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Public key digital signature

Alice Bob

Eve

m,s

s=Signsk(m)

Alice really 
did send it.

Vervk(m,s)
Gensk vk

Intractable for Eve to
produce a differentmis on

a new pair

0,1
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Public key digital signature

Gen(1n)

Signsk(m)

Vervk(m,s)

generates a key pair sk,vk

accepts or rejects a msg,sig pair

message space

generates a signature s for 
Dec

Enc
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an adversary cannot forge a signature for 
any message of its choosing ”
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Signature security
I’m going to make a signing 
key.  Here is the public part 

of it.

(vk, sk) ← Gen(1n)

Adversary



Signature security Now I will ask 
you to sign lots 

of messages 
that I choose.

(vk, sk) ← Gen(1n) vk
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Signature security
OK. I will give you 

signatures on m1,m2,…

Now I will ask 
you to sign lots 

of messages 
that I choose.

(vk, sk) ← Gen(1n) vk

si ← Signsk(mi)



Signature security Now I will try to create a 
new (signature, message) 

pair…one that I didn’t 
receive from yoiu. signature 

on a new message

(vk, sk) ← Gen(1n) vk

si ← Signsk(mi) s1, s2, …



Signature security
If you do, you 
have won the 

game!

Now I will try to create a 
new (msg*, sig*) pair…one 
that I didn’t receive from 

you.

Vervk(m*, s*) = 1?



and A didn’t query m

for all non-uniform ppt A



Textbook RSA Signatures (insecure)
Pick N = p*q where p,q are primes.
Pick e,d such that e ⋅ d = 1 mod ϕ(N)
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Textbook RSA Signatures (insecure)
Pick N = p*q where p,q are primes.
Pick e,d such that e ⋅ d = 1 mod ϕ(N)

Sign((sk=d, N) m):

Compute the signature: σ ← md mod N

Verify((pk=e, N), , m):σ
m = σe mod N?

Dec

Enc Jig



Textbook RSA (insecure) example
Lets pick a key N = 443 * 919 = 407177. 

Lets say e = 65537. What is d ?

Ocn 1442 918 405,756

d 322,397
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Textbook RSA (insecure) example
Lets pick a key N = 443 * 919 = 407177. 

Lets say e = 65537. What is d ?

Sign the message m = “22” = 0x3232 = 12850.

sig = 84760.

Verify the signature (“22”, 84760) : 84760 modN

12850
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Compute the signature: σ ← md mod N
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Textbook RSA Signatures (insecure)

Sign((sk=d, N) m):
Compute the signature: σ ← md mod N

Pick N = p*q where p,q are primes.
Pick e,d such that e ⋅ d = 1 mod ϕ(N)

Verify((pk=e, N), , m):σ m = σe mod N?

Why is this scheme 
insecure?

Given the signature pair (“22” = 12850, 84760) , 
what is the signature on 12850 * 12850 = 165122500  ?

md

m.im 1md.Omd

ooo



RSA Signatures (PKCSv1.5)
Sign((sk, N) m):

Compute the padding: z ← 00 ⋅ 01 ⋅ FF⋯FF ⋅ 00 ⋅ IDH ⋅ H(m)

Compute the signature: σ ← zsk mod N

(Randomized padding to prevent basic 
forgery attacks. Widely used, but first 
full security proof was written in 2018.)

Verify compute t Oe and check that
it is of the form above



Speed openssl speed rsa dsa ecdsa

Doing 1024 bits private rsa's for 10s: 86688 1024 bits private RSA's in 9.99s 
Doing 1024 bits public  rsa's for 10s: 1341152 1024 bits public RSA's in 10.00s 
Doing 2048 bits private rsa's for 10s: 13154 2048 bits private RSA's in 9.99s 
Doing 2048 bits public  rsa's for 10s: 437080 2048 bits public RSA's in 10.00s 
Doing 3072 bits private rsa's for 10s: 4243 3072 bits private RSA's in 10.00s 
Doing 3072 bits public  rsa's for 10s: 211605 3072 bits public RSA's in 10.00s 
Doing 4096 bits private rsa's for 10s: 1845 4096 bits private RSA's in 9.99s 
Doing 4096 bits public  rsa's for 10s: 125130 4096 bits public RSA's in 9.99s 

Doing 1024 bits sign   dsa's for 10s: 74467 1024 bits DSA signs in 9.95s 
Doing 1024 bits verify dsa's for 10s: 95863 1024 bits DSA verify in 9.99s 
Doing 2048 bits sign   dsa's for 10s: 30197 2048 bits DSA signs in 9.97s 
Doing 2048 bits verify dsa's for 10s: 33802 2048 bits DSA verify in 10.00s 

Doing 256 bits sign   ecdsa's for 10s: 339010 256 bits ECDSA signs in 9.89s                                               
Doing 256 bits verify ecdsa's for 10s: 115106 256 bits ECDSA verify in 10.00s                                           
Doing 384 bits sign   ecdsa's for 10s: 7773 384 bits ECDSA signs in 9.98s                                                 
Doing 384 bits verify ecdsa's for 10s: 10066 384 bits ECDSA verify in 10.00s                                            
Doing 521 bits sign   ecdsa's for 10s: 25316 521 bits ECDSA signs in 9.98s                                                
Doing 521 bits verify ecdsa's for 10s: 12896 521 bits ECDSA verify in 9.99s                                             
Doing 283 bits sign   ecdsa's for 10s: 13860 283 bits ECDSA signs in 9.98s                                                
Doing 283 bits verify ecdsa's for 10s: 7028 283 bits ECDSA verify in 9.99s                                              
Doing 409 bits sign   ecdsa's for 10s: 8441 409 bits ECDSA signs in 9.99s                                                 
Doing 409 bits verify ecdsa's for 10s: 4309 409 bits ECDSA verify in 9.98s       

Vn sign



Message Authentication codes

Alice Bob

Eve



Message Authentication codes

Alice Bob

Eve

Genk k



Message Authentication codes

Alice Bob

Eve

Genk k

t=Signk(m)



Message Authentication codes

Alice Bob

Eve

m,t

Genk k

t=Signk(m)



Message Authentication codes

Alice Bob

Eve

m,t

Genk k

t=Signk(m) Verk(m,t)



Message Authentication codes

Alice Bob

Eve

m,t

Alice really 
did send it.

Genk k

t=Signk(m) Verk(m,t)
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Construction of a MAC

Gen(1n):

Signk(m):

Verk(m,t):

let be a PRF family like AES

accept if
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Security for a MAC (similar to Signature)

Eve

Alice

Genk k

Bob

1

Verk(m,t)=“OK”
3

m′ 

t′ ← Signk(m′ )

t′ 

1’ 2

m,t
Send a new m,t.



Security intuition
Evem′ 

t′ 

m, t

Pr[Fk(m) = t] =



Lets do some class exercises with these tools.


