$

Example

$$
\begin{array}{ccccccc}
v_{i} & 4 & 5 & 9 & 1 & 10 & 3 \\
w_{i} & 1 & 3 & 2 & 4 & 7 & 2
\end{array} \quad C=15
$$

$$
\begin{aligned}
& B(\{6\}, \ldots) \quad \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 5 & \\
\hline 0 & 0 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
\hline
\end{array} \\
& B(\{5,6\}, \ldots) \\
& B(\{i \ldots n\}, W)=\max \left\{\begin{array}{l}
B(\{i+1 \ldots n\}, W) \\
v_{i}+B\left(\{i+1 \ldots n\}, W-w_{i}\right) \quad \text { If } W-w_{i}>0
\end{array}\right.
\end{aligned}
$$

Example

$$
\begin{aligned}
& \begin{array}{llllllll}
v_{i} & 4 & 5 & 9 & 1 & 10 & 3 & C=15
\end{array} \\
& \begin{array}{lllllll}
w_{i} & 1 & 3 & 2 & 4 & 7 & 2
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& B(\{i \ldots n\}, W)=\max \left\{\begin{array}{l}
B(\{i+1 \ldots n\}, W) \\
v_{i}+B\left(\{i+1 \ldots n\}, W-w_{i}\right) \quad \text { If } W-w_{i}>0
\end{array}\right.
\end{aligned}
$$

Example

$$
\begin{array}{ccccccc}
v_{i} & 4 & 5 & 9 & 1 & 10 & 3 \\
w_{i} & 1 & 3 & 2 & 4 & 7 & 2
\end{array} \quad C=15
$$

$$
\begin{aligned}
& B(\{i \ldots n\}, W)=\max \left\{\begin{array}{l}
B(\{i+1 \ldots n\}, W) \\
v_{i}+B\left(\{i+1 \ldots n\}, W-w_{i}\right) \quad \text { If } W-w_{i}>0
\end{array}\right.
\end{aligned}
$$

Knapsack(\{wi, , , i\}n, W)

Initialize $B(\{n-1\}, 0 . . . W)=0$
for ifrom n to 1

$$
\begin{array}{r}
\text { for } j \text { from } 0 \text { to } W \\
\qquad B(i, j)=\max
\end{array} \quad\left\{\begin{array}{l}
B(i+1, j) \\
v_{i}+B\left(i+1, j-w_{i}\right) \\
\text { as long as } j>w_{i} \\
\text { because otherwise, } \\
\text { this term is negative }
\end{array}\right.
$$

Return B(1,W)

Knapsack(\{wi, , , i\}n, W)

Initialize $B(\{n-1\}, 0 . . . W)=0$
for ifrom n to 1

$$
\begin{aligned}
& \text { for } \mathrm{j} \text { from } 0 \text { to } W \\
& \qquad \begin{array}{l}
B(i, j)=B(i+1, j) \\
\text { if } j>\text { wi and } B(i+1, j-w i)+v i>S(i, j) \\
B(i, j)=B(i+1, j-w i)+v i
\end{array}
\end{aligned}
$$

Return B(1,W)

How can we determine WHICH items are selected?

Knapsack(\{wi, , , i\}n, W)

Initialize $B(\{n-1\}, 0 . . . W)=0$
for i from n to 1

```
for j from 0 to W
    \(B(i, j)=B(i+1, j)\)
\(\operatorname{pick}(\mathrm{i}, \mathrm{j})=\) false
if \(j>\) wi and \(B(i+1, j-w i)+v i>B(i, j)\)
\(B(i, j)=B(i+1, j-w i)+v i\)
\(\operatorname{pick}(\mathrm{i}, \mathrm{j})=\) true
```

//Backtrack to find solution
cap $=\mathrm{W}$, sol $=\{ \}$
for i from 1 to n

$$
\text { if picked(i,cap) }=\text { true }\left\{\text { sol }=\text { sol }+\{i\} ; \text { cap }=\text { cap }-w_{i} ;\right\}
$$

PROBLEM: REDUCE IMAGE WIDTH

scaling: distortion
deleting column: distortion
delete the most invisible seam
http://www.youtube.com/watch? $\mathrm{v}=\mathrm{qadwOBRKeMk}$

DEMO?
http://rsizr.com/

WHICH SEAM TO DELETE?

ENERGY OF AN IMAGE

$$
e(\mathbf{I})=\left|\frac{\partial}{\partial x} \mathbf{I}\right|+\left|\frac{\partial}{\partial y} \mathbf{I}\right|
$$

"magnitude of gradient at a pixel"

$$
\frac{\partial}{\partial x} I_{x, y}=I_{x-1, y}-I_{x+1, y}
$$

energy of sample image
thanks to Jason Lawrence for gradient software

BEST SEAM HAS LOWEST ENERGY

FINDING LOWEST ENERGY SEAM?

DEFINE A VARIABLE:

$S_{i}(j)$

$$
\begin{aligned}
& \text { definition: } S_{n}(j)
\end{aligned}
$$

definition:

BEST SEAM TO DELETE HAS TO BE THE BEST AMONG
 $S_{n}(1), S_{n}(2), \ldots, S_{n}(m)$

IDEA：COMPUTE＋COMPARE

$\mathrm{n} \square \square$ ロロロロロロロロロロロロロロロロロロロロロ ロロロロロロロロロロロロロロロロロロロロロ

IMAGINE YOU HAVE THE SOLUTION TO THE FIRST N-1 ROWS

$\mathbf{n} \quad e(n, 1)$
 $e(n, 2) \quad \square$
 $\square e(n, j)$
 ローロー

$$
S_{i}(j)=
$$

ALGORITHM

start at bottom of picture

ALGORITHM

start at bottom of picture. \quad initialize $\quad S_{1}(i)=e(1, i)$

ALGORITHM

start at bottom of picture. initialize $\quad S_{1}(i)=e(1, i)$
for i=2 to n use formula to compute $S_{i+1}(\cdot)$

$$
S_{i}(j)=e(i, j)+\min \left\{\begin{array}{l}
S_{i-1}(j-1) \\
S_{i-1}(j) \\
S_{i-1}(j+1)
\end{array}\right.
$$

ALGORITHM

start at bottom of picture. initialize $\quad S_{1}(i)=e(1, i)$
for $\mathrm{i}=2$, n use formula to compute $S_{i+1}(\cdot)$

$$
S_{i}(j)=e(i, j)+\min \left\{\begin{array}{l}
S_{i-1}(j-1) \\
S_{i-1}(j) \\
S_{i-1}(j+1)
\end{array}\right.
$$

ALGORITHM

start at bottom of picture. initialize $\quad S_{1}(i)=e(1, i)$
for $\mathrm{i}=2$, n use formula to compute $S_{i+1}(\cdot)$

$$
\begin{aligned}
& \text { te } S_{i+1}(\cdot) \\
& S_{i}(j)=e(i, j)+\min \left\{\begin{array}{l}
S_{i-1}(j-1) \\
S_{i-1}(j) \\
S_{i-1}(j+1)
\end{array}\right.
\end{aligned}
$$

pick best among top row, backtrack.

RUNNING TIME
start at bottom of picture. initialize $\quad S_{1}(i)=e(1, i)$
for i=2, n use formula to compute $\quad S_{i+1}(\cdot)$
pick best among top row, backtrack.

$$
\begin{aligned}
& \text { te } \quad S_{i+1}(\cdot) \\
& S_{i}(j)=e(i, j)+\min \left\{\begin{array}{l}
S_{i-1}(j-1) \\
S_{i-1}(j) \\
S_{i-1}(j+1)
\end{array}\right.
\end{aligned}
$$

