2550 Intro to cybersecurity Public key Crypto

abhi shelat

Recap

Revisit our model for Encryption

Symmetric key enc has 1 major drawback.

Bob

Alice

George

Francis

Garol

Evan

Symmetric key enc has 1 major drawback.

 $k_{ba}, k_{bc}, k_{bd}, k_{be}, k_{bf}, k_{bg}$ Bob

Alice

 $k_{ab}, k_{ac}, k_{ad}, k_{ae}, k_{af}, k_{ag}$

O(n²) keys to manage!

George

 $k_{ga}, k_{gb}, k_{gc}, k_{gd}, k_{ge}, k_{gf}$

Francis

 $k_{fa}, k_{fb}, k_{fc}, k_{fd}, k_{fe}, k_{fg}$

 $k_{ca}, k_{cb}, k_{cd}, k_{ce}, k_{cf}, k_{cg}$ Garol

 $k_{da}, k_{db}, k_{dc}, k_{de}, k_{df}, k_{dg}$ Dave

Evan $k_{ea}, k_{eb}, k_{ec}, k_{ed}, k_{ef}, k_{eg}$

Pk can be used to encrypt.

sk can be used to decrypt.

PKC key enc

 sk_b

Bob

Alice

sk_a

 $pk_a, pk_b, pk_c, pk_d, pk_e, pk_f, pk_g$ Are publicly posted

George

 sk_{g}

Francis

sk_f

sk_c Garol

sk_d Dave

Evan sk_e

Public key encryption

Enc Gen 3 algorithms

(key generation) Gen $(pk, sk) \leftarrow \mathsf{Gen}(1^n)$ (encryption) Enc $c \leftarrow \mathsf{Enc}_{pk}(m) \text{ for } pk \in \mathcal{K}, m \in \mathcal{M}$ (decryption) Dec

Dec

Public key encryption

Enc Gen 3 algorithms

(key generation) Gen $(pk, sk) \leftarrow \mathsf{Gen}(1^n)$ (encryption) Enc (decryption) Dec

Dec

$c \leftarrow \mathsf{Enc}_{pk}(m) \text{ for } pk \in \mathcal{K}, m \in \mathcal{M}$

 $\forall m \in \mathcal{M}, (pk, sk) \leftarrow \mathsf{Gen}(1^n)$ $\Pr[\mathsf{Dec}_{sk}(\mathsf{Enc}_{pk}(m)) = m] = 1$

"for any pair of messages m_1, m_2 , *Eve* cannot tell whether $C = Enc_{pk}(m_i)$."

I will make a key pair and give you the public part.

Adv

 $pk, sk \leftarrow gen(1^n)$

Now I will think. Then I will give you 2 messages, m0, m1.

 $pk, sk \leftarrow gen(1^n)$

pk $m_0, m_1 \leftarrow A(pk)$

Now I will think. Then I will give you 2 messages, m0, m1.

I will pick one, encrypt it, and send you the ciphertext.

pk

Adv

 $m_0, m_1 \leftarrow A(pk)$

 $b \leftarrow \{0,1\}$ $c \leftarrow \operatorname{enc}_{pk}(m_b)$

 $pk, sk \leftarrow gen(1^n)$

pk

Adv

 $m_0, m_1 \leftarrow A(pk)$

 $b \leftarrow \{0,1\}$ $c \leftarrow \operatorname{enc}_{pk}(m_b)$

 $b' \leftarrow A(pk, m_0, m_1, c)$

 $\Pr[b = b'] = 1/2 + \epsilon(n)$

- $pk, sk \leftarrow gen(1^n)$ $m_0, m_1 \leftarrow A(pk)$ $b \leftarrow \{0,1\}$ $c \leftarrow \operatorname{enc}_{pk}(m_h)$
 - $b' \leftarrow A(pk, m_0, m_1, c)$

How to build public key encryption?

Basic Number theory

7¹⁹ mod 31

7^1 7^2 7^4 7^8 7^{16} (mod 31)

Modular Exponentiation

Input: $a, x \in [1, n]$ 1 $r \leftarrow 1$ 2 while x > 0 do if x is odd then 3 $\mathbf{4} \quad | \quad r \leftarrow r \cdot a \mod n$ 5 $x \leftarrow \lfloor x/2 \rfloor$ 6 $a \leftarrow a^2 \mod n$ 7 Return *r*

$(a, x, n) \to a^x \mod n$

Algorithm 2: ModularExponentiation(*a*, *x*, *n*)

Modular Exponentiation

(a, x, n)

Algorithm 2: Modu Input: $a, x \in [1, n]$ 1 $r \leftarrow 1$ 2 while x > 0 do if x is odd then 3 $| r \leftarrow r \cdot a \mod n$ 4 $\begin{array}{c|c} \mathbf{5} & x \leftarrow \lfloor x/2 \rfloor \\ \mathbf{6} & a \leftarrow a^2 \bmod n \end{array}$ 7 Return *r*

$$\rightarrow a^{x} \mod n$$

$$a^{x} \mod n = \prod_{i=0}^{\ell} x_{i} a^{2^{i}} \mod n$$

$$a^{x} \operatorname{mod} n = \prod_{i=0}^{\ell} x_{i} a^{2^{i}} \mod n$$

GCD(A,B) = GCD(

GCD(A,B) = GCD(B, A mod B)

Greatest Common Divisor GCD(6809,1641)

Greatest Common Divisor GCD (6809, 1641) GCD(1641, 245) GCD(245, 171) GCD(171, 74) GCD(74, 23) GCD(23, 5) GCD(5, 3)GCD(3, 2)GCD(2, 1)

6809 = 4.1641 + 2451641 = 6 - 245 + 171245=1.171 + 74 171= 2.74 + 23 77=3.23+5 23=4.5 +3 $5_{1} = (1 \cdot 3 + 2)$ 3 = []-2 + [$2 = 2 \cdot 1 + 0$

given (a,b), finds (x,y) s.t. ax + by = gcd(a,b)

- **Algorithm 1**: ExtendedEuclid(*a*, *b*)
 - Input: (a, b) s.t $a > b \ge 0$
- 1 if $a \mod b = 0$ then
- Return (0, 1)2
- 3 else

Output: (x, y) s.t. ax + by = gcd(a, b)

4 $(x, y) \leftarrow \text{ExtendedEuclid} (b, a \mod b)$ 5 Return $(y, x - y(\lfloor a/b \rfloor))$

Greatest Common Divisor GCD(6809, 1641)GCD(1641, 245) GCD(245, 171) GCD(171, 74) GCD(74, 23) GCD(23, 5) GCD(5, 3)GCD(3, 2)(1, 0)GCD(2, 1)

6809 = 4.1641 + 245 (-643, 2668)1641 = 6-245 + 171 (96,643 245 = 1.171 + 77 (-67,96)|7| = 2.77 + 23 (29,-67) 77 = 3.23 + 5 (-9, 29) Z = 4.5 + 3 (Z, -9) $5_{1} = (-1, 2)$ 3 = [12 + [(1, -1) $2 = 2 \cdot (+ 0)$ $\left(\circ, \cdot \right)$

- 1*1) (0, 1)

Greatest Common Divisor GCD (6809,1641) GCD(1641, 245) GCD(245, 171) GCD(171, 74) GCD(74, 23) GCD(23, 5) GCD(5, 3) GCD(3, 2)GCD(2, 1)

(0, 1)

6809 = 4.1641 + 2451641 = 6 - 245 + 171245=1.171 + 74 171= 2.74 + 23 77=3.23+5 27 = 4.5 + 3 $5_{1} = 1 \cdot 3 + 2$ 3 = 12 + 1 $2 = 2 \cdot 1 + 0$

Greatest Common Divisor GCD(6809,1641) GCD(1641, 245) GCD(245, 171) GCD(171, 74) GCD(74, 23) GCD(23, 5) GCD(5, 3) GCD(3,2) (1, 0 - 1*1) GCD(2, 1)(0, 1)

6809 = 4.1641 + 2451641 = 6-245 + 171 245=1.171 + 74 171=2.74+23 77=3.23+5 23 = 4.5 + 3 $5_{1} = (1 \cdot 3 + 2)$ 3 = [1]2 + [$2 = 2 \cdot 1 + 0$

Greatest Common Divisor GCD(6809,1641) GCD(1641, 245) GCD(245, 171) GCD(171, 74) GCD(74, 23) GCD(23, 5) GCD(5, 3) GCD(3, 2)GCD(2, 1)

- 6809 = 4.1641 + 2451641 = 6-245 + 171 245=1.171+74 171=2.74+23 77=3.23+5 23 = 4.5 + 3 $5_{1} = (1 \cdot 3 + 2)$ 3 = [1]2 + [$2 = 2 \cdot 1 + 0$
- (1, -1)(0, 1)

Greatest Common Divisor GCD(6809, 1641)GCD(1641, 245) GCD(245, 171) GCD(171, 74) GCD(74, 23) GCD(23, 5) GCD(5, 3) GCD(3, 2)GCD(2, 1)

- 6809 = 4.1641 + 2451641 = 6-245 + 171 245=1.171+74 171= 2.74 + 23 77=3.23+5 23 = 4.5 + 3 (-1,2) $\sum_{i=1}^{i} (-3, +2)$ 3 = [1]2 + [$2 = 2 \cdot 1 + 0$
- (1, -1)(0, 1)

Greatest Common Divisor GCD(6809,1641) GCD(1641, 245) GCD(245, 171) GCD(171, 74) GCD(74, 23) GCD(23, 5) GCD(5, 3) GCD(3, 2)GCD(2, 1)

6809 = 4.1641 + 245	(-643
1641 = 6-245 + 171	(96
245=1.171+74	(-67,
171=2.74+23	(29,
77=3.23+5	(-9,
23 = 4.5 + 3	(Z,-9
5,=1.3+2	(-1,2
3 = [12 + 1	(-
$2 = 2 \cdot 1 + 0$	0.1

(2, -9)(-1, 2)(1, -1)(0, 1)

Greatest Common Divisor GCD(6809, 1641)

6809*(-643) + 1641*2668 =

GCD allows us to compute modular inverses.

Greatest Common Divisor GCD(6809, 1641)

6809*(-643) + 1641*2668 = 1

437818 -437818

GCD allows us to compute modular inverses.

Euler totient

Euler totient

$\phi(15) =$

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Euler totient

prime

 $\Phi(p) = p - 1$

product of 2 primes

$\Phi(n) = (p-1)(q-1)$

Example of groups $(\mathbb{Z}_n, \star) \quad \{a \mid \gcd(a, n) = 1\}$ multiplicative group, mod n

 $Z^{*}_{15} = \{1, 2, 4, 7, 8, 11, 13, 14\}$

 $|\mathbb{Z}_n^\star| = \Phi(n)$

Euler theorem $\forall a \in \mathbb{Z}_n^{\star}, a^{\Phi(n)} = 1 \mod n$

Examples

$7^{30} \mod 31 =$

1 2 4 8 16 7 18 14 10 7

Examples

 $2^8 \mod 15 =$

Implications of Euler

 $a^{10\phi(N)} \bmod N =$

$a^{k\phi(N)+1} \bmod N =$

compute

11^{30²⁰²¹} mod 23 (show your work)

Pick N = p*q where p,q are primes.

Pick N = p*q where p,q are primes.

Pick e,d such that $e \cdot d = 1 \mod \phi(N)$

Pick N = p*q where p,q are primes. Pick e,d such that $e \cdot d = 1 \mod \phi(N)$

 $\operatorname{Enc}_{N,e}(m) = m^e \mod N$ $\operatorname{Dec}_{N,d}(c) = c^d \mod N$

Pick N = p*q where p,q are primes.

Pick e,d such that $e \cdot d = 1 \mod \phi(N)$

 $\operatorname{Enc}_{N,e}(m) = m^e \mod N$ $\text{Dec}_{N.d}(c) = c^d \mod N$

 $(m^e)^d \mod N =$

Example of Textbook RSA

m=5

PK = (N=143, e=7) SK = (d=103)

Pick N = p*q where p,q are primes. Pick e,d such that $e \cdot d = 1 \mod \phi(N)$

 $\operatorname{Enc}_{N,e}(m) = m^e \mod N$ $\operatorname{Dec}_{N,d}(c) = c^d \mod N$

Why is it insecure against IND-CPA attack?

pkcs1.5

$ENC_{pk}(m)$

PICK *I* AS A RANDOM STRING WITH NO *OS* (TYPICALLY 8 BYTES) $c \leftarrow (0||2||r||0||m)^e \mod N$

"PADDING ORACLE" ATTACK AGAINST THIS SCHEME

RSA-OAEP+

GEN(**1**ⁿ) $f, f^{-1} \leftarrow \text{TRAPDOOR OWP}()$ $ENC_{pk}(m)$

 $r \leftarrow U_n$ $c \leftarrow f(s||t)$ $DEC_{sk}(C)$

$$(s = (s_1, s_2), t) \leftarrow f^-$$

$$r \leftarrow R_3(s) \oplus t$$

$$m \leftarrow R_1(r) \oplus s_1$$

$$R_2(r||m) \stackrel{?}{=} s_2 \quad \mathbf{O}^-$$

 $R_1: \{0,1\}^{k_0} \to \{0,1\}^n$

 $^{-1}(c)$

UTPUT *m* ELSE FAIL

Example: <u>apple.com</u>

www.apple.com

Apple Public EV Server RSA CA 2 - G1

DigiCert High Assurance EV Root CA

Subject Name

Business Category	Pi
Inc. Country	U
Inc. State/Province	C
Serial Number	С
Country	U
State/Province	C
Locality	С
Organization	A
Common Name	w

Private Organization US California C0806592 US California Cupertino Apple Inc. www.apple.com

Issuer Name

Country	US
Organization	Apple Inc.
common Name	Apple Public EV Server RSA CA 2 - G1

Validity

Not Before	Fri, 23 Aug 2024 17:30:11 GMT
Not After	Thu, 21 Nov 2024 17:40:11 GMT

Subject Alt Names

NS Name	www.apple.com
NS Name	images.apple.com
NS Name	www.apple.com.cn

Public Key Info

Algorithm	RSA
Key Size	2048
Exponent	65537
Modulus	C8:A2:02:8A:C1:1C:A7:9A:EE:58:49:9B:10:3C:41:8D:BF:EF:6F:23:7E:64:05

Υ	

1	

Safari is using an encrypted connection to www.apple.com.

Encryption with a digital certificate keeps information private as it's sent to or from the https website www.apple.com.

DigiCert, Inc. has identified www.apple.com as being owned by Apple Inc. in Cupertino, California, US.

DigiCert High Assurance EV Root CA	
------------------------------------	--

└→ 🛅 DigiCert SHA2 Extended Validation Server CA-3

🖵 🚾 www.apple.com

Serial Number Version	03 8E 3F 9E 09 D7 ED C7 B1 80 3F 74 A7 4C 35 AB 3
Signature Algorithm	SHA-256 with RSA Encryption (1.2.840.113549.1.1.11)
Parameters	None
Not Valid Before	Tuesday, October 6, 2020 at 8:00:00 PM Eastern Daylight Time
Not Valid After	Friday, October 8, 2021 at 8:00:00 AM Eastern Daylight Time
Public Key Info	
Algorithm	RSA Encryption (1.2.840.113549.1.1.1)
Parameters	None
Public Key Exponent	256 bytes : CA 1B 1C 21 78 15 3D 40 CF A3 79 3F 9D CF B2 53 AB A9 41 FF 3E 06 A1 29 69 8A 04 46 9E FB C4 0D 56 7A CA E6 80 E7 AF C6 C0 BF 8B 60 71 CA 9A E8 76 0C 06 C8 9B 77 B8 F3 1B EA 7E E7 3A 84 CB A3 88 A5 93 04 3F 69 66 77 CF AE 06 D1 D9 E1 10 08 7A E0 24 98 E7 56 97 0F 73 68 7B 4D 69 46 28 26 FF 05 81 0C C0 DA FC 21 71 81 65 9A 39 C9 E9 68 36 36 02 5F 81 80 B7 7E 8A 5B FE 34 D0 CE 76 2D D9 8B 3E D4 13 C0 EC EB 0F 2C 77 AD 1E 7B 20 F6 DA 92 98 FD 89 F3 A7 CB 53 16 2E B0 B9 62 BE C8 C3 28 40 CF 8C 5C 61 77 8F 92 3D 2F 23 F2 0A AB 65 82 22 B8 98 CE BA C8 00 95 E4 67 34 6E 76 E5 D1 D3 2D 51 91 BC EF C0 C8 DE F8 7B CC 46 45 00 76 D9 CB 30 31 E9 56 FD 0E 68 F4 36 F9 1B 5F 88 61 62 8F 60 A8 DE 43 7B 5C C1 15 73 D4 06 12 6E 85 9B 50 9C 24 BF 5F FC F4 68 95 67 D5 BF 44 71 65537
Key Size	2,048 bits
P Hide Cert	ificate

Very old problem

New Problem

Bob

New Problem

Bob

New Problem

MESSAGE SPACE $\{\mathcal{M}\}_n$

Gen(1ⁿ)

Sign_{sk}(m)

Ver_{vk}(m,s)

MESSAGE SPACE $\{\mathcal{M}\}_n$

 $Gen(1^n) \qquad GENERATES A KEY PAIR SK, VK$

Sign_{sk}(m)

Ver_{vk}(m,s)

MESSAGE SPACE $\{\mathcal{M}\}_n$

Gen(1^n) GENERATES A KEY PAIR SK, VK

Sign_{sk}(m) GENERATES A SIGNATURE S FOR

 $Ver_{vk}(m,s)$

$m \in \mathcal{M}_n$

MESSAGE SPACE $\{\mathcal{M}\}_n$

Gen(1^n) GENERATES A KEY PAIR SK, VK

Sign_{sk}(m) GENERATES A SIGNATURE S FOR

 $\Pr[k \leftarrow Gen(1^n) : Ver_{vk}(m, Sign_{sk}(m)) = 1] = 1$

$m \in \mathcal{M}_n$

Vervk(m,s) ACCEPTS OR REJECTS A MSG,SIG PAIR

existential unforgability

"EVEN WHEN GIVEN A SIGNING ORACLE,

AN ADVERSARY CANNOT FORGE A SIGNATURE FOR

ANY MESSAGE OF ITS CHOOSING "

existential unforgability

"EVEN WHEN GIVEN A SIGNING ORACLE,

AN ADVERSARY CANNOT FORGE A SIGNATURE FOR

ANY MESSAGE OF ITS CHOOSING "

 $(vk, sk) \leftarrow \text{Gen}(1^n)$

I'm going to make a signing key. Here is the public part of it.

 $(vk, sk) \leftarrow \text{Gen}(1^n)$

Now I will ask you to sign lots of messages that I choose.

 m_0, m_1, \dots

vk

 $(vk, sk) \leftarrow \text{Gen}(1^n)$

OK. I will give you signatures on m1,m2,...

Now I will ask you to sign lots of messages that I choose.

vk

 $s_i \leftarrow \text{Sign}_{sk}(m_i)$

 $(vk, sk) \leftarrow \text{Gen}(1^n)$

Now I will try to create a new (signature, message) pair...one that I didn't receive from yoiu. signature on a new message

 $s_i \leftarrow \text{Sign}_{sk}(m_i)$

vk S_1, S_2, \ldots

If you do, you have won the game! Now I will try to create a new (msg*, sig*) pair...one that I didn't receive from you.

$$\operatorname{Ver}_{vk}(m^*, s^*) \stackrel{?}{\doteq} 1$$

Textbook RSA Signatures (insecure) Pick N = p*q where p,q are primes. Pick e,d such that $e \cdot d = 1 \mod \phi(N)$

Sign((sk=d, N) m):

Compute the signature: $\sigma \leftarrow m^d \mod N$

Verify((pk=e, N), σ , m): $m \stackrel{?}{\doteq} \sigma^e \mod N$

RSA Signatures in GPG

Sign((sk, N) m):

Compute the padding:

Compute the signature: $\sigma \leftarrow z^{sk} \mod N$

$z \leftarrow 00 \cdot 01 \cdot FF \cdots FF \cdot 00 \cdot \mathsf{ID}_H \cdot H(m)$

