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Revisit our model for Encryption
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kab, kac, kad, kae, kaf, kag

kba, kbc, kbd, kbe, kbf, kbg
kca, kcb, kcd, kce, kcf, kcg

kda, kdb, kdc, kde, kdf, kdg

kea, keb, kec, ked, kef, keg

kfa, kfb, kfc, kfd, kfe, kfg

kga, kgb, kgc, kgd, kge, kgf

O(n2) keys to manage!



c=Enck(m) m=Deck(c)
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c=Encpk(m) m=Decsk(c)

Alice Bob

Genpk sk
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???

Pk can be used to encrypt. sk can be used to decrypt.



PKC key enc
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ska

skb
skc

skd

ske

skf

skg

pka, pkb, pkc, pkd, pke, pkf, pkg

Are publicly posted



Public key encryption
Gen Enc Dec

3 algorithms

Gen (key generation)

Enc (encryption)

Dec (decryption)



Public key encryption
Gen Enc Dec

3 algorithms

Gen (key generation)

Enc (encryption)

Dec (decryption)



Alice Bob

Genpk sk

Eve

c

“for any pair of messages m1,m2,
Eve cannot tell whether c = Encpk(mi).”



IND-CPA security for pke
(weakest notion of security)

Adv

I will make a key pair and 
give you the public part.

pk, sk ∈ gen(1n) pk
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IND-CPA security for pke
(weakest notion of security)

Adv

I will pick one, encrypt it, 
and send you the 

ciphertext.

Now I will think. 
Then I will give 

you 2 messages, 
m0, m1.

m0, m1 ∈ A(pk)

c ∈ encpk(mb)
b ∈ {0,1}

pk, sk ∈ gen(1n) pk



IND-CPA security for pke
(weakest notion of security)

Adv

Now I will need to 
figure out if c 

corresponds to 
m0 or m1.

m0, m1 ∈ A(pk)

c ∈ encpk(mb)
b ∈ {0,1}

b← ∈ A(pk, m0, m1, c)

pk, sk ∈ gen(1n) pk

You win if you guess 
correctly!



IND-CPA security for pke
(weakest notion of security)

pk, sk ∈ gen(1n)
m0, m1 ∈ A(pk)

c ∈ encpk(mb)
b ∈ {0,1}

b← ∈ A(pk, m0, m1, c)

Pr[b = b← ] = 1/2 + 𝑘(n)



How to build public key encryption?



 Basic 
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Modular Exponentiation
719 mod 31

7 · 7 · · · 7{19 times



Modular Exponentiation
719 mod 31



Modular Exponentiation
719 mod 31



Modular Exponentiation
719 mod 31

72 74 78 71671 (mod 31)



Modular Exponentiation
719 mod 31

72 74 78 71671 (mod 31)

7 18 14 10 7



Modular Exponentiation

2.5. BASIC COMPUTATIONAL NUMBER THEORY 31

Thus, we can write
bx + (a mod b)y = d

and by adding 0 to the right, and regrouping, we get

d = bx− b("a/b#)y + (a mod b)y + b("a/b#)y
= b(x− ("a/b#)y) + ay

which shows that the return value (y, x− ("a/b#)y) is correct.

The assumption that the inputs are such that a > b is without loss of gen-
erality since otherwise the first recursive call swaps the order of the inputs.

Exponentiation modulo n

Given a, x, n, we now demonstrate how to efficiently compute ax mod n. Re-
call that by efficient, we require the computation to take polynomial time in
the size of the representation of a, x, n. Since inputs are given in binary nota-
tion, this requires our procedure to run in time poly(log(a), log(x), log(n)).

The key idea is to rewrite x in binary as x = 2!x!+2!−1x!−1+· · ·+2x1+x0

where xi ∈ {0, 1} so that

ax mod n = a2!x!+2!−1x!−1+···+21x1+x0 mod n

We show this can be further simplified as

ax mod n =
!∏

i=0

xia
2i

mod n

Algorithm 2: ModularExponentiation(a, x, n)
Input: a, x ∈ [1, n]
r ← 11

while x > 0 do2

if x is odd then3

r ← r · a mod n4

x ← "x/2#5

a ← a2 mod n6

Return r7
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Greatest Common Divisor
GCD(A,B) = GCD(B, A mod B)
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Greatest Common Divisor
GCD(6809,1641)

GCD(1641, 245)
GCD(245, 171)
GCD(171, 74)
GCD(74, 23)
GCD(23, 5)
GCD(5, 3)
GCD(3, 2)
GCD(2, 1)



given (a,b), finds (x,y) s.t. 
ax + by = gcd(a,b)

2.5. BASIC COMPUTATIONAL NUMBER THEORY 29

Modular Arithmetic

We state the following basic facts about modular arithmetic:

Claim 28.1. For n > 0 and a, b ∈ Z,

1. (a mod n) + (b mod n) = (a + b) mod n

2. (a mod n)(b mod n) mod n = ab mod n

Euclid’s algorithm

Euclid’s algorithm appears in text around 300B.C.; it is therefore well-studied.
Given two numbers a and b such that a ≥ b, Euclid’s algorithm computes the
greatest common divisor of a and b, denoted gcd(a, b). It is not at all obvious
how this value can be efficiently computed, without say, the factorization of
both numbers. Euclid’s insight was to notice that any divisor of a and b will
also be a divisor of b and a − b. The latter is both easy to compute and a
smaller problem than the original one. The algorithm has since been updated
to use a mod b in place of a − b to improve efficiency. An elegant version
of the algorithm which we present here also computes values x, y such that
ax + by = gcd(a, b).

Algorithm 1: ExtendedEuclid(a, b)
Input: (a, b) s.t a > b ≥ 0
Output: (x, y) s.t. ax + by = gcd(a, b)
if a mod b = 0 then1

Return (0, 1)2

else3

(x, y) ← ExtendedEuclid (b, a mod b)4

Return (y, x− y(%a/b&))5

Note: by polynomial time we always mean polynomial in the size of the
input, that is poly(log a + log b)

Proof. On input a > b ≥ 0, we aim to prove that Algorithm 1 returns (x, y)
such that ax + by = gcd(a, b) = d via induction. First, let us argue that the
procedure terminates in polynomial time. The original analysis by Lamé is
slightly better; for us the following suffices since each recursive call involves
only a constant number of divisions and subtraction operations.
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GCD(23, 5)
GCD(5, 3)
GCD(3, 2)
GCD(2, 1) (0,1)

(1, 0 - 1*1 )
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Greatest Common Divisor
GCD(6809,1641)

GCD(1641, 245)
GCD(245, 171)
GCD(171, 74)
GCD(74, 23)
GCD(23, 5)
GCD(5, 3)
GCD(3, 2)
GCD(2, 1) (0,1)
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Greatest Common Divisor
GCD(6809,1641)

GCD(1641, 245)
GCD(245, 171)
GCD(171, 74)
GCD(74, 23)
GCD(23, 5)
GCD(5, 3)
GCD(3, 2)
GCD(2, 1) (0,1)

(1,-1)
(-1,2)
(2,-9)



Greatest Common Divisor
GCD(6809,1641)

6809*(-643) + 1641*2668 = 

GCD allows us to 
compute modular 
inverses.



Greatest Common Divisor
GCD(6809,1641)

6809*(-643) + 1641*2668 = 

-437818 437818

1

GCD allows us to 
compute modular 
inverses.



Euler totient



Euler totient

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
𝑚(15) =



Euler totient
prime

product
of 2 primes



Example of groups
multiplicative group, mod n

Z*_15 = {1,2,4,7,8,11,13,14}



Euler theorem



Examples
730 mod 31 =

7 18 14 10 7
1              2                4                 8              16



Examples
28 mod 15 =



Implications of Euler
a10𝑚(N) mod N =

ak𝑚(N)+1 mod N =



compute

(show your work)
11302021 mod 23



“Textbook” RSA (insecure)
Pick N = p*q where p,q are primes.



“Textbook” RSA (insecure)
Pick N = p*q where p,q are primes.

Pick e,d such that e ′ d = 1 mod 𝑚(N)



“Textbook” RSA (insecure)
Pick N = p*q where p,q are primes.

Pick e,d such that e ′ d = 1 mod 𝑚(N)
EncN,e(m) = me mod N
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“Textbook” RSA (insecure)
Pick N = p*q where p,q are primes.

Pick e,d such that e ′ d = 1 mod 𝑚(N)

(me)d mod N =

EncN,e(m) = me mod N
DecN,d(c) = cd mod N



Example of Textbook RSA
m=5 PK = (N=143, e=7)  SK = (d=103)



“Textbook” RSA (insecure)
Pick N = p*q where p,q are primes.

Pick e,d such that e ′ d = 1 mod 𝑚(N)
EncN,e(m) = me mod N
DecN,d(c) = cd mod N

Why is it insecure 
against IND-CPA attack?



pkcs1.5

pick r as a random string with no 0s
encpk(m)

(typically 8 bytes)

“padding oracle” attack against this scheme



rsa-oaep+
gen(1n)

encpk(m)

decsk(c)

trapdoor owp()

output m else fail



Example: apple.com

http://apple.com


Very old problem
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New Problem

Alice Bob

Eve

m

did Alice 
really send 

me m?
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Public key digital signature

Alice Bob

Eve

m,s

s=Signsk(m)

Alice really 
did send it.

Vervk(m,s)
Gensk vk



Public key digital signature

Gen(1n)

Signsk(m)

Vervk(m,s)

message space
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Public key digital signature

Gen(1n)

Signsk(m)

Vervk(m,s)

generates a key pair sk,vk

accepts or rejects a msg,sig pair

message space

generates a signature s for 



existential unforgability
“even when given a signing oracle,  
an adversary cannot forge a signature for 
any message of its choosing ”

Alice

Eve



existential unforgability
“even when given a signing oracle,  
an adversary cannot forge a signature for 
any message of its choosing ”

Alice

Eve

m



Signature security
I’m going to make a signing 
key.  Here is the public part 

of it.

(vk, sk) ∈ Gen(1n)



Signature security Now I will ask 
you to sign lots 

of messages 
that I choose.

(vk, sk) ∈ Gen(1n) vk

m0, m1, …



Signature security
OK. I will give you 

signatures on m1,m2,…

Now I will ask 
you to sign lots 

of messages 
that I choose.

(vk, sk) ∈ Gen(1n) vk

si ∈ Signsk(mi)



Signature security Now I will try to create a 
new (signature, message) 

pair…one that I didn’t 
receive from yoiu. signature 

on a new message

(vk, sk) ∈ Gen(1n) vk

si ∈ Signsk(mi) s1, s2, …



Signature security
If you do, you 
have won the 

game!

Now I will try to create a 
new (msg*, sig*) pair…one 
that I didn’t receive from 

you.

Vervk(m*, s*) = 1?



Textbook RSA Signatures (insecure)

Sign((sk=d, N) m):

Compute the signature: ℓ ∈ md mod N

Pick N = p*q where p,q are primes.

Pick e,d such that e ′ d = 1 mod 𝑚(N)

Verify((pk=e, N), , m):ℓ
m = ℓe mod N?



RSA Signatures in GPG
Sign((sk, N) m):

Compute the padding: z ∈ 00 ′ 01 ′ FF⋯FF ′ 00 ′ IDH ′ H(m)

Compute the signature: ℓ ∈ zsk mod N


