
2550 Intro to
cybersecurity

abhi shelat

L5

How U2F foils phishing
1. In the beginning, I register with G and setup 2FA.

User,sk User,pkMy browser

How U2F foils phishing

Fake Website
Com-settingssecurity.tk

User,sk User,pk

2. I am tricked into clicking on fake
G login, who tries a PITM attack.

My browser

How U2F foils phishing

Fake Website
Com-settingssecurity.tk

User,sk User,pk

2. I am tricked into clicking on fake
G login, who tries a PITM attack.

{login, challenge ch}

My browser

How U2F foils phishing

Fake Website
Com-settingssecurity.tk

User,sk User,pk

2. I am tricked into clicking on fake
G login, who tries a PITM attack.

{login, challenge ch}{login, challenge ch}

My browser

How U2F foils phishing

Fake Website
Com-settingssecurity.tk

User,sk User,pk

2. I am tricked into clicking on fake
G login, who tries a PITM attack.

{login, challenge ch}{login, challenge ch}

My browser

{login, ch, url, tls_id}

My browser knows the origin is “com-settingssecurity.tk”
instead of google.com, and passes this string as url.

http://google.com

How U2F foils phishing

Fake Website
Com-settingssecurity.tk

User,sk User,pk

2. I am tricked into clicking on fake
G login, who tries a PITM attack.

{login, challenge ch}{login, challenge ch}

My browser

{login, ch, url, tls_id}

My browser knows the origin is “com-settingssecurity.tk”
instead of google.com, and passes this string as url.

Sign challenge using sk

s ← Signsk(ch, url, tlsid)

The 2FA key signs this with url=com-settings…

http://google.com

How U2F foils phishing

Fake Website
Com-settingssecurity.tk

User,sk User,pk

2. I am tricked into clicking on fake
G login, who tries a PITM attack.

{login, challenge ch}{login, challenge ch}

My browser

{login, ch, url, tls_id}

My browser knows the origin is “com-settingssecurity.tk”
instead of google.com, and passes this string as url.

Sign challenge using sk

s ← Signsk(ch, url, tlsid)

The 2FA key signs this with url=com-settings…

{ s } Verifypk(ch, s, url, tlsid)

Google reject the authentication and
detects the attack!

http://google.com

The Tracking problem

User,sk

https://badguy

https://badgirl

https://badguy
https://badgirl

The Tracking problem

User,sk

https://badguy

https://badgirl

{register}

{register}
{ pk, sign_sk(“thunderkat”) } “Thunderkat”, pk

https://badguy
https://badgirl

The Tracking problem

User,sk

https://badguy

https://badgirl

{register}

{register}
{ pk, sign_sk(“thunderkat”) } “Thunderkat”, pk

{register}

{register}

{ pk, sign_sk(“roar kitty”) } “Roar kitty”, pk

https://badguy
https://badgirl

U2F can help prevent tracking

Init

Website
(Relying
Party)

{appid, register}{appid, register}
Make a signing key
(sk,pk)

{ h, pk, sign_sk(“username”) }

User, h, pk

And link it with
appid, and create
A token “h”

U2F can help prevent tracking

Init

Website
(Relying
Party)

{appid, register}{appid, register}
Make a signing key with aphid
(sk,pk)

{ h, pk, sign_sk(“username”) }

User, h, pk

And link it with
appid, and create
A token “h”

Login {login, h, challenge ch}Lookup sk using h
Sign challenge using sk

{ s,h }

{login, h, ch, origin, tls_id}
s ← Signsk(ch, url, tlsid)

Verifypk(ch, s, url, tlsid)
Check h

Sending request with appId: https://u2f.bin.coffee
{
 "version": "U2F_V2",
 "challenge": "uQnl3M4Rj3FZgs6WjyLaZAfwRh4"
}

Got response:
{
 "clientData": "eyJjaGFsbGVuZ2UiOiJ1UW5sM000UmozRlpnczZXanlMYVpBZndSaDQiLCJvcmlnaW4iOiJodHRwczovL3UyZi5iaW4uY29mZmVlIiwidHlwIjoibmF2aWdhdG9yLmlkLmZpbmlzaEVucm9sbG1lbnQifQ",
 "errorCode": 0,
 "registrationData": “BQRSuRLPv0p5udQ55vVhucf3N50q6…”,
 "version": "U2F_V2"
}

Key Handle: 0r0Z0p0F0E0-0d0W0c0Q0b0X0i020C0w0-0E0v0h0t0T0T0P0_0-090_0a050P0e030u0b0z0l0K0Q0r0O0f0u030_0P020B0J0M0x0D050J0_0d0P0Q0e0j060T0U0H0z0m0L0m0t0r0Z0A0u0o0h0-0b070s0w0e0V0X0w0j0g
Certificate: 3082021c3082…
Attestation Cert
Subject: Yubico U2F EE Serial 14803321578
Issuer: Yubico U2F Root CA Serial 457200631
Validity (in millis): 1136332800000
Attestation Signature
R: 00b11e3efe5ae5ac7ca0e0d4fe2c5b5cf18a2531c0f4f70b11c30b72b5f946a9a3
S: 0f37ab2d4f93ebcdaed0a51b4b17fb93403db9873f0e9cce36f17b1502734bb2
[PASS] Signature buffer has no unnecessary bytes.: 71 == 71
[PASS] navigator.id.finishEnrollment == navigator.id.finishEnrollment
[PASS] uQnl3M4Rj3FZgs6WjyLaZAfwRh4 == uQnl3M4Rj3FZgs6WjyLaZAfwRh4
[PASS] https://u2f.bin.coffee == https://u2f.bin.coffee
[PASS] Verified certificate attestation signature
[PASS] Imported credential public key
Failures: 0 TODOs: 0

Future without passwords?

Password Security game

Alice Bob

Genpw pw

Mallory

More realistic picture of the world

Alice

Neu

pw

More realistic picture of the world

Alice
pw

pw

pw

pw

pw

pwpw Neu

What are the problems with
this solution?

The problem of distributed authentication

Alice
pw

pw

NEU PWD
Server

Distributed authentication: Attacker model

Alice
pw

pw

NEU PWD
Server

What can attacker do?

Distributed authentication: Bad Solution

Alice
pw

pw

NEU PWD
Server

What can attacker do?

1

2
3

4
Library

Distributed authentication: Bad Solution

Alice
pw

pw

NEU PWD
Server

What can attacker do?

1

2
3

4
Library

Basic tool: symmetric encryption

Alice Bob

𝑚 𝑚

Eve

Basic tool: symmetric encryption
• Gen: generates secret key 𝑘
• Enc: given 𝑘 and 𝑚 output a ciphertext 𝑐

Denote 𝐸𝑛𝑐𝑘 𝑚 , 𝐸𝑘 𝑚 , 𝑚 𝑘

• Dec: given 𝑘 and 𝑐 output a message 𝑚
• Security (informal):

Whatever Eve can learn on 𝑚 given 𝑐 can be learned without 𝑐
• Examples:

– DES (Data Encryption Standard)
– AES (Advanced Encryption Standard)

𝑚

Authentication from Encryption

Alice Bob

Eve

𝑘𝐴𝐵 𝑘𝐴𝐵

• Alice and Bob share a key
• They communicate over an insecure channel
• Alice wants to prove her identity to Bob
• Eve’s goal: impersonate Alice

Attempt #1

I am Alice
Alice Bob

Eve

I am Alice

𝑘𝐴𝐵 𝑘𝐴𝐵

Attempt #2: use the key

I am Alice 𝑘𝐴𝐵
Alice Bob

Eve

𝑘𝐴𝐵 𝑘𝐴𝐵

I am Alice 𝑘𝐴𝐵
Replay attack

Attempt #2: use the key

I am Alice 𝑘𝐴𝐵
Alice Bob

Eve

𝑘𝐴𝐵 𝑘𝐴𝐵

I am Alice 𝑘𝐴𝐵
Replay attack

Attempt #3: use nonce
I am AliceAlice

Bob

Eve

𝑘𝐴𝐵
𝑘𝐴𝐵

𝑁𝑎 𝑘𝐴𝐵

Pay Eve 500$ 𝑘𝐴𝐵𝑁𝑎 − 1 𝑘𝐴𝐵

I am Alice

𝑁𝑎2 𝑘𝐴𝐵

Pay Bob 500$ 𝑘𝐴𝐵

𝑁𝑎2 − 1 𝑘𝐴𝐵

𝑁𝑎2 − 1 𝑘𝐴𝐵

Pay Eve 500$ 𝑘𝐴𝐵

Man in the Middle attack

Attempt #3: use nonce
I am AliceAlice

Bob

Eve

𝑘𝐴𝐵
𝑘𝐴𝐵

𝑁𝑎 𝑘𝐴𝐵

Pay Eve 500$ 𝑘𝐴𝐵𝑁𝑎 − 1 𝑘𝐴𝐵

I am Alice

𝑁𝑎2 𝑘𝐴𝐵

Pay Bob 500$ 𝑘𝐴𝐵

𝑁𝑎2 − 1 𝑘𝐴𝐵

𝑁𝑎2 − 1 𝑘𝐴𝐵

Pay Eve 500$ 𝑘𝐴𝐵

Man in the Middle attack

Attempt #4
I am AliceAlice

Bob

Eve

𝑘𝐴𝐵
𝑘𝐴𝐵

𝑁𝑎 𝑘𝐴𝐵

𝑁𝑎 − 1, Pay Eve 500$ 𝑘𝐴𝐵

• The protocol worked because Alice and Bob shared a key

• How do parties agree on a key?
– Run a key agreement protocol (later in the semester)
– Use a trusted third party (this lecture)

• Key distribution center (KDC):
– Shares a key with each entity
– Single point of failure
– Reasonable assumption for organizations
– Not useful for open environments (e.g. the Internet)

Key establishment

Naïve solution
• KDC generates a key for each pair
• Number of keys 𝑛 𝑛 − 1 , number of key pairs 𝑛 𝑛−1

2
= 𝑛

2
• Drawbacks:

– Quadratic number of keys
– Adding new users is complex

• May be useful for static small networks

𝑘𝐴𝐵
𝑘𝐴𝐶
𝑘𝐴𝐷

𝑘𝐴𝐵
𝑘𝐵𝐶
𝑘𝐵𝐷

𝑘𝐴𝐶
𝑘𝐵𝐶
𝑘𝐶𝐷

𝑘𝐴𝐷
𝑘𝐵𝐷
𝑘𝐶𝐷

KDC

Desire: solution with linear keys
• KDC shares a key with each user
• Number of keys 2𝑛
• Number of key pairs 𝑛
• These are long-term keys
• Alice and Bob establish a fresh session key

𝑘𝐴𝑆 𝑘𝐵𝑆

𝑘𝐶𝑆𝑘𝐷𝑆

KDC
𝑘𝐴𝑆
𝑘𝐵𝑆
𝑘𝐶𝑆
𝑘𝐷𝑆

Needham-Schroeder Protocol (1978)

𝑘𝐴𝑆 𝑘𝐵𝑆

KDC 𝑘𝐴𝑆
𝑘𝐵𝑆

𝐴, 𝐵, 𝑁𝑎

𝑁𝑎, 𝑘𝐴𝐵, 𝑘𝐴𝐵, 𝐴 𝑘𝐵𝑆 𝑘𝐴𝑆

𝑘𝐴𝐵, 𝐴 𝑘𝐵𝑆

𝑘𝐴𝐵

𝑁𝑏 𝑘𝐴𝐵

𝑘𝐴𝐵

𝑁𝑏 − 1 𝑘𝐴𝐵

Why do we need 𝑁𝑎?

Why do we need 𝑁𝑏?

Fixed Needham-Schroeder

𝑘𝐴𝑆 𝑘𝐵𝑆

KDC 𝑘𝐴𝑆
𝑘𝐵𝑆

𝐴, 𝐵, 𝑁𝑎

𝑁𝑎, 𝑘𝐴𝐵, 𝑘𝐴𝐵, 𝐴, 𝑻 𝑘𝐵𝑆 𝑘𝐴𝑆

𝑘𝐴𝐵, 𝐴, 𝑻 𝑘𝐵𝑆

𝑘𝐴𝐵

𝑁𝑏 𝑘𝐴𝐵

𝑘𝐴𝐵

𝑁𝑏 − 1 𝑘𝐴𝐵

Use time stamps

Kerberos

• Developed in MIT in the ‘80s
• Based on Needham-Schroeder

– Versions 1-3 not published
– Version 4 not secure
– Version 5 published in 1993

• Widely used nowadays:
– The basis of Microsoft’s active directory
– Many Unix versions

Kerberos

AC
(Authentication server)

TGT
(Ticketing granting server)

KDC

pw

Get TGT (ticketing granting ticket)
Once per login session

Get ticket for a service
Once per service

𝑘𝐵𝑆
Mutual authentication

Kerberos

• Passwords are not sent over the network
• Alice’s key 𝑘𝐴𝑆 is a hash of her password

• Kerberos weaknesses:
– KDC is a single point of failure
– DoS the KDC and the network ceases to function
– Compromise the KDC leads to network-wide compromise
– Time synchronization is a very hard problem

“Single Sign on”

Same problem as before

Alice
pw

pw

pw

pw

pw

pwpw

Internet

“Single Sign on”

Alice
pw

Oauth
Alice
pw

pw

Identity
Provider

Some
resource on

the internet

1. Authenticate

“I want to use your service”

Oauth
Alice
pw

pw

Identity
Provider

Some
resource on

the internet

1. Authenticate

Oauth
Alice
pw

pw

Identity
Provider

Some
resource on

the internet

1. Authenticate

Token

Oauth
Alice
pw

pw

Identity
Provider

Some
resource on

the internet

1. Authenticate Check token

{email, u
ser profile}Token

Attacks against “Login with…” services

Authentication:

Authorization
After Authenticating a subject, what next?

Access Control

PrincipalUser of a system

Subject Entity that acts on behalf of principals Software program

Object Resource acted upon by subjects

Files
Sockets
Devices
OS APIs

• Policy specifying how entities can interact with resources
• i.e., Who can access what?
• Requires authentication and authorization

• Access control primitives

Access Control Check

• Given an access request from a subject, on behalf of a principal, for an
object, return an access control decision based on the policy

Principal Subject

Object

Policy

Allow

Deny

Access Control Models

• Discretionary Access Control (DAC)
• The kind of access control you are familiar with
• Access rights propagate and may be changed at subject’s discretion

Access Control Models

• Discretionary Access Control (DAC)
• The kind of access control you are familiar with
• Access rights propagate and may be changed at subject’s discretion

• Mandatory Access Control (MAC)
• Access of subjects to objects is based on a system-wide policy
• Denies users full control over resources they create

Sources
1. Many slides courtesy of Wil Robertson: https://wkr.io

2. Many slides courtesy of Ran Cohen

https://wkr.io/

