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How U2F foils phishing

2.1 am tricked into clicking on fake
m G login, who tries a PITM attack.
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My browser knows the origin is “com-settingssecurity.tk”
instead of google.com, and passes this string as url.


http://google.com
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The 2FA key signs this with url=com-settings...
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Google reject the authentication and

The 2FA key signs this with url=com-settings... detects the attack!
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The Tracking problem
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U2F can help prevent tracking Nebeite
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Sending request with appId: https://u2f.bin.coffee

{
"version": "U2F V2",
"challenge": "uQnl3M4Rj3FZgs6WjyLaZAfwRh4"

}

Got response:

{
"clientData": "eyJjaGFsbGVuZ2UiO0iJglUW5sM000UmozR1lpnczZXanlMYVpBZndSaDQiLCJvcmlnaW4iOiJodHRweczovL3UyZi5iaW4uY29mZmvV1IiwidHlwIjoibmF?2
"errorCode": 0,
"registrationData": “BQRSuRLPvOp5udQ55vVhucf3N50g6..",
"version": "U2F_Vv2"

}

Key Handle: 0r0ZO0pOFOE0-0d0W0c0Q0b0X0i020CO0w0-0EOvOhOt0OTOTOPO_ 0-090_ 0a050P0e030u0b0z010K0Q0r000£0u030_ 0P020B0JOMOx0D050J0 0d0P0Q0e0j(
Certificate: 3082021c3082..

Attestation Cert

Subject: Yubico U2F EE Serial 14803321578

Issuer: Yubico U2F Root CA Serial 457200631

Validity (in millis): 1136332800000

Attestation Signature

R: 0Oblle3efebae5ac7calel0d4fe2c5b5¢c£18a2531c0£f4£70b11c30b72b5£946a9a3

S: 0f37ab2d4f93ebcdaed0a51b4b17£fb93403db9873£0e9cce36£17b1502734bb2

[PASS] Signature buffer has no unnecessary bytes.: 71 == 71
[PASS] navigator.id.finishEnrollment == navigator.id.finishEnrollment
[PASS] uQnl3M4Rj3FZgs6WjyLaZAfwRh4 == uQnl3M4Rj3FZgs6WjyLazZAfwRh4

[PASS] https://u2f.bin.coffee == https://u2f.bin.coffee
[PASS] Verified certificate attestation signature
[PASS] Imported credential public key

Failures: 0 TODOs: 0



Future without passwords?



Password Security game
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More realistic picture of the worla
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The problem of distributed authentication
Nelworty  Aufhesating |




Distributed authentication: Attacker model

What can attacker do?
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Distributed authentication: Bad Solution

What can attacker do?
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Distributed authentication: Bad Solution

What can attacker do?
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Basic tool: symmetric encryption
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Basic tool: symmetric encryption

Gen: generates secret key k

—

Enc: given k and m output a C|phertext C
Denote Ency (m) E,(m), {m};

Dec: given k and c output a message m

Securlty (mformal)
Whatever Eve can learn on m given ¢ can be learned without ¢

Examples: :
— DES (Data Encryption Standard)

— AES (Advanced Encryption Standard)

()




Authentication from Encryption

Alice and Bob share a key

They communicate over an insecure channel

Alice wants to prove her identity to Bob

Eve’s goal: impersonate Alice
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Attempt #2: use the key
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Attempt #2: use the key
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Key establishment

* The protocol worked because Alice and Bob shared a key

How do parties agree on a key?
— Run a key agreement protocol (later in the semester)
— Use a trusted third party (this lecture)

* Key distribution center (KDC):
— Shares a key with each entity
— Single point of failure
— Reasonable assumption for organizations
— Not useful for open environments (e.g. the Internet)




Naive solution

KDC generates a key for each pair

. n(n-1) n le/
Number of keys n(n — 1), number of key pairs —— = () =

Drawbacks:
— Quadratic number of keys
— Adding new users is complex

May be useful for static small networks L2
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Desire: solution with linear keys
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KDC shares a key with each user

Number of keys 2n -

Number of kgﬁairs n

These are long-term keys

Alice and Bob establish a fresh session key
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Needham-Schroeder Protocol (1978)
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Fixed Needham-Schroeder
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Kerberos
D ——

* Developed in MIT in the ‘80s

e Based on Needham-Schroeder
— Versions 1-3 not published

— Version 4 not secure
— Version 5 published in 1993
* Widely used nowadays:

— The basis of Microsoft’s active directory
— Many Unix versions



Kerberos

AC

Get TGT (ticketing granting ticket)
Once per login session

Get ticket for a service
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Kerberos

e Passwords are not sent over the network
* Alice’s key k,s is a hash of her password

e Kerberos weaknesses:

£ KDC is a single point of failure £
— DoS the KDC and the network ceases to function

— Compromise the KDC leads to network-wide compromise

— Time synchronization is a very hard problem



“Single Sign on”
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Sign up with your identity provider

IR F&@ . . :
You'll use this service to log in to your network

G Sign up with Google
o e Sign up with Microsoft

OR

Enter your email...

Sign up with Email




Same problem as before
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“Single Sign on”

LDC

K Sign up with your identity provider \

You'll use this service to log in to your network
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@ “| want to use your service”
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Oauth —

Yelp wants to access your Google
Account

Q r@rdegges.com

This will allow Yelp to:

B see and download your contacts ®
——_—

A [ l 5 W Make sure you trust Yelp Some

You may be sharing sensitive info with this site or app.
Learn about how Yelp will handle your data by reviewing its
P resource on
or remove access in your Google Account. I‘i 5
>
the interne

Learn about the risks

Cancel m
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Attacks against “Login with..." services
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Use Sign in with Apple on
your Apple device

Using Sign in with Apple is quick and easy
on any Apple device with the latest
software. Make sure you're signed in with
your Apple ID on your device.

1. Tap the Sign in with Apple button on the

participating app or website.
. Apple ID
If the app or site has not requested any

information to set up your account, check K
that your Apple ID is correct and go to
Step 4.

Create an account for KAYAK using your
Apple ID “j.appleseed@icloud.com”.

If you're asked to provide your name and

NAME John Appleseed (%]

email address, Sign in with Apple

EMAIL  Share My Email

automatically fills in the information from : :
j-appleseed@icloud.com

your Apple ID. You can edit your name if

Hide My Email

you like and choose Share My Email Forward To:
j-appleseed@icloud.com

or Hide My Email.

Tap Continue and confirm with a quick
Face ID, Touch ID, or device passcode to Continue

sign in. If you don't have Face ID, Touch

ID, or a passcode set up, enter your

Apple ID password.




Authentication:
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Authorization

—
After Authenticating a subject, what next?
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Access Control

o Policy specifying how entities can interact with resources

e i.e., Who can access what?
e Requires authentication and authorization

——

« Access control primitives

Principal User of a system

g

Subject Entity that acts on behalf of principals

Object Resource acted upon by subjects
e

—_—

A7

Software program

Jiles
/Seckets

Devices
OS APIs



Access Control Check

« Glven an access request from a subject, on behalf of a principal, for an
object, return an access control decision based on the policy

Object j
|
Q-D—?gg

8

Allow

. : Deny
Principal Subject

sl
b rowSev Policy




Access Control Models

(i~
« Discretionary Access Control (DAC)
« The kind of access control you are familiar with

« Access rights propagate and may be changed at subject’s discretion
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Access Control Models

» Discretionary Access Control (DAC)
« The kind of access control you are familiar with
« Access rights propagate and may be changed at subject’s discretion

e Mandatory Access Control (MAC) @ro ject 2)
« Access of subjects to objects is based on a system-wide policy
« Denies users full control over resources they create



Sources

1. Many slides courtesy of Wil Robertson: https://wkr.io

2. Many slides courtesy of Ran Cohen
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