
2550 Intro to
cybersecurity

abhi shelat

L5

How U2F foils phishing
1. In the beginning, I register with G and setup 2FA.

User,sk User,pkMy browser

How U2F foils phishing

Fake Website
Com-settingssecurity.tk

User,sk User,pk

2. I am tricked into clicking on fake
G login, who tries a PITM attack.

My browser

i

fallen

How U2F foils phishing

Fake Website
Com-settingssecurity.tk

User,sk User,pk

2. I am tricked into clicking on fake
G login, who tries a PITM attack.

{login, challenge ch}

My browser

t
m Hinch

How U2F foils phishing

Fake Website
Com-settingssecurity.tk

User,sk User,pk

2. I am tricked into clicking on fake
G login, who tries a PITM attack.

{login, challenge ch}{login, challenge ch}

My browser

SIGNEchallenge Urs

How U2F foils phishing

Fake Website
Com-settingssecurity.tk

User,sk User,pk

2. I am tricked into clicking on fake
G login, who tries a PITM attack.

{login, challenge ch}{login, challenge ch}

My browser

{login, ch, url, tls_id}

My browser knows the origin is “com-settingssecurity.tk”
instead of google.com, and passes this string as url.

http://google.com

How U2F foils phishing

Fake Website
Com-settingssecurity.tk

User,sk User,pk

2. I am tricked into clicking on fake
G login, who tries a PITM attack.

{login, challenge ch}{login, challenge ch}

My browser

{login, ch, url, tls_id}

My browser knows the origin is “com-settingssecurity.tk”
instead of google.com, and passes this string as url.

Sign challenge using sk

s ← Signsk(ch, url, tlsid)

The 2FA key signs this with url=com-settings…

http://google.com

How U2F foils phishing

Fake Website
Com-settingssecurity.tk

User,sk User,pk

2. I am tricked into clicking on fake
G login, who tries a PITM attack.

{login, challenge ch}{login, challenge ch}

My browser

{login, ch, url, tls_id}

My browser knows the origin is “com-settingssecurity.tk”
instead of google.com, and passes this string as url.

Sign challenge using sk

s ← Signsk(ch, url, tlsid)

The 2FA key signs this with url=com-settings…

{ s } Verifypk(ch, s, url, tlsid)

Google reject the authentication and
detects the attack!

I

908com settings th

http://google.com

The Tracking problem

User,sk

https://badguy

https://badgirl

https://badguy
https://badgirl

The Tracking problem

User,sk

https://badguy

https://badgirl

{register}

{register}
{ pk, sign_sk(“thunderkat”) } “Thunderkat”, pk

https://badguy
https://badgirl

The Tracking problem

User,sk

https://badguy

https://badgirl

{register}

{register}
{ pk, sign_sk(“thunderkat”) } “Thunderkat”, pk

{register}

{register}

{ pk, sign_sk(“roar kitty”) } “Roar kitty”, pk

f

https://badguy
https://badgirl

U2F can help prevent tracking

Init

Website
(Relying
Party)

{appid, register}{appid, register}
Make a signing key
(sk,pk)

{ h, pk, sign_sk(“username”) }

User, h, pk

And link it with
appid, and create
A token “h”

Different
foreach8

U2F can help prevent tracking

Init

Website
(Relying
Party)

{appid, register}{appid, register}
Make a signing key with aphid
(sk,pk)

{ h, pk, sign_sk(“username”) }

User, h, pk

And link it with
appid, and create
A token “h”

Login {login, h, challenge ch}Lookup sk using h
Sign challenge using sk

{ s,h }

{login, h, ch, origin, tls_id}
s ← Signsk(ch, url, tlsid)

Verifypk(ch, s, url, tlsid)
Check h

h

Sending request with appId: https://u2f.bin.coffee
{
 "version": "U2F_V2",
 "challenge": "uQnl3M4Rj3FZgs6WjyLaZAfwRh4"
}

Got response:
{
 "clientData": "eyJjaGFsbGVuZ2UiOiJ1UW5sM000UmozRlpnczZXanlMYVpBZndSaDQiLCJvcmlnaW4iOiJodHRwczovL3UyZi5iaW4uY29mZmVlIiwidHlwIjoibmF2aWdhdG9yLmlkLmZpbmlzaEVucm9sbG1lbnQifQ",
 "errorCode": 0,
 "registrationData": “BQRSuRLPv0p5udQ55vVhucf3N50q6…”,
 "version": "U2F_V2"
}

Key Handle: 0r0Z0p0F0E0-0d0W0c0Q0b0X0i020C0w0-0E0v0h0t0T0T0P0_0-090_0a050P0e030u0b0z0l0K0Q0r0O0f0u030_0P020B0J0M0x0D050J0_0d0P0Q0e0j060T0U0H0z0m0L0m0t0r0Z0A0u0o0h0-0b070s0w0e0V0X0w0j0g
Certificate: 3082021c3082…
Attestation Cert
Subject: Yubico U2F EE Serial 14803321578
Issuer: Yubico U2F Root CA Serial 457200631
Validity (in millis): 1136332800000
Attestation Signature
R: 00b11e3efe5ae5ac7ca0e0d4fe2c5b5cf18a2531c0f4f70b11c30b72b5f946a9a3
S: 0f37ab2d4f93ebcdaed0a51b4b17fb93403db9873f0e9cce36f17b1502734bb2
[PASS] Signature buffer has no unnecessary bytes.: 71 == 71
[PASS] navigator.id.finishEnrollment == navigator.id.finishEnrollment
[PASS] uQnl3M4Rj3FZgs6WjyLaZAfwRh4 == uQnl3M4Rj3FZgs6WjyLaZAfwRh4
[PASS] https://u2f.bin.coffee == https://u2f.bin.coffee
[PASS] Verified certificate attestation signature
[PASS] Imported credential public key
Failures: 0 TODOs: 0

Future without passwords?

Password Security game

Alice Bob

Genpw pw

Mallory

More realistic picture of the world

Alice

Neu

pw

Library

O

More realistic picture of the world

Alice
pw

pw

pw

pw

pw

pwpw Neu

What are the problems with
this solution?
updates difficult to
keep synced

vey large attack
Surface

The problem of distributed authentication

Alice
pw

pw

NEU PWD
Server

Network Authentication

ji

central
auth
service

Distributed authentication: Attacker model

Alice
pw

pw

NEU PWD
Server

What can attacker do?

l
T

01 EE EEEEEu m

ADVANCED

Distributed authentication: Bad Solution

Alice
pw

pw

NEU PWD
Server

What can attacker do?

1

2
3

4
Library1
A her
can see copypaste

these
messages

Distributed authentication: Bad Solution

Alice
pw

pw

NEU PWD
Server

What can attacker do?

1

2
3

4
Libraryobvious problem

YesNowe need to
harder the protocol pwd
against easy
replay attains Add
Privacy to network

Basic tool: symmetric encryption

Alice Bob

𝑚 𝑚

Eve

Keitis shared

5
ciphertext

Keycan be used
Key CAN lockbox to decryptBeused to

encrypt

Basic tool: symmetric encryption
• Gen: generates secret key 𝑘
• Enc: given 𝑘 and 𝑚 output a ciphertext 𝑐

Denote 𝐸𝑛𝑐 𝑚 , 𝐸 𝑚 , 𝑚

• Dec: given 𝑘 and 𝑐 output a message 𝑚
• Security (informal):

Whatever Eve can learn on 𝑚 given 𝑐 can be learned without 𝑐
• Examples:

– DES (Data Encryption Standard)
– AES (Advanced Encryption Standard)

𝑚

Authentication from Encryption

Alice Bob

Eve

𝑘 𝑘

• Alice and Bob share a key
• They communicate over an insecure channel
• Alice wants to prove her identity to Bob
• Eve’s goal: impersonate Alice

Attempt #1

I am Alice
Alice Bob

Eve

I am Alice

𝑘 𝑘

Broken easily

Reply

Attempt #2: use the key

I am Alice ಲಳ
Alice Bob

Eve

𝑘 𝑘

I am Alice ಲಳ
Replay attack

n
n

EXACT E c tSame ATTACK
message

Eve can replay

Alice's message Replays it to Bob to
impersonate Alice

Attempt #2: use the key

I am Alice ಲಳ
Alice Bob

Eve

𝑘 𝑘

I am Alice ಲಳ
Replay attack o

Attempt #3: use nonce
I am AliceAlice

Bob

Eve

𝑘
𝑘

𝑁 ಲಳ

Pay Eve 500$ ಲಳ𝑁 − 1 ಲಳ

I am Alice

𝑁ଶ ಲಳ

Pay Bob 500$ ಲಳ

𝑁ଶ − 1 ಲಳ

𝑁ଶ − 1 ಲಳ

Pay Eve 500$ ಲಳ

Man in the Middle attack

EEE p
knowledge of

Tecret

pickArandom
encis Na
non malleable
so subtracting

none

Hill broken gives evidence of
knowledge of
Kab Eved CANno longer

simply replaythe

ext traffic

Attempt #3: use nonce
I am AliceAlice

Bob

Eve

𝑘
𝑘

𝑁 ಲಳ

Pay Eve 500$ ಲಳ𝑁 − 1 ಲಳ

I am Alice

𝑁ଶ ಲಳ

Pay Bob 500$ ಲಳ

𝑁ଶ − 1 ಲಳ

𝑁ଶ − 1 ಲಳ

Pay Eve 500$ ಲಳ

Man in the Middle attack

MALLEABILITY

ATTACHI MONDAY

MITM Bannel

TUE

Attempt #4
I am AliceAlice

Bob

Eve

𝑘
𝑘

𝑁 ಲಳ

𝑁 − 1, Pay Eve 500$ ಲಳ

it ii.Q
But

Encrypted together
historical

nonmalleable progressio

R

• The protocol worked because Alice and Bob shared a key

• How do parties agree on a key?
– Run a key agreement protocol (later in the semester)
– Use a trusted third party (this lecture)

• Key distribution center (KDC):
– Shares a key with each entity
– Single point of failure
– Reasonable assumption for organizations
– Not useful for open environments (e.g. the Internet)

Key establishment

Tuestion

Naïve solution
• KDC generates a key for each pair
• Number of keys 𝑛 𝑛 − 1 , number of key pairs ିଵ

ଶ
=

ଶ
• Drawbacks:

– Quadratic number of keys
– Adding new users is complex

• May be useful for static small networks

𝑘
𝑘
𝑘

𝑘
𝑘
𝑘

𝑘
𝑘
𝑘

𝑘
𝑘
𝑘

KDC

064

A
B

D I

Desire: solution with linear keys
• KDC shares a key with each user
• Number of keys 2𝑛
• Number of key pairs 𝑛
• These are long-term keys
• Alice and Bob establish a fresh session key

𝑘ௌ 𝑘ௌ

𝑘ௌ𝑘ௌ

KDC
𝑘ௌ
𝑘ௌ
𝑘ௌ
𝑘ௌ

a

s

Trusted 3rd
PARTY

Needham-Schroeder Protocol (1978)

𝑘ௌ 𝑘ௌ

KDC 𝑘ௌ
𝑘ௌ

𝐴, 𝐵, 𝑁

𝑁, 𝑘, 𝑘, 𝐴 ಳೄ ಲೄ

𝑘, 𝐴 ಳೄ

𝑘

𝑁 ಲಳ

𝑘

𝑁 − 1 ಲಳ

Why do we need 𝑁?

Why do we need 𝑁?

send

a

_of
RecoverJ y

fpichfreshsessio keyka
sessi.am to use
KAB

Fixed Needham-Schroeder

𝑘ௌ 𝑘ௌ

KDC 𝑘ௌ
𝑘ௌ

𝐴, 𝐵, 𝑁

𝑁, 𝑘, 𝑘, 𝐴, 𝑻 ಳೄ ಲೄ

𝑘, 𝐴, 𝑻 ಳೄ

𝑘

𝑁 ಲಳ

𝑘

𝑁 − 1 ಲಳ

Use time stamps

a I

Kerberos

• Developed in MIT in the ‘80s
• Based on Needham-Schroeder

– Versions 1-3 not published
– Version 4 not secure
– Version 5 published in 1993

• Widely used nowadays:
– The basis of Microsoft’s active directory
– Many Unix versions

Kerberos

AC
(Authentication server)

TGT
(Ticketing granting server)

KDC

pw

Get TGT (ticketing granting ticket)
Once per login session

Get ticket for a service
Once per service

𝑘ௌ
Mutual authentication

Kas

I

Ii
FILESÉva

Kerberos

• Passwords are not sent over the network
• Alice’s key 𝑘ௌ is a hash of her password

• Kerberos weaknesses:
– KDC is a single point of failure
– DoS the KDC and the network ceases to function
– Compromise the KDC leads to network-wide compromise
– Time synchronization is a very hard problem

II

“Single Sign on”
Updated version

of this

same idea

Same problem as before

Alice
pw

pw

pw

pw

pw

pwpw

Internet

“Single Sign on”

Alice
pw

KDC

Oauth
Alice
pw

pw

Identity
Provider

Some
resource on

the internet

1. Authenticate

“I want to use your service”f

r

Google Microsoft

Oauth
Alice
pw

pw

Identity
Provider

Some
resource on

the internet

1. Authenticate

Allows

Request to
authenticate

0

Oauth
Alice
pw

pw

Identity
Provider

Some
resource on

the internet

1. Authenticate

Tokenevent
Token

Oauth
Alice
pw

pw

Identity
Provider

Some
resource on

the internet

1. Authenticate Check token

{email, u
ser profile}Token

Iff
Acts

Attacks against “Login with…” services
SINGLE POINT OF FAILURE DC

one breach all accounts

Ifn cantlogin

PRIVACY KDC learns all login
behaviour for all users

Authentication:
Verification of an identity claim by a

SUBJECT ON BEHAFof a

PRINCIPAL

Authorization
After Authenticating a subject, what next?

Determining what resources the

subject can use ACCESS

Access Control

PrincipalUser of a system

Subject Entity that acts on behalf of principals Software program

Object Resource acted upon by subjects

Files
Sockets
Devices
OS APIs

• Policy specifying how entities can interact with resources
• i.e., Who can access what?
• Requires authentication and authorization

• Access control primitives

E

Access Control Check

• Given an access request from a subject, on behalf of a principal, for an
object, return an access control decision based on the policy

Principal Subject

Object

Policy

Allow

Deny

0

System i
Tell
browser

Access Control Models

• Discretionary Access Control (DAC)
• The kind of access control you are familiar with
• Access rights propagate and may be changed at subject’s discretionEI

Access policies are set system wide

Access Control Models

• Discretionary Access Control (DAC)
• The kind of access control you are familiar with
• Access rights propagate and may be changed at subject’s discretion

• Mandatory Access Control (MAC)
• Access of subjects to objects is based on a system-wide policy
• Denies users full control over resources they create

Project 2

I

Sources
1. Many slides courtesy of Wil Robertson: https://wkr.io

2. Many slides courtesy of Ran Cohen

https://wkr.io/

