2550 Introto

cybersecurity
L5

abhi shelat

How U2F foils phishing

: ~
User,sk My browser User,pk
15ESK

1. In the beginning, | register with G and setup 2FA.

2.1 am tricked into clicking on fake
I ”
(/)
0 Com-settingssecurity.tk

G login, who tries a PITM attack. /
Usersk ~_, Mybrowser hellee User,pk

How U2F foils phishing
> — > Fake Website /Q‘&'/
< X - <

How U2F foils phishing

2.1 am tricked into clicking on fake
G login, who tries a PITM attack.

ful P ﬁ
@ oo Fake Website ~— > a
0 Yy Com-settingssecurity.tk

User,sk My browser User,pk

[A (o ‘n
< Eles ’Ob”f”}f"'j {/E’}—’}L’ ? {login, challenge ch}

How U2F foils phishing

2.1 am tricked into clicking on fake
G login, who tries a PITM attack.

i » a
, Fake Website
0 v Com-settingssecurity.tk J
User,sk My browser User,pk
{login, challenge ch} {login, challenge ch}

S| (7/\) c\ﬂque/‘
i o

How U2F foils phishing

2.1 am tricked into clicking on fake
m G login, who tries a PITM attack.

s | Fake Website :
o ; Com-settingssecurity.tk a
User,sk My browser User,pk
{login, ch, url, tls_id} {login, challenge ch} {login, challenge ch}

« — ————

My browser knows the origin is “com-settingssecurity.tk”
instead of google.com, and passes this string as url.

http://google.com

How U2F foils phishing

2. 1 am tricked into clicking on fake
m G login, who tries a PITM attack.

s < | Fake Website :
o ; Com-settingssecurity.tk a
User,sk My browser | User,pk
{login, ch, url, tls_id} {login, challenge ch} {login, challenge ch}

My browser knows the origin is “com-settingssecurity.tk”
instead of google.com, and passes this string as url.

s « Sign_(ch, url, tls;y) S < =
k —_— c

Sign challenge using sk

The 2FA key signs this with url=com-settings...

http://google.com

How U2F foils phishing

2.1 am tricked into clicking on fake

m G login, who tries a PITM attack.

F > Y Fake Website
o ; Com-settingssecurity.tk a

User,sk My browser User,pk
{login, ch, url, tls_id} {login, challenge ch} {login, ¢hallenge)ch}
My browser knows the origin is “com-settingssecurity.tk”
instead of google.com, and passes this string as url. 300 j(('
Com /gﬂﬁé\/\j " -H/\ . 77
+ < Sign_(ch lsid) (5] Verlfyp{c(ch, s, url, tls;q)

Sign challenge using sk

Google reject the authentication and

The 2FA key signs this with url=com-settings... detects the attack!

http://google.com

The Tracking problem

"

User,sk

https://badguy
https://badgirl

The Tracking problem

W https://badguy
.Ster\‘ \\ “ "
i s“eg“/ W«.s'\%wﬂ Thunderkat”, pk

https://badgirl

https://badguy
https://badgirl

The Tracking problem

https://badguy

“eg.\ cte r\f

. ")

“Thunderkat”, pk

“Roar kitty”, pk

{ .
—=8ster) | hitps:] bi(grl

https://badguy
https://badgirl

U2F can help prevent tracking Nebeite

- | (Relying
o v Party)

Make a signing key

: (s pl) ~ {appid, register} {appid, register}
In It And.link it with)) V{’g@@ [0/\,‘-‘-
et { h, pk, sign_sk(“username”) } Br eadn)

o
User, h, pk,

U2F can help prevent tracking Nebeite

0 - (Relying
0 e; Party)

Make a signing key with aphid
: oy {appid, register} {appid, register}
Init And linkit with))
appid, and create { h, pk, sign_sk(“username”) } ‘
User, h, pk
Login o enes Llogin, h, ch, origin, tls_id} {login, h, challenge ch}
s «— Signsk(ch, url, tls;,) { sh }
h ?

Verifypk(ch, s, url, tls;y)
Check h

Sending request with appId: https://u2f.bin.coffee

{
"version": "U2F V2",
"challenge": "uQnl3M4Rj3FZgs6WjyLaZAfwRh4"

}

Got response:

{
"clientData": "eyJjaGFsbGVuZ2UiO0iJglUW5sM000UmozR1lpnczZXanlMYVpBZndSaDQiLCJvcmlnaW4iOiJodHRweczovL3UyZi5iaW4uY29mZmvV1IiwidHlwIjoibmF?2
"errorCode": 0,
"registrationData": “BQRSuRLPvOp5udQ55vVhucf3N50g6..",
"version": "U2F_Vv2"

}

Key Handle: 0r0ZO0pOFOE0-0d0W0c0Q0b0X0i020CO0w0-0EOvOhOt0OTOTOPO_ 0-090_ 0a050P0e030u0b0z010K0Q0r000£0u030_ 0P020B0JOMOx0D050J0 0d0P0Q0e0j(
Certificate: 3082021c3082..

Attestation Cert

Subject: Yubico U2F EE Serial 14803321578

Issuer: Yubico U2F Root CA Serial 457200631

Validity (in millis): 1136332800000

Attestation Signature

R: 0Oblle3efebae5ac7calel0d4fe2c5b5¢c£18a2531c0£f4£70b11c30b72b5£946a9a3

S: 0f37ab2d4f93ebcdaed0a51b4b17£fb93403db9873£0e9cce36£17b1502734bb2

[PASS] Signature buffer has no unnecessary bytes.: 71 == 71
[PASS] navigator.id.finishEnrollment == navigator.id.finishEnrollment
[PASS] uQnl3M4Rj3FZgs6WjyLaZAfwRh4 == uQnl3M4Rj3FZgs6WjyLazZAfwRh4

[PASS] https://u2f.bin.coffee == https://u2f.bin.coffee
[PASS] Verified certificate attestation signature
[PASS] Imported credential public key

Failures: 0 TODOs: 0

Future without passwords?

Password Security game

- W . gy,
~~~~~
~y




More realistic picture of the worla

e
- é -
New
&) o o=
[ 1

=



More realistic picture of the worla

What are the problems with
this solution? |__;| |__;|
@ UP<Q°7£€§ &I’F{Quw Ao % ‘/‘/éé& m
\/(.Qe/) Syu\CUQ B
Aiee @) g lase  aliock
p SO/?ZQCC
ww

2R,

@
. E
-
ww
OIS 3
f




The problem of distributed authentication
Nelworty  Aufhesating |




Distributed authentication: Attacker model

What can attacker do?

i ———

&

‘/{éb@ @EA\IESD(ZDP on o-VJ7/
,DW Netw ol Eiqk_

@MSEC/T MESS A6ES
TNTy THE  NETWol

® ’t@*/‘“("’”’“'\y

Qaw’DfDdM:S,Q

M ach, e

ADVENCED .-



Distributed authentication: Bad Solution

What can attacker do?

o 0 e
W\\::::\ﬁzmm&wﬁ
4 %@Q Jlncg?f

[




Distributed authentication: Bad Solution

What can attacker do?

¥ -
Atrce
pw N\ |
e ] o

\r\wdlen ‘H!‘O [)f])'\_DCo[ 2
ﬁﬂo&z\ﬂ' Q,oxgx&/

& Feplﬁj Ml achs . 444
PJ\C\}A—{ﬂ To NE/'h/Jo/l'l.

[




Basic tool: symmetric encryption

Sawme

@ \/(ev ¢S S\/\OvrCOQ

Alice

Eve




Basic tool: symmetric encryption

Gen: generates secret key k

—

Enc: given k and m output a C|phertext C
Denote Ency (m) E,(m), {m};

Dec: given k and c output a message m

Securlty (mformal)
Whatever Eve can learn on m given ¢ can be learned without ¢

Examples: :
— DES (Data Encryption Standard)

— AES (Advanced Encryption Standard)

()




Authentication from Encryption

Alice and Bob share a key

They communicate over an insecure channel

Alice wants to prove her identity to Bob

Eve’s goal: impersonate Alice

@,

Alice Bob
kAB kAB

Eve




Attempt #1 Braden  eac, 17/

Alice | am Alice pob
C | . > . ' . :

Ka kap.
- e
| am Alice —\:i\_&%

Eve



Attempt #2: use the key

-
l.l

= @%
£ XACT . @\

Copies Ha's

Alice
{l am Alice}y

Soml (Ft7A CHL.
Wedsa
Eut can “rcplc.j" 7

Aucc‘g Mégcca@. Q@f(oyj (’J( % \EO& /hb
}M/)afam%g Aece.



Attempt #2: use the key




\PeAT Yow CAd

ALicE  “prove Attempt #3: use nonce
VL\/\av’\L(}ng Olc I
Alice | am Alice
i,:\irév- g M Bob
{Na}kAB

<

oW &
(Vg = 1 {Pay Eve 500$} , . 0 Y

[ > {\o\mcﬂom
63% €nC (S NP\

kAB novi~ V’/wl//@%(- Kap W 0
o So Suwmdt,@/ [ None
%%U \Omy%"‘) 35\’68 “evidece O'F
T{‘“;”l“%@ \g Due| CAv M [oage,

exock™  tugrec



" AALLEABILTY
Al Attempt #3: use nonce
A/(’Q‘\(/‘L\ Mo A pAY

o : | am Alice
/\/‘\T/\/‘ Alice > M
(N}, Bob gﬁ\/ku/
aJkap

: delb
{Ny — 1}, {Pay Eve 5008},
L~ g
6)% l'am Alice

kAB {Naz}kA_B
ﬁz - 1}kAB
{Pay Eve 5008},

{Naz - 1}kAB

{Pay Bob 5008},

Eve

[Man in the Middle attack ]




Attempt #4

. I Ali
Allceg am Alice >
{Na}kAB
<
{Ng — 1, Pay Eve 500$} . > 0 ot
Wichys
6)% émcrj/f(j/ FIL{%%/ 63% s hco@

_ o wie ety © Kap prog s

—
P o—

Eve




Key establishment

* The protocol worked because Alice and Bob shared a key

How do parties agree on a key?
— Run a key agreement protocol (later in the semester)
— Use a trusted third party (this lecture)

* Key distribution center (KDC):
— Shares a key with each entity
— Single point of failure
— Reasonable assumption for organizations
— Not useful for open environments (e.g. the Internet)




Naive solution

KDC generates a key for each pair

. n(n-1) n le/
Number of keys n(n — 1), number of key pairs —— = () =

Drawbacks:
— Quadratic number of keys
— Adding new users is complex

May be useful for static small networks L2

®

’;@ kpc

AC kgp
i C

kap @ b kac



Desire: solution with linear keys

s ———

KDC shares a key with each user

Number of keys 2n -

Number of kgﬁairs n

These are long-term keys

Alice and Bob establish a fresh session key

kAS

=

kDS

e
—

3
2




Needham-Schroeder Protocol (1978)

>
{kAB' A}RBS
>
WhJk,p @
~ i s
>
Kas
(AI Bl Na)
Why do we need Nj,?

>@-H4@/w.‘£a Eve codd
ceploy & 4 fre owsss
Sesripg H use

\KAB

KDC kas
- k_BS:

[ Why do we need N,? ]

fich ‘Frcs\’l Segsion \Kecf \V<A,£




Fixed Needham-Schroeder

{kAB' Al T}kBS

>
B = 2

Kap

Kap
(A,B,Ng)

Use time stamps
{No, kap, {kap, A, T}kBS}kAS
KDC Kas

Kgs



Kerberos
D ——

* Developed in MIT in the ‘80s

e Based on Needham-Schroeder
— Versions 1-3 not published

— Version 4 not secure
— Version 5 published in 1993
* Widely used nowadays:

— The basis of Microsoft’s active directory
— Many Unix versions



Kerberos

AC

Get TGT (ticketing granting ticket)
Once per login session

Get ticket for a service

~—~——

%/v @ Once per service
v

Kas H kgs M
Mutual authentication % BSF[ [/%FEZ(%%



Kerberos

e Passwords are not sent over the network
* Alice’s key k,s is a hash of her password

e Kerberos weaknesses:

£ KDC is a single point of failure £
— DoS the KDC and the network ceases to function

— Compromise the KDC leads to network-wide compromise

— Time synchronization is a very hard problem



“Single Sign on”
UA)OUFQO e 7St o o{ Wy

Sign up with your identity provider

IR F&@ . . :
You'll use this service to log in to your network

G Sign up with Google
o e Sign up with Microsoft

OR

Enter your email...

Sign up with Email




Same problem as before

amazon coinbase

eb E e‘lExpedic fGCEbO;
i
- AC/ mfun’munked[m
Tnterveet
lyn MONSTER  NETFLIX

Alice PANDORA [P Pay @@ g Practi ‘E(i?rackgpagte
pw
° pw
7 reddit it W Muwegmnkeg

-
Ten-x Transfem ©'©) TURO ) UBER

trip

work-  YAHOO!  yelp%s Mzynga



“Single Sign on”

LDC

K Sign up with your identity provider \

You'll use this service to log in to your network

(G Sign up with Google

k am Sign up with Microsoft J

@Y P]

amazon coinbase

eb & Expedia
r\
[ACr
I

!gﬂ match Micros
PANDORA [P Pay Pinterest
7 reddit i

- 0'©
Ten-x TransferWise tripadvisor

work®  YAHOO! yelp’lt



@ “| want to use your service”
\>

Some
resource on

the internet




Oauth —

Yelp wants to access your Google
Account

Q r@rdegges.com

This will allow Yelp to:

B see and download your contacts ®
——_—

A [ l 5 W Make sure you trust Yelp Some

You may be sharing sensitive info with this site or app.
Learn about how Yelp will handle your data by reviewing its
P resource on
or remove access in your Google Account. I‘i 5
>
the interne

Learn about the risks

Cancel m




Some
resource on
the internet




Some
resource on
the internet




Attacks against “Login with..." services
() Swels PIT of  Fatoes Qé,oc)

o ove it = a&(/ RCCOuATT

—

s S (Qaw/l = Cf/l/rf_’/%/\/]

Sign in with Google:

A

Sign in with Google

@\F?’k\/ﬁcf MC/ j@mﬂj all /Zﬂﬁiﬂ
k@hm/?g(/( ﬁ/ 006/ vsers-



Use Sign in with Apple on
your Apple device

Using Sign in with Apple is quick and easy
on any Apple device with the latest
software. Make sure you're signed in with
your Apple ID on your device.

1. Tap the Sign in with Apple button on the

participating app or website.
. Apple ID
If the app or site has not requested any

information to set up your account, check K
that your Apple ID is correct and go to
Step 4.

Create an account for KAYAK using your
Apple ID “j.appleseed@icloud.com”.

If you're asked to provide your name and

NAME John Appleseed (%]

email address, Sign in with Apple

EMAIL  Share My Email

automatically fills in the information from : :
j-appleseed@icloud.com

your Apple ID. You can edit your name if

Hide My Email

you like and choose Share My Email Forward To:
j-appleseed@icloud.com

or Hide My Email.

Tap Continue and confirm with a quick
Face ID, Touch ID, or device passcode to Continue

sign in. If you don't have Face ID, Touch

ID, or a passcode set up, enter your

Apple ID password.




Authentication:

Veafiedron o on tdeddy cam by a

QUBSE X ot BEsar L o~

(”—r

(A AC\PAL.

(*—



Authorization

—
After Authenticating a subject, what next?
D C“\ e M, \/[(.c\?/ W\/\gf( [e SE) Uees ‘H&e

Su JB:) e\ Cown USG/ACCESﬁ :



Access Control

o Policy specifying how entities can interact with resources

e i.e., Who can access what?
e Requires authentication and authorization

——

« Access control primitives

Principal User of a system

g

Subject Entity that acts on behalf of principals

Object Resource acted upon by subjects
e

—_—

A7

Software program

Jiles
/Seckets

Devices
OS APIs



Access Control Check

« Glven an access request from a subject, on behalf of a principal, for an
object, return an access control decision based on the policy

Object j
|
Q-D—?gg

8

Allow

. : Deny
Principal Subject

sl
b rowSev Policy




Access Control Models

(i~
« Discretionary Access Control (DAC)
« The kind of access control you are familiar with

« Access rights propagate and may be changed at subject’s discretion

© /l/'z“f/\}D(foﬂ/tj

=

bz‘)cceg fo//cig are el S’;J#m wioh,



Access Control Models

» Discretionary Access Control (DAC)
« The kind of access control you are familiar with
« Access rights propagate and may be changed at subject’s discretion

e Mandatory Access Control (MAC) @ro ject 2)
« Access of subjects to objects is based on a system-wide policy
« Denies users full control over resources they create



Sources

1. Many slides courtesy of Wil Robertson: https://wkr.io

2. Many slides courtesy of Ran Cohen


https://wkr.io/

