
2550 Intro to
cybersecurity

abhi shelat

Public key Crypto

Recap

Revisit our model for Encryption

Symmetric key enc has 1 major drawback.

Alice

Bob Carol

Dave

Evan

Francis
George

Symmetric key enc has 1 major drawback.

Alice

Bob Carol

Dave

Evan

Francis
George

kab, kac, kad, kae, kaf, kag

kba, kbc, kbd, kbe, kbf, kbg
kca, kcb, kcd, kce, kcf, kcg

kda, kdb, kdc, kde, kdf, kdg

kea, keb, kec, ked, kef, keg

kfa, kfb, kfc, kfd, kfe, kfg

kga, kgb, kgc, kgd, kge, kgf

O(n2) keys to manage!

c=Enck(m) m=Deck(c)

Alice Bob

Genk k

Eve

c

???

c=Encpk(m) m=Decsk(c)

Alice Bob

Genpk sk

Eve

c

???

Pk can be used to encrypt. sk can be used to decrypt.

PKC key enc

Alice

Bob Carol

Dave

Evan

Francis
George

ska

skb
skc

skd

ske

skf

skg

pka, pkb, pkc, pkd, pke, pkf, pkg

Are publicly posted

Public key encryption
Gen Enc Dec

3 algorithms

Gen (key generation)

Enc (encryption)

Dec (decryption)

Public key encryption
Gen Enc Dec

3 algorithms

Gen (key generation)

Enc (encryption)

Dec (decryption)

Alice Bob

Genpk sk

Eve

c

“for any pair of messages m1,m2,
Eve cannot tell whether c = Encpk(mi).”

IND-CPA security for pke
(weakest notion of security)

Adv

I will make a key pair and
give you the public part.

pk, sk ∈ gen(1n) pk

IND-CPA security for pke
(weakest notion of security)

Adv

Now I will think.
Then I will give

you 2 messages,
m0, m1.

m0, m1 ∈ A(pk)
pk, sk ∈ gen(1n) pk

IND-CPA security for pke
(weakest notion of security)

Adv

I will pick one, encrypt it,
and send you the

ciphertext.

Now I will think.
Then I will give

you 2 messages,
m0, m1.

m0, m1 ∈ A(pk)

c ∈ encpk(mb)
b ∈ {0,1}

pk, sk ∈ gen(1n) pk

IND-CPA security for pke
(weakest notion of security)

Adv

Now I will need to
figure out if c

corresponds to
m0 or m1.

m0, m1 ∈ A(pk)

c ∈ encpk(mb)
b ∈ {0,1}

b← ∈ A(pk, m0, m1, c)

pk, sk ∈ gen(1n) pk

You win if you guess
correctly!

IND-CPA security for pke
(weakest notion of security)

pk, sk ∈ gen(1n)
m0, m1 ∈ A(pk)

c ∈ encpk(mb)
b ∈ {0,1}

b← ∈ A(pk, m0, m1, c)

Pr[b = b←] = 1/2 + 𝑘(n)

How to build public key encryption?

 Basic
Number
theory

Modular Exponentiation
719 mod 31

7 · 7 · · · 7{19 times

Modular Exponentiation
719 mod 31

Modular Exponentiation
719 mod 31

Modular Exponentiation
719 mod 31

72 74 78 71671 (mod 31)

Modular Exponentiation
719 mod 31

72 74 78 71671 (mod 31)

7 18 14 10 7

Modular Exponentiation

2.5. BASIC COMPUTATIONAL NUMBER THEORY 31

Thus, we can write
bx + (a mod b)y = d

and by adding 0 to the right, and regrouping, we get

d = bx− b("a/b#)y + (a mod b)y + b("a/b#)y
= b(x− ("a/b#)y) + ay

which shows that the return value (y, x− ("a/b#)y) is correct.

The assumption that the inputs are such that a > b is without loss of gen-
erality since otherwise the first recursive call swaps the order of the inputs.

Exponentiation modulo n

Given a, x, n, we now demonstrate how to efficiently compute ax mod n. Re-
call that by efficient, we require the computation to take polynomial time in
the size of the representation of a, x, n. Since inputs are given in binary nota-
tion, this requires our procedure to run in time poly(log(a), log(x), log(n)).

The key idea is to rewrite x in binary as x = 2!x!+2!−1x!−1+· · ·+2x1+x0

where xi ∈ {0, 1} so that

ax mod n = a2!x!+2!−1x!−1+···+21x1+x0 mod n

We show this can be further simplified as

ax mod n =
!∏

i=0

xia
2i

mod n

Algorithm 2: ModularExponentiation(a, x, n)
Input: a, x ∈ [1, n]
r ← 11

while x > 0 do2

if x is odd then3

r ← r · a mod n4

x ← "x/2#5

a ← a2 mod n6

Return r7

Modular Exponentiation

2.5. BASIC COMPUTATIONAL NUMBER THEORY 31

Thus, we can write
bx + (a mod b)y = d

and by adding 0 to the right, and regrouping, we get

d = bx− b("a/b#)y + (a mod b)y + b("a/b#)y
= b(x− ("a/b#)y) + ay

which shows that the return value (y, x− ("a/b#)y) is correct.

The assumption that the inputs are such that a > b is without loss of gen-
erality since otherwise the first recursive call swaps the order of the inputs.

Exponentiation modulo n

Given a, x, n, we now demonstrate how to efficiently compute ax mod n. Re-
call that by efficient, we require the computation to take polynomial time in
the size of the representation of a, x, n. Since inputs are given in binary nota-
tion, this requires our procedure to run in time poly(log(a), log(x), log(n)).

The key idea is to rewrite x in binary as x = 2!x!+2!−1x!−1+· · ·+2x1+x0

where xi ∈ {0, 1} so that

ax mod n = a2!x!+2!−1x!−1+···+21x1+x0 mod n

We show this can be further simplified as

ax mod n =
!∏

i=0

xia
2i

mod n

Algorithm 2: ModularExponentiation(a, x, n)
Input: a, x ∈ [1, n]
r ← 11

while x > 0 do2

if x is odd then3

r ← r · a mod n4

x ← "x/2#5

a ← a2 mod n6

Return r7

2.5. BASIC COMPUTATIONAL NUMBER THEORY 31

Thus, we can write
bx + (a mod b)y = d

and by adding 0 to the right, and regrouping, we get

d = bx− b("a/b#)y + (a mod b)y + b("a/b#)y
= b(x− ("a/b#)y) + ay

which shows that the return value (y, x− ("a/b#)y) is correct.

The assumption that the inputs are such that a > b is without loss of gen-
erality since otherwise the first recursive call swaps the order of the inputs.

Exponentiation modulo n

Given a, x, n, we now demonstrate how to efficiently compute ax mod n. Re-
call that by efficient, we require the computation to take polynomial time in
the size of the representation of a, x, n. Since inputs are given in binary nota-
tion, this requires our procedure to run in time poly(log(a), log(x), log(n)).

The key idea is to rewrite x in binary as x = 2!x!+2!−1x!−1+· · ·+2x1+x0

where xi ∈ {0, 1} so that

ax mod n = a2!x!+2!−1x!−1+···+21x1+x0 mod n

We show this can be further simplified as

ax mod n =
!∏

i=0

xia
2i

mod n

Algorithm 2: ModularExponentiation(a, x, n)
Input: a, x ∈ [1, n]
r ← 11

while x > 0 do2

if x is odd then3

r ← r · a mod n4

x ← "x/2#5

a ← a2 mod n6

Return r7

Greatest Common Divisor
GCD(A,B) = GCD()

Greatest Common Divisor
GCD(A,B) = GCD(B, A mod B)

Greatest Common Divisor
GCD(6809,1641)

Greatest Common Divisor
GCD(6809,1641)

GCD(1641, 245)
GCD(245, 171)
GCD(171, 74)
GCD(74, 23)
GCD(23, 5)
GCD(5, 3)
GCD(3, 2)
GCD(2, 1)

given (a,b), finds (x,y) s.t.
ax + by = gcd(a,b)

2.5. BASIC COMPUTATIONAL NUMBER THEORY 29

Modular Arithmetic

We state the following basic facts about modular arithmetic:

Claim 28.1. For n > 0 and a, b ∈ Z,

1. (a mod n) + (b mod n) = (a + b) mod n

2. (a mod n)(b mod n) mod n = ab mod n

Euclid’s algorithm

Euclid’s algorithm appears in text around 300B.C.; it is therefore well-studied.
Given two numbers a and b such that a ≥ b, Euclid’s algorithm computes the
greatest common divisor of a and b, denoted gcd(a, b). It is not at all obvious
how this value can be efficiently computed, without say, the factorization of
both numbers. Euclid’s insight was to notice that any divisor of a and b will
also be a divisor of b and a − b. The latter is both easy to compute and a
smaller problem than the original one. The algorithm has since been updated
to use a mod b in place of a − b to improve efficiency. An elegant version
of the algorithm which we present here also computes values x, y such that
ax + by = gcd(a, b).

Algorithm 1: ExtendedEuclid(a, b)
Input: (a, b) s.t a > b ≥ 0
Output: (x, y) s.t. ax + by = gcd(a, b)
if a mod b = 0 then1

Return (0, 1)2

else3

(x, y) ← ExtendedEuclid (b, a mod b)4

Return (y, x− y(%a/b&))5

Note: by polynomial time we always mean polynomial in the size of the
input, that is poly(log a + log b)

Proof. On input a > b ≥ 0, we aim to prove that Algorithm 1 returns (x, y)
such that ax + by = gcd(a, b) = d via induction. First, let us argue that the
procedure terminates in polynomial time. The original analysis by Lamé is
slightly better; for us the following suffices since each recursive call involves
only a constant number of divisions and subtraction operations.

Greatest Common Divisor
GCD(6809,1641)

GCD(1641, 245)
GCD(245, 171)
GCD(171, 74)
GCD(74, 23)
GCD(23, 5)
GCD(5, 3)
GCD(3, 2)
GCD(2, 1) (0,1)

(1, 0 - 1*1)

Greatest Common Divisor
GCD(6809,1641)

GCD(1641, 245)
GCD(245, 171)
GCD(171, 74)
GCD(74, 23)
GCD(23, 5)
GCD(5, 3)
GCD(3, 2)
GCD(2, 1) (0,1)

Greatest Common Divisor
GCD(6809,1641)

GCD(1641, 245)
GCD(245, 171)
GCD(171, 74)
GCD(74, 23)
GCD(23, 5)
GCD(5, 3)
GCD(3, 2)
GCD(2, 1) (0,1)

(1, 0 - 1*1)

Greatest Common Divisor
GCD(6809,1641)

GCD(1641, 245)
GCD(245, 171)
GCD(171, 74)
GCD(74, 23)
GCD(23, 5)
GCD(5, 3)
GCD(3, 2)
GCD(2, 1) (0,1)

(1,-1)

Greatest Common Divisor
GCD(6809,1641)

GCD(1641, 245)
GCD(245, 171)
GCD(171, 74)
GCD(74, 23)
GCD(23, 5)
GCD(5, 3)
GCD(3, 2)
GCD(2, 1) (0,1)

(1,-1)
(-1,2)

Greatest Common Divisor
GCD(6809,1641)

GCD(1641, 245)
GCD(245, 171)
GCD(171, 74)
GCD(74, 23)
GCD(23, 5)
GCD(5, 3)
GCD(3, 2)
GCD(2, 1) (0,1)

(1,-1)
(-1,2)
(2,-9)

Greatest Common Divisor
GCD(6809,1641)

6809*(-643) + 1641*2668 =

GCD allows us to
compute modular
inverses.

Greatest Common Divisor
GCD(6809,1641)

6809*(-643) + 1641*2668 =

-437818 437818

1

GCD allows us to
compute modular
inverses.

Euler totient

Euler totient

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
𝑚(15) =

Euler totient
prime

product
of 2 primes

Example of groups
multiplicative group, mod n

Z*_15 = {1,2,4,7,8,11,13,14}

Euler theorem

Examples
730 mod 31 =

7 18 14 10 7
1 2 4 8 16

Examples
28 mod 15 =

Implications of Euler
a10𝑚(N) mod N =

ak𝑚(N)+1 mod N =

compute

(show your work)
11302021 mod 23

“Textbook” RSA (insecure)
Pick N = p*q where p,q are primes.

“Textbook” RSA (insecure)
Pick N = p*q where p,q are primes.

Pick e,d such that e ′ d = 1 mod 𝑚(N)

“Textbook” RSA (insecure)
Pick N = p*q where p,q are primes.

Pick e,d such that e ′ d = 1 mod 𝑚(N)
EncN,e(m) = me mod N
DecN,d(c) = cd mod N

“Textbook” RSA (insecure)
Pick N = p*q where p,q are primes.

Pick e,d such that e ′ d = 1 mod 𝑚(N)

(me)d mod N =

EncN,e(m) = me mod N
DecN,d(c) = cd mod N

Example of Textbook RSA
m=5 PK = (N=143, e=7) SK = (d=103)

“Textbook” RSA (insecure)
Pick N = p*q where p,q are primes.

Pick e,d such that e ′ d = 1 mod 𝑚(N)
EncN,e(m) = me mod N
DecN,d(c) = cd mod N

Why is it insecure
against IND-CPA attack?

pkcs1.5

pick r as a random string with no 0s
encpk(m)

(typically 8 bytes)

“padding oracle” attack against this scheme

rsa-oaep+
gen(1n)

encpk(m)

decsk(c)

trapdoor owp()

output m else fail

Example: apple.com

http://apple.com

Very old problem

New Problem

Alice Bob

Eve

New Problem

Alice Bob

Eve

m

New Problem

Alice Bob

Eve

m

did Alice
really send

me m?

Public key digital signature

Alice Bob

Eve

Gensk vk

Public key digital signature

Alice Bob

Eve

s=Signsk(m)

Gensk vk

Public key digital signature

Alice Bob

Eve

m,s

s=Signsk(m)

Gensk vk

Public key digital signature

Alice Bob

Eve

m,s

s=Signsk(m)

Alice really
did send it.

Vervk(m,s)
Gensk vk

Public key digital signature

Gen(1n)

Signsk(m)

Vervk(m,s)

message space

Public key digital signature

Gen(1n)

Signsk(m)

Vervk(m,s)

generates a key pair sk,vk

message space

Public key digital signature

Gen(1n)

Signsk(m)

Vervk(m,s)

generates a key pair sk,vk

message space

generates a signature s for

Public key digital signature

Gen(1n)

Signsk(m)

Vervk(m,s)

generates a key pair sk,vk

accepts or rejects a msg,sig pair

message space

generates a signature s for

existential unforgability
“even when given a signing oracle,
an adversary cannot forge a signature for
any message of its choosing ”

Alice

Eve

existential unforgability
“even when given a signing oracle,
an adversary cannot forge a signature for
any message of its choosing ”

Alice

Eve

m

Signature security
I’m going to make a signing
key. Here is the public part

of it.

(vk, sk) ∈ Gen(1n)

Signature security Now I will ask
you to sign lots

of messages
that I choose.

(vk, sk) ∈ Gen(1n) vk

m0, m1, …

Signature security
OK. I will give you

signatures on m1,m2,…

Now I will ask
you to sign lots

of messages
that I choose.

(vk, sk) ∈ Gen(1n) vk

si ∈ Signsk(mi)

Signature security Now I will try to create a
new (signature, message)

pair…one that I didn’t
receive from yoiu. signature

on a new message

(vk, sk) ∈ Gen(1n) vk

si ∈ Signsk(mi) s1, s2, …

Signature security
If you do, you
have won the

game!

Now I will try to create a
new (msg*, sig*) pair…one
that I didn’t receive from

you.

Vervk(m*, s*) = 1?

Textbook RSA Signatures (insecure)

Sign((sk=d, N) m):

Compute the signature: ℓ ∈ md mod N

Pick N = p*q where p,q are primes.

Pick e,d such that e ′ d = 1 mod 𝑚(N)

Verify((pk=e, N), , m):ℓ
m = ℓe mod N?

RSA Signatures in GPG
Sign((sk, N) m):

Compute the padding: z ∈ 00 ′ 01 ′ FF⋯FF ′ 00 ′ IDH ′ H(m)

Compute the signature: ℓ ∈ zsk mod N

