
2550 Intro to
cybersecurity

abhi shelat

Public key Crypto

Recap
Perfect security one timepad
Symmetrin encryption computational security

AES heuristic

y shortkey encryptarbitrarily longmessages

o Efi.fiattnevereypgaur
RSA

Revisit our model for Encryption

Symmetric key enc has 1 major drawback.

Alice

Bob Carol

Dave

Evan

Francis
George

eachpairneedsto

Kab KbcKbd manage a

secretkegKbe Kof Kby
I OCn4

KabKai Ked
Kae KefKag Keys

Symmetric key enc has 1 major drawback.

Alice

Bob Carol

Dave

Evan

Francis
George

kab, kac, kad, kae, kaf, kag

kba, kbc, kbd, kbe, kbf, kbg
kca, kcb, kcd, kce, kcf, kcg

kda, kdb, kdc, kde, kdf, kdg

kea, keb, kec, ked, kef, keg

kfa, kfb, kfc, kfd, kfe, kfg

kga, kgb, kgc, kgd, kge, kgf

O(n2) keys to manage!

c=Enck(m) m=Deck(c)

Alice Bob

Genk k

Eve

c

???

this symmetric key model requires a

careful setup process k must remain a

secret

c=Encpk(m) m=Decsk(c)

Alice Bob

Genpk sk

Eve

c

???

Pk can be used to encrypt. sk can be used to decrypt.

Asynate cryptography

PKC key enc

Alice

Bob Carol

Dave

Evan

Francis
George

ska

skb
skc

skd

ske

skf

skg

pka, pkb, pkc, pkd, pke, pkf, pkg

Are publicly posted

Public key encryption
Gen Enc Dec

3 algorithms

Gen (key generation)

Enc (encryption)

Dec (decryption)

semitameter

Public key encryption
Gen Enc Dec

3 algorithms

Gen (key generation)

Enc (encryption)

Dec (decryption)

Alice Bob

Genpk sk

Eve

c

“for any pair of messages m1,m2,
Eve cannot tell whether c = Encpk(mi).”

IND-CPA security for pke
(weakest notion of security)

Adv

I will make a key pair and
give you the public part.

pk, sk ∈ gen(1n) pk

IND-CPA security for pke
(weakest notion of security)

Adv

Now I will think.
Then I will give

you 2 messages,
m0, m1.

m0, m1 ∈ A(pk)
pk, sk ∈ gen(1n) pk

IND-CPA security for pke
(weakest notion of security)

Adv

I will pick one, encrypt it,
and send you the

ciphertext.

Now I will think.
Then I will give

you 2 messages,
m0, m1.

m0, m1 ∈ A(pk)

c ∈ encpk(mb)
b ∈ {0,1}

pk, sk ∈ gen(1n) pk

IND-CPA security for pke
(weakest notion of security)

Adv

Now I will need to
figure out if c

corresponds to
m0 or m1.

m0, m1 ∈ A(pk)

c ∈ encpk(mb)
b ∈ {0,1}

b← ∈ A(pk, m0, m1, c)

pk, sk ∈ gen(1n) pk

You win if you guess
correctly!

IND-CPA security for pke
(weakest notion of security)

pk, sk ∈ gen(1n)
m0, m1 ∈ A(pk)

c ∈ encpk(mb)
b ∈ {0,1}

b← ∈ A(pk, m0, m1, c)

Pr[b = b←] = 1/2 + 𝑘(n)

How to build public key encryption?
Lets look the first such example

If textbook version insecure

RSA OAEP

 Basic
Number
theory

Modular Exponentiation Gxin

Greatteit commonDivisor GCD

EulerTotient function

RSA scheme 1978

Modular Exponentiation
719 mod 31

7 · 7 · · · 7{19 times

Modular Exponentiation
719 mod 31

111
1 2 4 8 16

1 I 7 78 716
1818 327 1419 196 1010 100

7 716 72.7
7 18 7

Modular Exponentiation
719 mod 31

Modular Exponentiation
719 mod 31

72 74 78 71671 (mod 31)

Modular Exponentiation
719 mod 31

72 74 78 71671 (mod 31)

7 18 14 10 7

Modular Exponentiation

2.5. BASIC COMPUTATIONAL NUMBER THEORY 31

Thus, we can write
bx + (a mod b)y = d

and by adding 0 to the right, and regrouping, we get

d = bx− b("a/b#)y + (a mod b)y + b("a/b#)y
= b(x− ("a/b#)y) + ay

which shows that the return value (y, x− ("a/b#)y) is correct.

The assumption that the inputs are such that a > b is without loss of gen-
erality since otherwise the first recursive call swaps the order of the inputs.

Exponentiation modulo n

Given a, x, n, we now demonstrate how to efficiently compute ax mod n. Re-
call that by efficient, we require the computation to take polynomial time in
the size of the representation of a, x, n. Since inputs are given in binary nota-
tion, this requires our procedure to run in time poly(log(a), log(x), log(n)).

The key idea is to rewrite x in binary as x = 2!x!+2!−1x!−1+· · ·+2x1+x0

where xi ∈ {0, 1} so that

ax mod n = a2!x!+2!−1x!−1+···+21x1+x0 mod n

We show this can be further simplified as

ax mod n =
!∏

i=0

xia
2i

mod n

Algorithm 2: ModularExponentiation(a, x, n)
Input: a, x ∈ [1, n]
r ← 11

while x > 0 do2

if x is odd then3

r ← r · a mod n4

x ← "x/2#5

a ← a2 mod n6

Return r7

Modular Exponentiation

2.5. BASIC COMPUTATIONAL NUMBER THEORY 31

Thus, we can write
bx + (a mod b)y = d

and by adding 0 to the right, and regrouping, we get

d = bx− b("a/b#)y + (a mod b)y + b("a/b#)y
= b(x− ("a/b#)y) + ay

which shows that the return value (y, x− ("a/b#)y) is correct.

The assumption that the inputs are such that a > b is without loss of gen-
erality since otherwise the first recursive call swaps the order of the inputs.

Exponentiation modulo n

Given a, x, n, we now demonstrate how to efficiently compute ax mod n. Re-
call that by efficient, we require the computation to take polynomial time in
the size of the representation of a, x, n. Since inputs are given in binary nota-
tion, this requires our procedure to run in time poly(log(a), log(x), log(n)).

The key idea is to rewrite x in binary as x = 2!x!+2!−1x!−1+· · ·+2x1+x0

where xi ∈ {0, 1} so that

ax mod n = a2!x!+2!−1x!−1+···+21x1+x0 mod n

We show this can be further simplified as

ax mod n =
!∏

i=0

xia
2i

mod n

Algorithm 2: ModularExponentiation(a, x, n)
Input: a, x ∈ [1, n]
r ← 11

while x > 0 do2

if x is odd then3

r ← r · a mod n4

x ← "x/2#5

a ← a2 mod n6

Return r7

2.5. BASIC COMPUTATIONAL NUMBER THEORY 31

Thus, we can write
bx + (a mod b)y = d

and by adding 0 to the right, and regrouping, we get

d = bx− b("a/b#)y + (a mod b)y + b("a/b#)y
= b(x− ("a/b#)y) + ay

which shows that the return value (y, x− ("a/b#)y) is correct.

The assumption that the inputs are such that a > b is without loss of gen-
erality since otherwise the first recursive call swaps the order of the inputs.

Exponentiation modulo n

Given a, x, n, we now demonstrate how to efficiently compute ax mod n. Re-
call that by efficient, we require the computation to take polynomial time in
the size of the representation of a, x, n. Since inputs are given in binary nota-
tion, this requires our procedure to run in time poly(log(a), log(x), log(n)).

The key idea is to rewrite x in binary as x = 2!x!+2!−1x!−1+· · ·+2x1+x0

where xi ∈ {0, 1} so that

ax mod n = a2!x!+2!−1x!−1+···+21x1+x0 mod n

We show this can be further simplified as

ax mod n =
!∏

i=0

xia
2i

mod n

Algorithm 2: ModularExponentiation(a, x, n)
Input: a, x ∈ [1, n]
r ← 11

while x > 0 do2

if x is odd then3

r ← r · a mod n4

x ← "x/2#5

a ← a2 mod n6

Return r7

Greatest Common Divisor
GCD(A,B) = GCD()ATB

B A mod B

Greatest Common Divisor
GCD(A,B) = GCD(B, A mod B)

Greatest Common Divisor
GCD(6809,1641)
GCD 1641 245 6809 41691 245

GCD 245 169mod275 171 1691 6.245 171
GCD 171 74 245 1 171 74

Greatest Common Divisor
GCD(6809,1641)

GCD(1641, 245)
GCD(245, 171)
GCD(171, 74)
GCD(74, 23)
GCD(23, 5)
GCD(5, 3)
GCD(3, 2)
GCD(2, 1)

given (a,b), finds (x,y) s.t.
ax + by = gcd(a,b)

2.5. BASIC COMPUTATIONAL NUMBER THEORY 29

Modular Arithmetic

We state the following basic facts about modular arithmetic:

Claim 28.1. For n > 0 and a, b ∈ Z,

1. (a mod n) + (b mod n) = (a + b) mod n

2. (a mod n)(b mod n) mod n = ab mod n

Euclid’s algorithm

Euclid’s algorithm appears in text around 300B.C.; it is therefore well-studied.
Given two numbers a and b such that a ≥ b, Euclid’s algorithm computes the
greatest common divisor of a and b, denoted gcd(a, b). It is not at all obvious
how this value can be efficiently computed, without say, the factorization of
both numbers. Euclid’s insight was to notice that any divisor of a and b will
also be a divisor of b and a − b. The latter is both easy to compute and a
smaller problem than the original one. The algorithm has since been updated
to use a mod b in place of a − b to improve efficiency. An elegant version
of the algorithm which we present here also computes values x, y such that
ax + by = gcd(a, b).

Algorithm 1: ExtendedEuclid(a, b)
Input: (a, b) s.t a > b ≥ 0
Output: (x, y) s.t. ax + by = gcd(a, b)
if a mod b = 0 then1

Return (0, 1)2

else3

(x, y) ← ExtendedEuclid (b, a mod b)4

Return (y, x− y(%a/b&))5

Note: by polynomial time we always mean polynomial in the size of the
input, that is poly(log a + log b)

Proof. On input a > b ≥ 0, we aim to prove that Algorithm 1 returns (x, y)
such that ax + by = gcd(a, b) = d via induction. First, let us argue that the
procedure terminates in polynomial time. The original analysis by Lamé is
slightly better; for us the following suffices since each recursive call involves
only a constant number of divisions and subtraction operations.

Greatest Common Divisor
GCD(6809,1641)

GCD(1641, 245)
GCD(245, 171)
GCD(171, 74)
GCD(74, 23)
GCD(23, 5)
GCD(5, 3)
GCD(3, 2)
GCD(2, 1) (0,1)

(1, 0 - 1*1)

9 2 9 3 9,29
2 1 2 4 2 9
1 1 1 1 1,2

1 1

Greatest Common Divisor
GCD(6809,1641)

GCD(1641, 245)
GCD(245, 171)
GCD(171, 74)
GCD(74, 23)
GCD(23, 5)
GCD(5, 3)
GCD(3, 2)
GCD(2, 1) (0,1)

(1, 0 - 1*1)

Y X y.la b

C643,26681

96 643

67 96
29 67

9,2 5 3 9,29
2 1 2 4 2 9
1 1 f 1 1 1,2

1,1

x ̅ y

Greatest Common Divisor
GCD(6809,1641)

6809*(-643) + 1641*2668 =

GCD allows us to
compute modular
inverses.6809 1641 y 1

1 GCD 6809,1691

4,378187 47378 188 I

n i.ee1T
3

Euler totient
n of positive integers
that are In and relatively
prime to n

n x god tin and x n

Euler totient

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
𝑚(15) =

155 3.1 8 3 1 5 1

X x x x

of integers 15 that are relatively prime to 15

Euler totient
prime

product
of 2 primes

7 6

Ffn p q

7 7 7 1 11 D
6 10
60

Example of groups
multiplicative group, mod n

Z*_15 = {1,2,4,7,8,11,13,14}

c

Z starn

Euler theorem

7 mod31 1 mod 31
0 31 30

Examples
730 mod 31 =

7 18 14 10 7
1 2 4 8 16

31 30

I

730 716 78.7 7
7 10.14.18 17640 I mod 31

Examples
28 mod 15 =

01 15 3 1 5 1 8

256 mod 15 1 b c 15 17 255

Implications of Euler
a10𝑚(N) mod N =

ak𝑚(N)+1 mod N =

ÉÉ a modN 1 modN neN

hgf.it a a a l modN
a

compute

(show your work)
11302021 mod 23 Exercise

0 23 22

1130202 mod23 1130202
mod 22

mid 23 118 mod 23

ai

30202mod 22
3020201

mod22

30 221
202

30 mod 22 30 8 mod 22

“Textbook” RSA (insecure)
Pick N = p*q where p,q are primes.
pble

n

secret

Confute
d
SIT

e I dEN

Publi Key Nie
Secret Red Nid

“Textbook” RSA (insecure)
Pick N = p*q where p,q are primes.
Pick e,d such that e ′ d = 1 mod 𝑚(N)

“Textbook” RSA (insecure)
Pick N = p*q where p,q are primes.
Pick e,d such that e ′ d = 1 mod 𝑚(N)
EncN,e(m) = me mod N
DecN,d(c) = cd mod N

Dec Enc ml me d me'dmodN

m.it nlmodN
A

“Textbook” RSA (insecure)
Pick N = p*q where p,q are primes.
Pick e,d such that e ′ d = 1 mod 𝑚(N)

(me)d mod N =

EncN,e(m) = me mod N
DecN,d(c) = cd mod N

me'd mudN

ml K dat modN
M mk.at modN MmodN

Example of Textbook RSA
m=5 PK = (N=143, e=7) SK = (d=103)

encpu s 57mod 143 P Tis 7.103 721 modok

N 111 131
47 120

Decsu Lt 479 47103mod143
5

“Textbook” RSA (insecure)
Pick N = p*q where p,q are primes.
Pick e,d such that e ′ d = 1 mod 𝑚(N)
EncN,e(m) = me mod N
DecN,d(c) = cd mod N

Why is it insecure
against IND-CPA attack?

pkcs1.5

pick r as a random string with no 0s
encpk(m)

(typically 8 bytes)

“padding oracle” attack against this scheme

c

rsa-oaep+
gen(1n)

encpk(m)

decsk(c)

trapdoor owp()

output m else fail

textbookRSA

Example: apple.com

http://apple.com

