
2550 Intro to
cybersecurity

abhi shelat

L13: Signatures

Recap perfect security
Privacy encryption AES Blum Mical

symmetric e c

public key encryption
A

Very old problem

New Problem

Alice Bob

Eve

New Problem

Alice Bob

Eve

m

New Problem

Alice Bob

Eve

m

did Alice
really send

me m?

Authentication
of messages

Public key digital signature

Alice Bob

Eve

Gensk vk

Everyone can see the
public of verification

key

Sender

Public key digital signature

Alice Bob

Eve

s=Signsk(m)

Gensk vk

Public key digital signature

Alice Bob

Eve

m,s

s=Signsk(m)

Gensk vk

Public key digital signature

Alice Bob

Eve

m,s

s=Signsk(m)

Alice really
did send it.

Vervk(m,s)
Gensk vk

Intractable for Eve to
produce a differentmis on

a new pair

0,1

Public key digital signature

Gen(1n)

Signsk(m)

Vervk(m,s)

message space

Public key digital signature

Gen(1n)

Signsk(m)

Vervk(m,s)

generates a key pair sk,vk

message space

Public key digital signature

Gen(1n)

Signsk(m)

Vervk(m,s)

generates a key pair sk,vk

message space

generates a signature s for

Public key digital signature

Gen(1n)

Signsk(m)

Vervk(m,s)

generates a key pair sk,vk

accepts or rejects a msg,sig pair

message space

generates a signature s for
Dec

Enc

existential unforgability
“even when given a signing oracle,
an adversary cannot forge a signature for
any message of its choosing ”

Alice

Eve

existential unforgability
“even when given a signing oracle,
an adversary cannot forge a signature for
any message of its choosing ”

Alice

Eve

m

Signature security
I’m going to make a signing
key. Here is the public part

of it.

(vk, sk) ← Gen(1n)

Adversary

Signature security Now I will ask
you to sign lots

of messages
that I choose.

(vk, sk) ← Gen(1n) vk

m0, m1, …

Fe
i

Signature security
OK. I will give you

signatures on m1,m2,…

Now I will ask
you to sign lots

of messages
that I choose.

(vk, sk) ← Gen(1n) vk

si ← Signsk(mi)

Signature security Now I will try to create a
new (signature, message)

pair…one that I didn’t
receive from yoiu. signature

on a new message

(vk, sk) ← Gen(1n) vk

si ← Signsk(mi) s1, s2, …

Signature security
If you do, you
have won the

game!

Now I will try to create a
new (msg*, sig*) pair…one
that I didn’t receive from

you.

Vervk(m*, s*) = 1?

and A didn’t query m

for all non-uniform ppt A

Textbook RSA Signatures (insecure)
Pick N = p*q where p,q are primes.
Pick e,d such that e ⋅ d = 1 mod ϕ(N)

65537

Textbook RSA Signatures (insecure)
Pick N = p*q where p,q are primes.
Pick e,d such that e ⋅ d = 1 mod ϕ(N)

Sign((sk=d, N) m):

Compute the signature: σ ← md mod N

Verify((pk=e, N), , m):σ
m = σe mod N?

Dec

Enc Jig

Textbook RSA (insecure) example
Lets pick a key N = 443 * 919 = 407177.

Lets say e = 65537. What is d ?

Ocn 1442 918 405,756

d 322,397

Textbook RSA (insecure) example
Lets pick a key N = 443 * 919 = 407177.

Lets say e = 65537. What is d ?

Sign the message m = “22” = 0x3232 = 12850. sig
128509modN

Textbook RSA (insecure) example
Lets pick a key N = 443 * 919 = 407177.

Lets say e = 65537. What is d ?

Sign the message m = “22” = 0x3232 = 12850.

sig = 84760.

Textbook RSA (insecure) example
Lets pick a key N = 443 * 919 = 407177.

Lets say e = 65537. What is d ?

Sign the message m = “22” = 0x3232 = 12850.

sig = 84760.

Verify the signature (“22”, 84760) : 84760 modN

12850

Textbook RSA Signatures (insecure)

Sign((sk=d, N) m):
Compute the signature: σ ← md mod N

Pick N = p*q where p,q are primes.
Pick e,d such that e ⋅ d = 1 mod ϕ(N)

Verify((pk=e, N), , m):σ m = σe mod N?

Why is this scheme
insecure?

Textbook RSA Signatures (insecure)

Sign((sk=d, N) m):
Compute the signature: σ ← md mod N

Pick N = p*q where p,q are primes.
Pick e,d such that e ⋅ d = 1 mod ϕ(N)

Verify((pk=e, N), , m):σ m = σe mod N?

Why is this scheme
insecure?

Given the signature pair (“22” = 12850, 84760) ,
what is the signature on 12850 * 12850 = 165122500 ?

md

m.im 1md.Omd

ooo

RSA Signatures (PKCSv1.5)
Sign((sk, N) m):

Compute the padding: z ← 00 ⋅ 01 ⋅ FF⋯FF ⋅ 00 ⋅ IDH ⋅ H(m)

Compute the signature: σ ← zsk mod N

(Randomized padding to prevent basic
forgery attacks. Widely used, but first
full security proof was written in 2018.)

Verify compute t Oe and check that
it is of the form above

Speed openssl speed rsa dsa ecdsa

Doing 1024 bits private rsa's for 10s: 86688 1024 bits private RSA's in 9.99s
Doing 1024 bits public rsa's for 10s: 1341152 1024 bits public RSA's in 10.00s
Doing 2048 bits private rsa's for 10s: 13154 2048 bits private RSA's in 9.99s
Doing 2048 bits public rsa's for 10s: 437080 2048 bits public RSA's in 10.00s
Doing 3072 bits private rsa's for 10s: 4243 3072 bits private RSA's in 10.00s
Doing 3072 bits public rsa's for 10s: 211605 3072 bits public RSA's in 10.00s
Doing 4096 bits private rsa's for 10s: 1845 4096 bits private RSA's in 9.99s
Doing 4096 bits public rsa's for 10s: 125130 4096 bits public RSA's in 9.99s

Doing 1024 bits sign dsa's for 10s: 74467 1024 bits DSA signs in 9.95s
Doing 1024 bits verify dsa's for 10s: 95863 1024 bits DSA verify in 9.99s
Doing 2048 bits sign dsa's for 10s: 30197 2048 bits DSA signs in 9.97s
Doing 2048 bits verify dsa's for 10s: 33802 2048 bits DSA verify in 10.00s

Doing 256 bits sign ecdsa's for 10s: 339010 256 bits ECDSA signs in 9.89s
Doing 256 bits verify ecdsa's for 10s: 115106 256 bits ECDSA verify in 10.00s
Doing 384 bits sign ecdsa's for 10s: 7773 384 bits ECDSA signs in 9.98s
Doing 384 bits verify ecdsa's for 10s: 10066 384 bits ECDSA verify in 10.00s
Doing 521 bits sign ecdsa's for 10s: 25316 521 bits ECDSA signs in 9.98s
Doing 521 bits verify ecdsa's for 10s: 12896 521 bits ECDSA verify in 9.99s
Doing 283 bits sign ecdsa's for 10s: 13860 283 bits ECDSA signs in 9.98s
Doing 283 bits verify ecdsa's for 10s: 7028 283 bits ECDSA verify in 9.99s
Doing 409 bits sign ecdsa's for 10s: 8441 409 bits ECDSA signs in 9.99s
Doing 409 bits verify ecdsa's for 10s: 4309 409 bits ECDSA verify in 9.98s

Vn sign

Message Authentication codes

Alice Bob

Eve

Message Authentication codes

Alice Bob

Eve

Genk k

Message Authentication codes

Alice Bob

Eve

Genk k

t=Signk(m)

Message Authentication codes

Alice Bob

Eve

m,t

Genk k

t=Signk(m)

Message Authentication codes

Alice Bob

Eve

m,t

Genk k

t=Signk(m) Verk(m,t)

Message Authentication codes

Alice Bob

Eve

m,t

Alice really
did send it.

Genk k

t=Signk(m) Verk(m,t)

Construction of a MAC

Gen(1n):

Signk(m):

Verk(m,t):

Construction of a MAC

Gen(1n):

Signk(m):

Verk(m,t):

let be a PRF family like AES

Construction of a MAC

Gen(1n):

Signk(m):

Verk(m,t):

let be a PRF family like AES

Construction of a MAC

Gen(1n):

Signk(m):

Verk(m,t):

let be a PRF family like AES

Construction of a MAC

Gen(1n):

Signk(m):

Verk(m,t):

let be a PRF family like AES

accept if

Security for a MAC (similar to Signature)

Eve

Alice

Genk k

Bob

1

3

Security for a MAC (similar to Signature)

Eve

Alice

Genk k

Bob

1

3

m′

t′ ← Signk(m′)

t′

1’

Security for a MAC (similar to Signature)

Eve

Alice

Genk k

Bob

1

3

m′

t′ ← Signk(m′)

t′

1’ 2

m,t
Send a new m,t.

Security for a MAC (similar to Signature)

Eve

Alice

Genk k

Bob

1

Verk(m,t)=“OK”
3

m′

t′ ← Signk(m′)

t′

1’ 2

m,t
Send a new m,t.

Security intuition
Evem′

t′

m, t

Pr[Fk(m) = t] =

Lets do some class exercises with these tools.

