
feb 11/14 2022
shelat

Billboard problem

distance parameter
Cannot place ads that are closer than D miles apart

Input is $\left(\left(x_{1}, \ldots, x_{n}\right)\left(v_{1}, \ldots, v_{n}\right), D\right)$
Best $_{n}=$

Input is $\left(\left(x_{1}, \ldots, x_{n}\right)\left(v_{1}, \ldots, v_{n}\right), D\right)$
Best $_{n}=\quad$ Max viewers for a campaign that uses billboards $\{1 \ldots \mathrm{n}\}$ with separation D .

Input is $\left(\left(x_{1}, \ldots, x_{n}\right)\left(v_{1}, \ldots, v_{n}\right), D\right)$
Bestn $=$ Max viewers for a campaign that uses billboards $\{1 \ldots . . n\}$ with separation D.

Best $_{n}=$

Input is $\left(\left(x_{1}, \ldots, x_{n}\right)\left(v_{1}, \ldots, v_{n}\right), D\right)$
Best $_{n}=\quad$ Max viewers for a campaign that uses billboards $\{1 \ldots . . n\}$ with separation D.

Best $_{n}=\max \left\{\begin{array}{c}B e s t_{n-1} \\ v_{n}+\text { Best }_{\text {closest }_{D}(n)}\end{array}\right.$

Familiar?

Familiar?

Best $_{n}=$

Familiar?

Best $_{n}=\max \left\{\begin{array}{c}\text { Best }_{n-1} \\ v_{n}+\text { Best }_{\text {closest }_{D}(n)}\end{array}\right.$

Familiar?

Best $_{n}=\max \left\{\begin{array}{c}\text { Best }_{n-1} \\ v_{n}+\text { Best }_{\text {closest }_{D}(n)}\end{array}\right.$

This equation is very similar to the logcutter equation, with one difference. We cannot simply use the price to pick the sub-problem, we have to use D:

Best $_{1}=$
Best $_{2}=$

Best $_{1}=$
Best $_{2}=$

Best $_{3}=$

Billlboard Problem

$$
\operatorname{BEST}_{j}=\max \left\{\begin{array}{l}
\operatorname{BEST}_{j-1} \\
v_{j}+\operatorname{BEST}_{c l(j)}
\end{array}\right.
$$

best[0] $=0$
for $i=1$ to n
return best[n]

Billlboard Problem

$$
\operatorname{BEST}_{j}=\max \left\{\begin{array}{l}
\operatorname{BEST}_{j-1} \\
v_{j}+\operatorname{BEST}_{c l(j)}
\end{array}\right.
$$

```
best[0] = 0
for i=1 to n
    cl = i-1
    while( (x[i]-x[cl])< D && cl>0) cl=cl-1
    best[i] = max(best[i-1], vi+best[cl])
return best[n]
```


Billboard Problem
 $$
\operatorname{BEST}_{j}=\max \left\{\begin{array}{l} \mathrm{BEST}_{j-1} \\ v_{j}+\operatorname{BEST}_{c l(j)} \end{array}\right.
$$

```
best[0] = 0
for i=1 to n
    cl = i-1
    while( (x[i]-x[cl])< D && cl>0) cl=cl-1
    best[i] = max(best[i-1], vi+best[cl])
return best[n]
```

Running time (worst case): $\Theta\left(n^{2}\right)$

Billboard Problem
 $$
\operatorname{BEST}_{j}=\max \left\{\begin{array}{l} \mathrm{BEST}_{j-1} \\ v_{j}+\operatorname{BEST}_{c l(j)} \end{array}\right.
$$

```
best[0] = 0
for i=1 to n
    cl = i-1
    while( (x[i]-x[cl])< D && cl>0) cl=cl-1
    best[i] = max(best[i-1], vi+best[cl])
```

return best[n]

Running time (worst case): $\Theta\left(n^{2}\right)$

Pre-process to find every board's buddy.

$$
\text { right }=\mathrm{n}, \text { left }=\mathrm{n}
$$

$1-93 \quad$ D

Pre-process to find every board's buddy.

$$
b[10]=8
$$

$$
\text { right }=\mathrm{n}, \text { left }=\mathrm{n}
$$

move left until dist(x[right], $x[l$ eft $])>D$ buddy[right] = left

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}
v_{1}	v_{2}	v_{3}	v_{4}					

Pre-process to find every board's buddy.
b[10]=8

$$
\text { right }=\mathrm{n}, \text { left }=\mathrm{n}
$$

move left until dist(x[right], $x[l e f t])>D$
buddy[right] = left
move right to right
|-93

Pre-process to find every board's buddy.
b[10]=8
right $=\mathrm{n}$, left $=\mathrm{n}$
while right and left are valid
move left until dist(x[right], x[left]) > D buddy[right] = left move right to right
|-93

Faster way to find each billboard's buddy:
Pre-process to find every board's buddy.

$$
b[10]=8
$$

right $=\mathrm{n}$, left $=\mathrm{n}$
while right and left are valid
move left until $\operatorname{dist}(x[r i g h t], x[l e f t])>D$ buddy[right] = left move right to right
handle all of the remaining buddies for right

Better Bill lboard

<Preprocess buddies>

$$
\operatorname{BEST}_{j}=\max \left\{\begin{array}{l}
\operatorname{BEST}_{j-1} \\
v_{j}+\operatorname{BEST}_{c l(j)}
\end{array}\right.
$$

best[0] = 0
for $i=1$ to n
$\epsilon \backslash=i-1$
while $(x[i]-x[c l])<D \quad \& \&-c l>0) \quad c l=c l-1$
best[i] $=$ max(best[i-1], $v[j]+b e s t[b u d d y[i]])$
return best[n]

Typesetting

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season of Light, it was the season of Darkness, it was the spring of hope, it was the winter of despair, we had everything before us, we had nothing before us, we were all going direct to heaven, we were all going direct the other way - in short, the period was so far like the present period, that some of its noisiest authorities insisted on its being received, for good or for evil, in the superlative degree of comparison only.

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season of Light, it was the season of Darkness, it was the spring of hope, it was the winter of despair, we had everything before us, we had nothing before us, we were all going direct to heaven, we were all going direct the other way - in short, the period was so far like the present period, that some of its noisiest authorities insisted on its being received, for good or for evil, in the superlative degree of comparison only.

First rule of typesetting

never print in the margin!
\longleftrightarrow are simply not allowed

It was the best of times, it was the worst y of times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of \qquad incredulity, it was the season of Light, \qquad it was the season of Darkness, it was the_ spring of hope, it was the winter of \qquad despair, we had everything before us, we had nothing before us, we were all going direct to heaven, we were all going direct the other way - in short, the period was so far like the present period, that some of its noisiest authorities insisted on its being received, for good or for evil, in the superlative degree of comparison only.
the score for a paragraph is the
\qquad is

$$
\text { Sum of } \underline{\underline{\text { slack }} \text {. }}
$$

```
It was the best of times, it was the worst
```

the age of foolishness, it was the epoch_
of belief, it was the epoch of
\qquad incredulity, it was the season of Light, it was the season of Darkness, it was the_ spring of hope, it was the winter of \qquad despair, we had everything before us, we had nothing before us, we were all going \qquad direct to heaven, we were all going direct the other way - in short, the period was so far like the present period, that some of superlative degree of comparison only.

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of \qquad incredulity, it was the season of Light, \qquad it was the season of Darkness, it was the_ spring of hope, it was the winter of \qquad despair, we had everything before us, we \qquad had nothing before us, we were all going \qquad direct to heaven, we were all going direct the other way - in short, the period was so far like the present period, that some of its noisiest authorities insisted on its being received, for good or for evil, in the superlative degree of comparison only

0	0
0	0
2	4
12	144
2	4
1	1
6	36
2	4
2	4
0	0
	197

Greedy fails: The first two lines are perfect, but the 4th line has large slack.

636
$1 \quad 1$
$1 \quad 1$
636
24
$1 \quad 1$
636
24
24
00
123

A better solution evens out the slack between the first and 4th line.

Typesetting problem
input: list of world $\omega=\left(\omega_{1}, \omega_{2}, \omega_{3} \ldots \omega_{n}\right)$, Margin M
length of the
output: list of words on each line
such that
produce No overruns into the margich
and minimize the $\sum(\text { slack })^{2}$.

Typesetting problem

input: $\quad W=\left\{w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right\} \quad M$
output: $L=\left(w_{1}, \ldots, w_{\ell_{1}-1}\right),\left(w_{\ell_{1}}, \ldots, w_{\ell_{2}-1}\right),\left(w_{\ell_{2}}, \ldots, w_{\ell_{3}-1}\right), \ldots\left(w_{\ell_{k}}, \ldots, w_{n}\right)$
such that

Typesetting problem

input:
output: $L=\left(w_{1}, \ldots, w_{\ell_{1}-1}\right),\left(w_{\boldsymbol{w}}^{6}, \ldots, w_{\ell_{2}-1}\right),\left(\stackrel{1}{w}_{\ell_{2}}, \ldots, w_{\ell_{3}-1}\right), \ldots\left(w_{\ell_{k}}, \ldots, w_{n}\right)$ First words of each line
such that $\quad c_{i}=\left(\sum_{j=\ell_{i}}^{\ell_{i+1}^{-1}} w_{j}\right)+\underset{\substack{\text { ei+1 } \\ \text { space between } \\\left(\ell_{i}-1\right)} \quad \text { the words }}{ } \quad$ Chars on each line

$$
\begin{aligned}
& c_{i} \leq M \forall i \\
& \min \sum\left(M-\overline{c_{i}}\right)^{2}
\end{aligned}
$$

how to solve
define the right variable:
Best n : minimum penalty (sum of slack ${ }^{2}$) for typesetting the first n words of the input.

last line

Some word has to be the first-word-of-last-line (fwoll)

Imagine optimal solution $w_{\ell-1}$
 last line
 fwoll is w_{e}
 slack when line starts with w_{ℓ}
 $$
\mathrm{BEST}_{n}=\operatorname{BEST}_{\ell-1}+S_{\ell, n}^{2}
$$

How many candidates are there for the fol?

$$
\begin{gathered}
n \\
1,2,3 \ldots n
\end{gathered}
$$

Is w_{t} fwoll?

there is no slack (no solution even) because words go beyond edge!
define $S_{1, n}=\infty$ if this happens

Which word is fol?

Which word is fwoll?

How to compute $S_{i, j}$

slack when line starts with
w_{i} and ends w_{j}

Simplest case

Simplest case

$S_{1,2}$
Wi
Wi
slack when line starts with w_{i} and ends w_{2}

$$
\begin{aligned}
S_{1,2} & =M-w_{1}-1-w_{2} \\
& =S_{1,1}-w_{2}-1 \\
S_{i, j} & =S_{i, j-1}-w_{j-1}
\end{aligned}
$$

true as long
as
$S_{i j}$ is positive.
how to compute $S_{i, j}$ $S_{i, j}$
slack when line starts with and ends w_{j}

Typesetting algorithm
(1) make table for $S_{i, j}$

$$
\text { for } i=1 \ldots n
$$

compute Best using the equal in

$$
\text { Best }_{i}=\min _{j=0}^{i-1}\left\{\text { Best }_{j}+\left(S_{j+1, i}\right)^{2}\right.
$$

Typesetting algorithm

make table for $S_{i, j}$
for $\mathrm{i}=1$ to n

$$
\operatorname{best}[i]=\min \left\{\operatorname{best}[j]+s[j+1][i]^{2}\right\}
$$

```
// compute best_0,...,best_n
int best[] = new int[n+1];
    int choice[] = new int[n+1];
    best[0] = 0;
    for(int i=1;i<=n;i++) {
        int min = infty;
        int ch = 0;
        for(int j=0;j<i;j++) {
            int t = best[j] + S[j+1][i]*S[j+1][i];
            if (t<min) { min = t; ch = j;}
        }
        best[i] = min;
        choice[i] = ch;
    }
```

Example
It was the best of times, it was the worst of times; it was the age of wisdom, it was the age of foolishness; it was the epoch of belief, it was the epoch of incredulity; it was the season of

$$
\begin{aligned}
& 23342623135162333272333 \\
& 212233527233521223362 \\
& \text { legit of mandy of or moot } \hat{J}
\end{aligned}
$$

first step: make $S_{i, j}$

$$
S_{i, i}=\underline{M}-\left|w_{i}\right|
$$

$$
S_{i, j}=S_{i, j-1}-1-\left|w_{j}\right|
$$

$$
\begin{aligned}
& S_{1,1}=42-2 . \quad S_{1,2}=40-3-1 \quad S_{1,3}=36-3-1
\end{aligned}
$$

First step: make $S_{i, j}$

$$
M=42
$$

First step: make $S_{i, j}$
1

40	36	32	27	24	17	14	10	6	0	99	99

| 2 | 39 | 35 | 30 | 27 | 20 | 17 | 13 | 9 | 3 | 0 | 99 | 99 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

3

$$
\left.\begin{array}{lllllllllllllllllllll}
2 & 3 & 3 & 4 & 2 & 6 & 2 & 3 & 3 & 5 & 2 & 6 & 2 & 3 & 3 & 3 & 2 & 7 & 2 & 3 & 3
\end{array}\right]
$$

$$
S_{i, i}=M-\left|w_{i}\right|
$$

$$
S_{i, j}=S_{i, j-1}-1-\left|w_{j}\right|
$$

second step: compute best 0 난 $\square \square \square \square \square \square \square \square$

Best $=\min _{0}\left\{\operatorname{Bert}_{0}+\left(S_{1.1}\right)^{2}=0+40^{2}=1600\right.$
$\mathrm{BEST}_{i}=\min _{j=0}^{i-1}\left\{\operatorname{BEST}_{j}+S_{j+1, i}^{2}\right\}$
$S_{i, j}$:
1

2 | 39 | 35 | 30 | 27 | 20 | 17 | 13 | 9 | 3 | 0 | 99 | 99 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\operatorname{BEST}_{i}=\min _{j=0}^{i-1}\left\{\operatorname{BEST}_{j}+S_{j+1, i}^{2}\right\}$

$S_{i, j}$	1	1	2	3	4	5	6	7	8	9	10	11	12	13
		40	36	32	27	24	17	14	10	6	0	99	99	99
	2		39	35	30	27	20	7	13	9	3	0	99	99

$\operatorname{BEST}_{i}=\min _{j=0}^{i-1}\left\{\operatorname{BEST}_{j}+S_{j+1, i}^{2}\right\}$

\mid It was the best of times, it was the worst|

| | | $\begin{array}{c}1 \\ \end{array}$ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $S_{i, j}$ | 1 | 40 | 36 | 32 | 27 | 24 | 17 | 14 | 10 | 6 | 0 | 99 | 99 | 99 |

$$
\text { best }_{9}+S_{10,11}^{2} \cap\left|\begin{array}{l}
\text { It was the best of times, it was the } \\
\text { worst of } \\
36+\left(S_{\text {(orr }}\right)^{2}=36+(42-8)^{2}=36+1296=132,2
\end{array}\right|
$$

$\operatorname{BEST}_{i}=\min _{j=0}^{i-1}\left\{\operatorname{BEST}_{j}+S_{j+1, i}^{2}\right\}$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13
best	0	1600	1296	1024	729	57	289	196	100	36	0		\square	
\square														

$$
\text { best }_{8}+S_{9,11}^{2}\left|\begin{array}{l}
\text { It was the best of times, it was } \\
\text { the worst of } \\
100+\left(42-(2)^{2}=100+900=10 r\right.
\end{array}\right|
$$

$$
\mathrm{BEST}_{i}=\min _{j=0}^{i-1}\left\{\operatorname{BEST}_{j}+S_{j+1, i}^{2}\right\}
$$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13
best	0	1600	1296	1024	729	576	289	196	100	36	0	818		
choice	0	0	0	0	0	0	0	0	0	0	0			

$$
\operatorname{BEST}_{i}=\min _{j=0}^{i-1}\left\{\operatorname{BEST}_{j}+S_{j+1, i}^{2}\right\}
$$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13
best	0	1600	1296	1024	729	576	289	196	100	36	0	818	545	
choice	0	0	0	0	0	0	0	0	0	0	0	6	6	

$$
\operatorname{BEST}_{13}=\min \left\{\begin{array}{l}
\operatorname{BEST}_{12}+S_{13,13}^{2} \\
\operatorname{BEST}_{11}+S_{12,13}^{2} \\
\cdots \\
\mathrm{BEST}_{7}+S_{8,13}^{2} \\
\mathrm{BEST}_{6}+S_{7,13}^{2}
\end{array} \quad \rightarrow 196 t\right.
$$

$$
\operatorname{BEST}_{i}=\min _{j=0}^{i-1}\left\{\operatorname{BEST}_{j}+S_{j+1, i}^{2}\right\}
$$

| | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| best | 0 | 1600 | 1296 | 1024 | 729 | 576 | 289 | 196 | 100 | 36 | 0 | 818 | 545 | \square |
| choice | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 6 | |


```
0 best: 0 ch 0
1 best: 1600 ch 0
2 best: 1296 ch 0
3 best: 1024 ch 0
4 best: 729 ch 0
5 best: 576 ch 0
6 best: 289 ch 0
7 best: 196 ch 0
8 best: 100 ch 0
9 best: 36 ch 0
10 best: 0 ch 0
11 best: 818 ch 6
1 2 \text { best: } 5 4 5 \text { ch } 6
13 best: 452 ch 7
14 best: 340 ch 7
15 best: 244 ch }
16 best: 164 ch 8
17 best: }117\mathrm{ ch 9
18 best: 37 ch 9
1 9 \text { best: 16 ch 10}
20 best: 0 ch 10
21 best: 509 ch 14
22 best: 413 ch 15
23 best: 344 ch 15
24 best: 133 ch 17
25 best: 118 ch 17
26 best: 62 ch 18
```


It

It was
It was the
It was the best
It was the best of
It was the best of times,
It was the best of times, it
It was the best of times, it was
It was the best of times, it was the
It was the best of times, it was the worst
It was the best of times, \nit was the worst of
It was the best of times, \nit was the worst of times,
It was the best of times, it $\backslash n w a s$ the worst of times, it
It was the best of times, it $\backslash n w a s$ the worst of times, it was
It was the best of times, it was nnthe worst of times, it was the
It was the best of times, it was n nthe worst of times, it was the age
It was the best of times, it was the $\backslash n w o r s t$ of times, it was the age of
It was the best of times, it was the $\$ nworst of times, it was the age of wisdom,
It was the best of times, it was the worst $\backslash n o f$ times, it was the age of wisdom, it
It was the best of times, it was the worst $\backslash n o f$ times, it was the age of wisdom, it was
It was the best of times, it \nwas the worst of times, it was $\backslash n$ nhe age of wisdom, it was the
It was the best of times, it was nthe worst of times, it was the \backslash nage of wisdom, it was the age
It was the best of times, it was \nthe worst of times, it was the \nage of wisdom, it was the age of
It was the best of times, it was the\nworst of times, it was the age of $\backslash n w i s d o m$, it was the age of foolishness,

It was the best of times, it was the\nworst of times, it was the age of wisdom, \nit was the age of foolishness, it was

```
d-172-25-159-219:typeset abhi$ java typeset charly 42
0 best: 0 ch 0
1 best: 1600 ch 0
2 best: }1296\mathrm{ ch 0
3 best: 1024 ch 0
4 best: 729 ch 0
5 best: 576 ch 0
6 best: 289 ch 0
7 best: 196 ch 0
8 best: 100 ch 0
9 best: 36 ch 0
10 best: 0 ch 0
11 best: }818\mathrm{ ch 6
12 best: 545 ch 6
13 best: 452 ch 7
14 best: 340 ch 7
15 best: 244 ch }
16 best: }164\mathrm{ ch }
17 best: }117\mathrm{ ch 9
18 best: 37 ch 9
19 best: 16 ch 10
20 best: 0 ch 10
21 best: 509 ch 14
22 best: 413 ch 15
23 best: }344\mathrm{ ch 15
24 best: }133\mathrm{ ch 17
25 best: }118\mathrm{ ch 17
26 best: }62\mathrm{ ch }1
27 best: 32 ch 19
28 best: 4 ch 20
29 best: 444 ch 23
30 best: 348 ch 23
31 best: 277 ch 24
32 best: }197\mathrm{ ch 24
33 best: 149 ch 24
34 best: }87\mathrm{ ch }2
35 best: 66 ch 26
36 best: 446 ch 31
37 best: 377 ch 31
38 best: 297 ch 32
39 best: 233 ch 32
```

// read input

```
try {
BufferedReader bin = new BufferedReader(new FileReader(args[0]));
String line = bin.readLine();
String words[] = line.split(" ");
int n = words.length;
int M = Integer.parseInt(args[1]);
int lens[] = new int[n+1];
for(int i=1;i<=n; i++) {
    lens[i] = words[i-1].length();
    if (lens[i]>M) {
        System.out.println("word too long");
        System.exit(1);
    }
}
int infty = M*M*2;
// compute S_ij
int S[][] = new int[n+1][n+1];
for(int i=1;i<=n;i++) {
    S[i][i] = M - lens[i];
    for(int j=i+1; j<=n; j++) {
        S[i][j] = S[i][j-1] - lens[j] - 1;
        if (S[i][j]<0) {
            while(j<=n) { S[i][j++] = infty; }
        }
    }
}
```

```
// compute best_0,...,best_n
int best[] = new int[n+1];
int choice[] = new int[n+1];
best[0] = 0;
for(int i=1;i<=n;i++) {
    int min = infty;
    int ch = 0;
    for(int j=0;j<i;j++) {
        int t = best[j] + S[j+1][i]*S[j+1][i];
        if (t<min) { min = t; ch = j;}
    }
    best[i] = min;
    choice[i] = ch;
}
```

```
// backtrack to output linebreaks
int end = n;
int start = choice[end]+1;
String lines[] = new String[n];
int cnt = 0;
while (end>0) {
    StringBuffer buf = new StringBuffer();
    for(int j=start; j<=end; j++) {
        buf.append(words[j-1] + " ");
    }
    lines[cnt++] = buf.toString();
    end = start-1;
    start = choice[end]+1;
```

