
2550 Intro to
cybersecurity

abhi shelat

L6: Authorization

Thanks Christo for slides!

Authentication:

Authorization
After Authenticating a subject, what next?

Access Control

PrincipalUser of a system

Subject Entity that acts on behalf of principals Software program

Object Resource acted upon by subjects

Files
Sockets
Devices
OS APIs

• Policy specifying how entities can interact with resources
• i.e., Who can access what?
• Requires authentication and authorization

• Access control primitives

Access Control Check

• Given an access request from a subject, on behalf of a principal, for
an object, return an access control decision based on the policy

Principal Subject

Object

Policy

Allow

Deny

Access Control Models

• Discretionary Access Control (DAC)
• The kind of access control you are familiar with
• Access rights propagate and may be changed at subject’s discretion

Access Control Models

• Discretionary Access Control (DAC)
• The kind of access control you are familiar with
• Access rights propagate and may be changed at subject’s discretion

• Mandatory Access Control (MAC)
• Access of subjects to objects is based on a system-wide policy
• Denies users full control over resources they create

Discretionary Access
Control
Access Control Matrices
Access Control Lists
Unix Access Control

Discretionary Access Control

• According to Trusted Computer System Evaluation Criteria (TCSEC)

"A means of restricting access to objects based on the identity and
need-to-know of users and/or groups to which they belong.
Controls are discretionary in the sense that a subject with a certain
access permission is capable of passing that permission (directly or
indirectly) to any other subject."

Access Control Matrices

• Introduced by Lampson in 1971
• Static description of protection state
• Abstract model of concrete systems

o1 o2 o3

s1 RW RX

s2 R RWX RW

s3 RWX

Given subjects si ∈ S, objects oj ∈ O, rights {Read, Write, eXecute},

Access Control List (ACL)

• Each object has an associated list of
subjectoperation pairs
• Authorization verified for each request by

checking list of tuples
• Used pervasively in filesystems and networks
• "Users a, b, and c and read file x."
• "Hosts a and b can listen on port x." o1 o2 o3

s1 RW RX

s2 R RWX RW

s3 RWX

Access Control List (ACL)

• Each object has an associated list of
subjectoperation pairs
• Authorization verified for each request by

checking list of tuples
• Used pervasively in filesystems and networks
• "Users a, b, and c and read file x."
• "Hosts a and b can listen on port x." o1 o2 o3

s1 RW RX

s2 R RWX RW

s3 RWX

ACL for o2

Windows ACLs

D:\Music D:\Images D:\Documents

System RWX RWX RWX

Administrators RW RW RW

Users:Bob RWX RW

Users:Alice RW R

Windows ACLs

D:\Music D:\Images D:\Documents

System RWX RWX RWX

Administrators RW RW RW

Users:Bob RWX RW

Users:Alice RW R

• Very flexible
• Can express any possible access

control matrix
• Any principal can be configured to

have any rights on any object

ACL Review

The Good The Bad

• Complicated to manage
• Every object can have wildly

different policies
• Infinite permutations of subjects,

objects, and rights

• Very flexible
• Can express any possible access

control matrix
• Any principal can be configured to

have any rights on any object

ACL Review

The Good The Bad

Unix-style Permissions

• Based around the concept of owners and groups
• All objects have an owner and a group
• Permissions assigned to owner, group, and everyone else
• Authorization verified for each request by mapping the subject to

owner, group, or other and checking the associated permissions

Unix Permissions

Abhi~$ ls -l

drwxrwxrwx 0 abhi abhi 512 Jan 29 22:46 my_dir

-rw-rw-rw- 1 abhi abhi 17 Jan 29 22:46 my_file

-rwxrwxrwx 1 abhi faculty 313 Jan 29 22:47 my_program.py

-rw------- 1 root root 896 Jan 29 22:47 sensitive_data.csv

d  Directory	 	 r  Read	 w  Write	 x  eXecute

Unix Permissions

Abhi~$ ls -l

drwxrwxrwx 0 abhi abhi 512 Jan 29 22:46 my_dir

-rw-rw-rw- 1 abhi abhi 17 Jan 29 22:46 my_file

-rwxrwxrwx 1 abhi faculty 313 Jan 29 22:47 my_program.py

-rw------- 1 root root 896 Jan 29 22:47 sensitive_data.csv

Owner

d  Directory	 	 r  Read	 w  Write	 x  eXecute

Unix Permissions

Abhi~$ ls -l

drwxrwxrwx 0 abhi abhi 512 Jan 29 22:46 my_dir

-rw-rw-rw- 1 abhi abhi 17 Jan 29 22:46 my_file

-rwxrwxrwx 1 abhi faculty 313 Jan 29 22:47 my_program.py

-rw------- 1 root root 896 Jan 29 22:47 sensitive_data.csv

OwnerOwner

d  Directory	 	 r  Read	 w  Write	 x  eXecute

Unix Permissions

Abhi~$ ls -l

drwxrwxrwx 0 abhi abhi 512 Jan 29 22:46 my_dir

-rw-rw-rw- 1 abhi abhi 17 Jan 29 22:46 my_file

-rwxrwxrwx 1 abhi faculty 313 Jan 29 22:47 my_program.py

-rw------- 1 root root 896 Jan 29 22:47 sensitive_data.csv

Owner GroupOwner

d  Directory	 	 r  Read	 w  Write	 x  eXecute

Unix Permissions

Abhi~$ ls -l

drwxrwxrwx 0 abhi abhi 512 Jan 29 22:46 my_dir

-rw-rw-rw- 1 abhi abhi 17 Jan 29 22:46 my_file

-rwxrwxrwx 1 abhi faculty 313 Jan 29 22:47 my_program.py

-rw------- 1 root root 896 Jan 29 22:47 sensitive_data.csv

Owner GroupOwner
Group

d  Directory	 	 r  Read	 w  Write	 x  eXecute

Unix Permissions

Abhi~$ ls -l

drwxrwxrwx 0 abhi abhi 512 Jan 29 22:46 my_dir

-rw-rw-rw- 1 abhi abhi 17 Jan 29 22:46 my_file

-rwxrwxrwx 1 abhi faculty 313 Jan 29 22:47 my_program.py

-rw------- 1 root root 896 Jan 29 22:47 sensitive_data.csv

Owner GroupOwner
Group
Other

d  Directory	 	 r  Read	 w  Write	 x  eXecute

Unix Permissions

Abhi~$ ls -l

drwxrwxrwx 0 abhi abhi 512 Jan 29 22:46 my_dir

-rw-rw-rw- 1 abhi abhi 17 Jan 29 22:46 my_file

-rwxrwxrwx 1 abhi faculty 313 Jan 29 22:47 my_program.py

-rw------- 1 root root 896 Jan 29 22:47 sensitive_data.csv

Owner GroupOwner
Group
Other

d  Directory	 	 r  Read	 w  Write	 x  eXecute

Directory

Unix Permissions

Abhi~$ ls -l

drwxrwxrwx 0 abhi abhi 512 Jan 29 22:46 my_dir

-rw-rw-rw- 1 abhi abhi 17 Jan 29 22:46 my_file

-rwxrwxrwx 1 abhi faculty 313 Jan 29 22:47 my_program.py

-rw------- 1 root root 896 Jan 29 22:47 sensitive_data.csv

Owner GroupOwner
Group
Other

d  Directory	 	 r  Read	 w  Write	 x  eXecute

Directory Permission to list the contents of a directory

Setting Permissions

chmod [who]<+/-><permissions> <file1> [file2] …

(omitted)  user, group, and other
a  user, group, and other
u  user
g  group
o  other

+  add permissions
-  remove
permissions

r  Read
w  Write
x  eXecute

abhi@DESKTOP:~$ ls -l

drwxrwxrwx 0 abhi abhi 512 Jan 29 22:46 my_dir

-rw-rw-rw- 1 abhi abhi 17 Jan 29 22:46 my_file

-rwxrwxrwx 1 abhi faculty 313 Jan 29 22:47 my_program.py

abhi@DESKTOP:~$ chmod ugo-rwx my_dir

abhi@DESKTOP:~$ chmod go-rwx my_program.py

abhi@DESKTOP:~$ chmod u-rw my_program.py

abhi@DESKTOP:~$ chmod +x my_file

abhi@DESKTOP:~$ ls -l

d--------- 0 abhi abhi 512 Jan 29 22:46 my_dir

-rwxrwxrwx 1 abhi abhi 17 Jan 29 22:46 my_file

---x------ 1 abhi faculty 313 Jan 29 22:47 my_program.py

Alternate Form of Setting Permissions

chmod ### <file1> [file2] …

• #s correspond to owner, group, and other
• Each value encodes read, write, and execute permissions
• 1  execute
• 2  write
• 4  read

Alternate Form of Setting Permissions

chmod ### <file1> [file2] …

• #s correspond to owner, group, and other
• Each value encodes read, write, and execute permissions
• 1  execute
• 2  write
• 4  read
• What if you want to set something as read, write, and execute?

Alternate Form of Setting Permissions

chmod ### <file1> [file2] …

• #s correspond to owner, group, and other
• Each value encodes read, write, and execute permissions
• 1  execute
• 2  write
• 4  read
• What if you want to set something as read, write, and execute?
• 1 + 2 + 4 = 7

abhi@DESKTOP:~$ ls -l

drwxrwxrwx 0 abhi abhi 512 Jan 29 22:46 my_dir

-rw-rw-rw- 1 abhi abhi 17 Jan 29 22:46 my_file

-rwxrwxrwx 1 abhi faculty 313 Jan 29 22:47 my_program.py

abhi@DESKTOP:~$ chmod 000 my_dir

abhi@DESKTOP:~$ chmod 100 my_program.py

abhi@DESKTOP:~$ chmod 777 my_file

abhi@DESKTOP:~$ ls -l

d--------- 0 abhi abhi 512 Jan 29 22:46 my_dir

-rwxrwxrwx 1 abhi abhi 17 Jan 29 22:46 my_file

---x------ 1 abhi faculty 313 Jan 29 22:47 my_program.py

Who May Change Permissions?

• Which files is user abhi permitted to chmod?

abhi@DESKTOP:~$ groups

abhi faculty

abhi@DESKTOP:~$ ls -l

-rw-rw-rw- 1 abhi abhi 17 Jan 29 22:46 my_file

-rw-rw-rw- 1 abhi faculty 17 Jan 29 22:46 my_other_file

-rw------- 1 root root 896 Jan 29 22:47 sensitive_data.csv

-rwxrwx--- 1 root faculty 313 Jan 29 22:47 program.py

Who May Change Permissions?

• Which files is user abhi permitted to chmod?
• Only owners can chmod files
• abhi can chmod my_file and my_other_file
• Group membership doesn’t grant chmod ability (cannot chmod program.py)

abhi@DESKTOP:~$ groups

abhi faculty

abhi@DESKTOP:~$ ls -l

-rw-rw-rw- 1 abhi abhi 17 Jan 29 22:46 my_file

-rw-rw-rw- 1 abhi faculty 17 Jan 29 22:46 my_other_file

-rw------- 1 root root 896 Jan 29 22:47 sensitive_data.csv

-rwxrwx--- 1 root faculty 313 Jan 29 22:47 program.py

Setting Ownership

• Unix uses discretionary access control
• New objects are owned by the subject that created them
• How can you modify the owner or group of an object?

chown <owner>:<group> <file1> [file2] …

Who May Change Ownership?

• Which operations are permitted?

abhi@DESKTOP:~$ groups

abhi faculty

abhi@DESKTOP:~$ ls -l

-rw-rw-rw- 1 abhi abhi 17 Jan 29 22:46 my_file

-rw-rw-rw- 1 abhi faculty 17 Jan 29 22:46 my_other_file

-rw------- 1 root root 896 Jan 29 22:47 sensitive_data.csv

-rwxrwx--- 1 root faculty 313 Jan 29 22:47 program.py

chown abhi:faculty my_file Yes, cbw belongs to the faculty group
chown root:root my_other_file No, only root many change file owners!
chown abhi:abhi sensitive_date.csv No, only root many change file owners!
chown abhi:faculty program.py No, only root many change file owners!

Who May Change Ownership?

• Which operations are permitted?
chown abhi:faculty my_file Yes, abhi belongs to the faculty group
chown root:root my_other_file No, only root many change file owners!
chown abhi:abhi sensitive_date.csv No, only root many change file owners!
chown abhi:faculty program.py No, only root many change file owners!

abhi@DESKTOP:~$ groups

abhi faculty

abhi@DESKTOP:~$ ls -l

-rw-rw-rw- 1 abhi abhi 17 Jan 29 22:46 my_file

-rw-rw-rw- 1 abhi faculty 17 Jan 29 22:46 my_other_file

-rw------- 1 root root 896 Jan 29 22:47 sensitive_data.csv

-rwxrwx--- 1 root faculty 313 Jan 29 22:47 program.py

Unix Access Control Exercise (1)
• What Unix group and permission assignments satisfy this access

control matrix?

file1 file2

user1 r-- rwx
user2 r-- rw-
user3 r-- rw-
user4 rwx rw-

Desired Permissions

Unix Access Control Exercise (1)
• What Unix group and permission assignments satisfy this access

control matrix?

file1 file2

user1 r-- rwx
user2 r-- rw-
user3 r-- rw-
user4 rwx rw-

Desired Permissions

~$ ls -l

-rwxr--r-- 1 user4 user4 0 file1

-rwxrw-rw- 1 user1 user1 0 file2

User Groups
user1 user1

user2 user2

user3 user3

user4 user4

Unix Access Control Exercise (2)
• What Unix group and permission assignments satisfy this access

control matrix?

file1 file2

user1 r-- --x

user2 r-x rwx

user3 r-x r--

user4 rwx r--

Desired Permissions

Unix Access Control Exercise (2)
• What Unix group and permission assignments satisfy this access

control matrix?

file1 file2

user1 r-- --x

user2 r-x rwx

user3 r-x r--

user4 rwx r--

Desired Permissions

~$ ls -l

-rwxr-xr-- 1 user4 group1 0 file1

-rwxr----x 1 user2 group2 0 file2

User Groups
user1 user1

user2 user2, group1

user3 user3, group1, group2

user4 user4, group2

Unix Access Control Exercise (3)
• What Unix group and permission assignments satisfy this access

control matrix?
Desired Permissions

file 1 file 2

user 1 --- rw-

user 2 r-- r--

user 3 rwx rwx

user 4 rwx ---

Unix Access Control Exercise (3)
• What Unix group and permission assignments satisfy this access

control matrix?
Desired Permissions

file 1 file 2

user 1 --- rw-

user 2 r-- r--

user 3 rwx rwx

user 4 rwx ---

• Trick question! This matrix cannot be represented

Unix Access Control Exercise (3)
• What Unix group and permission assignments satisfy this access

control matrix?
Desired Permissions

file 1 file 2

user 1 --- rw-

user 2 r-- r--

user 3 rwx rwx

user 4 rwx ---

• Trick question! This matrix cannot be represented

• file2: four distinct privilege levels
• Maximum of three levels (user, group, other)

Unix Access Control Exercise (3)
• What Unix group and permission assignments satisfy this access

control matrix?
Desired Permissions

file 1 file 2

user 1 --- rw-

user 2 r-- r--

user 3 rwx rwx

user 4 rwx ---

• Trick question! This matrix cannot be represented

• file2: four distinct privilege levels
• Maximum of three levels (user, group, other)

• file1: two users have high privileges
• If user3 and user4 are in a group, how to give user2

read and user1 nothing?
• If user1 or user2 are owner, they can grant themselves

write and execute permissions :(

• Very simple model
• Owners, groups, and other
• Read, write, execute

• Relatively simple to manage and
understand

Unix Access Control Review

The Good The Bad

• Very simple model
• Owners, groups, and other
• Read, write, execute

• Relatively simple to manage and
understand

• Not all policies can be encoded!
• Contrast to ACL

Unix Access Control Review

The Good The Bad

• Very simple model
• Owners, groups, and other
• Read, write, execute

• Relatively simple to manage and
understand

• Not all policies can be encoded!
• Contrast to ACL

• Not quite as simple as it seems
• setuid

Unix Access Control Review

The Good The Bad

Problems with Principals
setuid
The Confused Deputy Problem
Capability-based Access Control

From Principals to Subjects

• Thus far, we have focused on principals
• What user created/owns an object?
• What groups does a user belong to?

• What about subjects?
• When you run a program, what permissions does it have?
• Who is the “owner” of a running program?

Process Owners
abhi@DESKTOP:~$ ls -l

-rwxr-xr-x 1 abhi abhi 313 Jan 29 22:47 my_program.py

abhi@DESKTOP:~$./my_program.py

…

Process Owners
abhi@DESKTOP:~$ ls -l

-rwxr-xr-x 1 abhi abhi 313 Jan 29 22:47 my_program.py

abhi@DESKTOP:~$./my_program.py

…

Who is the
owner of this

process?

Process Owners
abhi@DESKTOP:~$ ls -l

-rwxr-xr-x 1 abhi abhi 313 Jan 29 22:47 my_program.py

abhi@DESKTOP:~$./my_program.py

…

abhi@DESKTOP:~$ ps aux | grep my_program.py

abhi tty1 S 01:06 0:00 python3 ./my_program.py

Who is the
owner of this

process?

Process Owners
abhi@DESKTOP:~$ ls -l

-rwxr-xr-x 1 abhi abhi 313 Jan 29 22:47 my_program.py

abhi@DESKTOP:~$./my_program.py

…

abhi@DESKTOP:~$ ps aux | grep my_program.py

abhi tty1 S 01:06 0:00 python3 ./my_program.py

Who is the
owner of this

process?

abhi is the
owner. Why?

Process Owners
abhi@DESKTOP:~$ ls -l /bin/ls*

-rwxr-xr-x 1 root root 110080 Mar 10 2016 /bin/ls

-rwxr-xr-x 1 root root 44688 Nov 23 2016 /bin/lsblk

abhi@DESKTOP:~$ ls

…

Process Owners
abhi@DESKTOP:~$ ls -l /bin/ls*

-rwxr-xr-x 1 root root 110080 Mar 10 2016 /bin/ls

-rwxr-xr-x 1 root root 44688 Nov 23 2016 /bin/lsblk

abhi@DESKTOP:~$ ls

…
Who is the owner
of this process?

Process Owners
abhi@DESKTOP:~$ ls -l /bin/ls*

-rwxr-xr-x 1 root root 110080 Mar 10 2016 /bin/ls

-rwxr-xr-x 1 root root 44688 Nov 23 2016 /bin/lsblk

abhi@DESKTOP:~$ ls

…

abhi@DESKTOP:~$ ps aux | grep ls

abhi tty1 S 01:06 0:00 /bin/ls

Who is the owner
of this process?

Process Owners
abhi@DESKTOP:~$ ls -l /bin/ls*

-rwxr-xr-x 1 root root 110080 Mar 10 2016 /bin/ls

-rwxr-xr-x 1 root root 44688 Nov 23 2016 /bin/lsblk

abhi@DESKTOP:~$ ls

…

abhi@DESKTOP:~$ ps aux | grep ls

abhi tty1 S 01:06 0:00 /bin/ls

Who is the owner
of this process?

abhi is the
owner. Why?

Process Owners
abhi@DESKTOP:~$ ls -l /bin/ls*

-rwxr-xr-x 1 root root 110080 Mar 10 2016 /bin/ls

-rwxr-xr-x 1 root root 44688 Nov 23 2016 /bin/lsblk

abhi@DESKTOP:~$ ls

…

abhi@DESKTOP:~$ ps aux | grep ls

abhi tty1 S 01:06 0:00 /bin/ls

Who is the owner
of this process?

abhi is the
owner. Why?

Subject Ownership

Subject Ownership

• Under normal circumstances, subjects are owned by the principal that
executes them
• File ownership is irrelevant

• Why is this important for security?
• A principal that is able to execute a file owned by root should not be granted

root privileges

Subject Ownership

• Under normal circumstances, subjects are owned by the principal that
executes them
• File ownership is irrelevant

• Why is this important for security?
• A principal that is able to execute a file owned by root should not be granted

root privileges

abhi@DESKTOP:~$ ls -l /bin/bash

-rwxr-xr-x 1 root root 110080 Mar 10 2016 /bin/bash

Corner Cases
abhi@DESKTOP:~$ passwd

Changing password for abhi.

(current) UNIX password:

Corner Cases

• Consider the passwd program
• All users must be able to execute it (to set and change their passwords)
• Must have write access to /etc/shadow (file where password hashes are stored)

• Problem: /etc/shadow is only writable by root user

abhi@DESKTOP:~$ passwd

Changing password for abhi.

(current) UNIX password:

abhi@DESKTOP:~$ ls -l /etc/shadow

-rw-r----- 1 root shadow 922 Jan 8 14:56 /etc/shadow

setuid

abhi@DESKTOP:~$ ls -l /usr/bin/passwd

-rwsr-xr-x 1 root root 47032 May 16 2017 /usr/bin/passwd

abhi@DESKTOP:~$ passwd

Changing password for abhi.

(current) UNIX password:

setuid

abhi@DESKTOP:~$ ls -l /usr/bin/passwd

-rwsr-xr-x 1 root root 47032 May 16 2017 /usr/bin/passwd

abhi@DESKTOP:~$ passwd

Changing password for abhi.

(current) UNIX password:

setuid
• Objects may have the setuid permission
• Program may execute as the file owner, rather than executing principal

abhi@DESKTOP:~$ ls -l /usr/bin/passwd

-rwsr-xr-x 1 root root 47032 May 16 2017 /usr/bin/passwd

abhi@DESKTOP:~$ passwd

Changing password for abhi.

(current) UNIX password:

setuid
• Objects may have the setuid permission
• Program may execute as the file owner, rather than executing principal

abhi@DESKTOP:~$ ps aux | grep passwd

root tty1 S 01:06 0:00 python ./my_program.py

abhi@DESKTOP:~$ ls -l /usr/bin/passwd

-rwsr-xr-x 1 root root 47032 May 16 2017 /usr/bin/passwd

abhi@DESKTOP:~$ passwd

Changing password for abhi.

(current) UNIX password:

setuid
• Objects may have the setuid permission
• Program may execute as the file owner, rather than executing principal

abhi@DESKTOP:~$ ps aux | grep passwd

root tty1 S 01:06 0:00 python ./my_program.py

abhi@DESKTOP:~$ ls -l /usr/bin/passwd

-rwsr-xr-x 1 root root 47032 May 16 2017 /usr/bin/passwd

abhi@DESKTOP:~$ passwd

Changing password for abhi.

(current) UNIX password:

chmod Revisited

• How to add setuid to an object?

chmod u+s <file1> [file2] …
chmod 2### <file1> [file2] …

chmod Revisited

• How to add setuid to an object?

chmod u+s <file1> [file2] …
chmod 2### <file1> [file2] …

• WARNING: NEVER SET A SCRIPT AS SETUID
• Only set setuid on compiled binary programs
• Scripts with setuid lead to Time of Check Time of Use (TOCTOU) vulnerabilities

Another setuid Example

• Consider an example turnin program
/cs2550/turnin <project #> <in_file> <out_file>

1. Copies <in_file> to <out_file>
2. Grades the assignment
3. Writes the grade to /cs2550/<project#>/grades

Another setuid Example

• Consider an example turnin program
/cs2550/turnin <project #> <in_file> <out_file>

1. Copies <in_file> to <out_file>
2. Grades the assignment
3. Writes the grade to /cs2550/<project#>/grades

• Challenge: students cannot have write access to project directories or
grade files
• turnin program must be setuid

alice@login:~$ /cs2550/turnin project1 pwcrack.py /cs2550/project1/
pwcrack.py

Thank you for turning in project 1.

alice@login:~$ ls –l /cs2550/

drwx--x--x 0 abhi faculty 512 Jan 29 22:46 project1

-rwsr-xr-x 1 abhi faculty 17 Jan 29 22:46 turnin

alice@login:~$ ls –l /cs2550/project1/

-r-x------ 0 abhi faculty 512 Jan 29 22:46 pwcrack.py

-rw------- 1 abhi faculty 17 Jan 29 22:46 grades

alice@login:~$ /cs2550/turnin project1 pwcrack.py /cs2550/project1/
pwcrack.py

Thank you for turning in project 1.

alice@login:~$ ls –l /cs2550/

drwx--x--x 0 abhi faculty 512 Jan 29 22:46 project1

-rwsr-xr-x 1 abhi faculty 17 Jan 29 22:46 turnin

alice@login:~$ ls –l /cs2550/project1/

-r-x------ 0 abhi faculty 512 Jan 29 22:46 pwcrack.py

-rw------- 1 abhi faculty 17 Jan 29 22:46 grades

alice@login:~$ /cs2550/turnin project1 pwcrack.py /cs2550/project1/
pwcrack.py

Thank you for turning in project 1.

alice@login:~$ ls –l /cs2550/

drwx--x--x 0 abhi faculty 512 Jan 29 22:46 project1

-rwsr-xr-x 1 abhi faculty 17 Jan 29 22:46 turnin

alice@login:~$ ls –l /cs2550/project1/

-r-x------ 0 abhi faculty 512 Jan 29 22:46 pwcrack.py

-rw------- 1 abhi faculty 17 Jan 29 22:46 grades

Ambient Authority

Ambient Authority

• Ambient authority
• A subject’s permissions are automatically

exercised
• No need to select specific permissions
• Systems that use ACLs or Unix-style

permissions grant ambient authority
• A subject automatically gains all

permissions of the principal
• A setuid subject also gains permissions of

the file owner
• Ambient authority is a security

vulnerability

The Confused Deputy Problem
mallory@login:~$ /cs2550/turnin project1 best_grade.txt /cs2550/project1/grades

Thank you for turning in project 1.

alice@login:~$ ls –l /cs2550/project1/

-rw------- 1 abhi faculty 17 Jan 29 22:46 grades

The Confused Deputy Problem
mallory@login:~$ /cs2550/turnin project1 best_grade.txt /cs2550/project1/grades

Thank you for turning in project 1.

alice@login:~$ ls –l /cs2550/project1/

-rw------- 1 abhi faculty 17 Jan 29 22:46 grades

The Confused Deputy Problem

• The turnin program is a confused deputy
• It is the deputy of two principals: mallory and cbw
• mallory cannot directly access /cs2550/project1/grades
• However, abhi can access /cs2550/project1/grades

mallory@login:~$ /cs2550/turnin project1 best_grade.txt /cs2550/project1/grades

Thank you for turning in project 1.

alice@login:~$ ls –l /cs2550/project1/

-rw------- 1 abhi faculty 17 Jan 29 22:46 grades

The Confused Deputy Problem

• The turnin program is a confused deputy
• It is the deputy of two principals: mallory and cbw
• mallory cannot directly access /cs2550/project1/grades
• However, abhi can access /cs2550/project1/grades

• Key problem: the subject cannot tell which principal it is serving when it
performs a write

mallory@login:~$ /cs2550/turnin project1 best_grade.txt /cs2550/project1/grades

Thank you for turning in project 1.

alice@login:~$ ls –l /cs2550/project1/

-rw------- 1 abhi faculty 17 Jan 29 22:46 grades

Preventing Confused Deputies
• ACL and Unix-style systems are fundamentally

vulnerable to confused deputies
• Cannot prevent misuse of ambient authority
• Solution: move to capability-based access

control system

Capabilities

ACLs

• Encode columns of an access
control matrix

Capabilities

o1 o2 o3

s1 RW RX

s2 R RWX RW

s3 RWX

ACL for o2

Capabilities

ACLs

• Encode columns of an access
control matrix

Capabilities

• Encode rows of an access control
matrix

o1 o2 o3

s1 RW RX

s2 R RWX RW

s3 RWX

ACL for o2

o1 o2 o3

s1 RW RX

s2 R RWX RW

s3 RWX

Capabilities
for s1

Capability-based Access Control

• Principals and subjects have capabilities which:
• Give them access to objects
• Files, keys, devices, etc.
• Are transferable and unforgeable tokens of authority
• Can be passed from principal to subject, and subject to subject
• Similar to file descriptors

• Why do capabilities solve the confused deputy problem?
• When attempting to access an object, a capability must be selected
• Selecting a capability inherently also selects a master

Confused Deputy Revisited

mallory@login:~$ /cs2550/turnin project1 best_grade.txt /
cs2550/project1/grades

ERROR: Permission denied to /cs2550/project1/grades

Confused Deputy Revisited

mallory@login:~$ /cs2550/turnin project1 best_grade.txt /
cs2550/project1/grades

ERROR: Permission denied to /cs2550/project1/grades

Principal … /home/mallory/* /cs2550/project1/grades …
mallory … RWX --- …

Confused Deputy Revisited

mallory@login:~$ /cs2550/turnin project1 best_grade.txt /
cs2550/project1/grades

ERROR: Permission denied to /cs2550/project1/grades

Allow
Principal … /home/mallory/* /cs2550/project1/grades …
mallory … RWX --- …

Deny

Confused Deputy Revisited

mallory@login:~$ /cs2550/turnin project1 best_grade.txt /
cs2550/project1/grades

ERROR: Permission denied to /cs2550/project1/grades

Allow
Principal … /home/mallory/* /cs2550/project1/grades …
mallory … RWX --- …

Deny

Confused Deputy Revisited

• Principal must pass capabilities to objects at invocation time
• mallory has permission to access best_grade.txt
• mallory does not have permission to access /cs2550/project1/grades

mallory@login:~$ /cs2550/turnin project1 best_grade.txt /
cs2550/project1/grades

ERROR: Permission denied to /cs2550/project1/grades

Allow
Principal … /home/mallory/* /cs2550/project1/grades …
mallory … RWX --- …

Deny

Confused Deputy Revisited

• Principal must pass capabilities to objects at invocation time
• mallory has permission to access best_grade.txt
• mallory does not have permission to access /cs2550/project1/grades

• No ambient authority in a capability-based access control system
• Principal cannot pass a capability it doesn’t have

mallory@login:~$ /cs2550/turnin project1 best_grade.txt /
cs2550/project1/grades

ERROR: Permission denied to /cs2550/project1/grades

Allow
Principal … /home/mallory/* /cs2550/project1/grades …
mallory … RWX --- …

Deny

Capabilities vs. ACLs

• Consider two security mechanisms for bank accounts

1. Identity-based
• Each account has multiple authorized owners
• To authenticate, show a valid ID at the bank
• Once authenticated, you may access all authorized accounts

2. Token-based
• When opening an account, you are given a unique hardware key
• To access an account, you must possess the corresponding key
• Keys may be passed from person to person

Capabilities vs. ACLs

• Consider two security mechanisms for bank accounts

1. Identity-based
• Each account has multiple authorized owners
• To authenticate, show a valid ID at the bank
• Once authenticated, you may access all authorized accounts

2. Token-based
• When opening an account, you are given a unique hardware key
• To access an account, you must possess the corresponding key
• Keys may be passed from person to person

• ACL system
• Ambient authority to

access all authorized
accounts

Capabilities vs. ACLs

• Consider two security mechanisms for bank accounts

1. Identity-based
• Each account has multiple authorized owners
• To authenticate, show a valid ID at the bank
• Once authenticated, you may access all authorized accounts

2. Token-based
• When opening an account, you are given a unique hardware key
• To access an account, you must possess the corresponding key
• Keys may be passed from person to person

• ACL system
• Ambient authority to

access all authorized
accounts

• Capability
system

• No ambient
authority

Capabilities IRL

• From a security perspective, capability systems are more secure than
ACL and Unix-style systems
• … and yet, most major operating systems use the latter
• Why?
• Easier for users
• ACLs are good for user-level sharing, intuitive
• Capabilities are good for process-level sharing, not untuitive
• Easier for developers
• Processes are tightly coupled in capability systems
• Must carefully manage passing capabilities around
• In contrast, ambient authority makes programming easy, but insecure

Small Steps Towards Capabilities

• Some limited examples of capability systems exist
• Android/iOS app permissions
• POSIX capabilities
• SELinux

Android/iOS Capabilities

• Android and iOS support (relatively)
fine grained capabilities for apps
• User must grant permissions to apps at

install time
• May only access sensitive APIs with user

consent
• Apps can “borrow” capabilities from

each other by exporting intents
• Example: an app without camera access

can ask the camera app to return a
photo

Android/IOS just-in-time capability

Per-event capability

POSIX Capabilities

• Traditional Unix systems had two types of processes
• Privileged, i.e. root processes
• Bypass all security and access control checks
• Unprivileged, i.e. everything else
• Subject to access controls

• Modern Unix/Linux systems offer some finer grained capabilities
• Specified processes may be granted a subset of root privileges
• CAP_CHOWN: make arbitrary changes to file owners and groups
• CAP_KILL: kill arbitrary processes
• CAP_SYS_TIME: change the system clock

Keeping Secrets?
• Suppose we have secret data that only certain users should access
• Is DAC enough to prevent leaks?
charlie@DESKTOP:~$ groups
charlie topsecret
charlie@DESKTOP:~$ ls –la /top-secret-intel/
drwxr-xr-x 0 root root 512 Jan 8 14:55 .
drwxr-xr-x 0 root root 512 Oct 11 19:58 ..
-rw-r----- 1 root topsecret 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~$ groups mallory
mallory secret
charlie@DESKTOP:~$ ls –la /home/mallory
drwxrwxrwx 0 mallory mallory 512 Jan 8 14:55 .
drwxr-xr-x 0 root root 512 Oct 11 19:58 ..
charlie@DESKTOP:~$ cp /top-secret-intel/northkorea.pdf /home/mallory
charlie@DESKTOP:~$ ls –l /home/mallory
-rw-r----- 1 charlie charlie 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~$ chmod ugo+rw /home/mallory/northkorea.pdf

Keeping Secrets?
• Suppose we have secret data that only certain users should access
• Is DAC enough to prevent leaks?
charlie@DESKTOP:~$ groups
charlie topsecret
charlie@DESKTOP:~$ ls –la /top-secret-intel/
drwxr-xr-x 0 root root 512 Jan 8 14:55 .
drwxr-xr-x 0 root root 512 Oct 11 19:58 ..
-rw-r----- 1 root topsecret 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~$ groups mallory
mallory secret
charlie@DESKTOP:~$ ls –la /home/mallory
drwxrwxrwx 0 mallory mallory 512 Jan 8 14:55 .
drwxr-xr-x 0 root root 512 Oct 11 19:58 ..
charlie@DESKTOP:~$ cp /top-secret-intel/northkorea.pdf /home/mallory
charlie@DESKTOP:~$ ls –l /home/mallory
-rw-r----- 1 charlie charlie 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~$ chmod ugo+rw /home/mallory/northkorea.pdf

Keeping Secrets?
• Suppose we have secret data that only certain users should access
• Is DAC enough to prevent leaks?
charlie@DESKTOP:~$ groups
charlie topsecret
charlie@DESKTOP:~$ ls –la /top-secret-intel/
drwxr-xr-x 0 root root 512 Jan 8 14:55 .
drwxr-xr-x 0 root root 512 Oct 11 19:58 ..
-rw-r----- 1 root topsecret 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~$ groups mallory
mallory secret
charlie@DESKTOP:~$ ls –la /home/mallory
drwxrwxrwx 0 mallory mallory 512 Jan 8 14:55 .
drwxr-xr-x 0 root root 512 Oct 11 19:58 ..
charlie@DESKTOP:~$ cp /top-secret-intel/northkorea.pdf /home/mallory
charlie@DESKTOP:~$ ls –l /home/mallory
-rw-r----- 1 charlie charlie 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~$ chmod ugo+rw /home/mallory/northkorea.pdf

Keeping Secrets?
• Suppose we have secret data that only certain users should access
• Is DAC enough to prevent leaks?
charlie@DESKTOP:~$ groups
charlie topsecret
charlie@DESKTOP:~$ ls –la /top-secret-intel/
drwxr-xr-x 0 root root 512 Jan 8 14:55 .
drwxr-xr-x 0 root root 512 Oct 11 19:58 ..
-rw-r----- 1 root topsecret 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~$ groups mallory
mallory secret
charlie@DESKTOP:~$ ls –la /home/mallory
drwxrwxrwx 0 mallory mallory 512 Jan 8 14:55 .
drwxr-xr-x 0 root root 512 Oct 11 19:58 ..
charlie@DESKTOP:~$ cp /top-secret-intel/northkorea.pdf /home/mallory
charlie@DESKTOP:~$ ls –l /home/mallory
-rw-r----- 1 charlie charlie 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~$ chmod ugo+rw /home/mallory/northkorea.pdf

Keeping Secrets?
• Suppose we have secret data that only certain users should access
• Is DAC enough to prevent leaks?
charlie@DESKTOP:~$ groups
charlie topsecret
charlie@DESKTOP:~$ ls –la /top-secret-intel/
drwxr-xr-x 0 root root 512 Jan 8 14:55 .
drwxr-xr-x 0 root root 512 Oct 11 19:58 ..
-rw-r----- 1 root topsecret 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~$ groups mallory
mallory secret
charlie@DESKTOP:~$ ls –la /home/mallory
drwxrwxrwx 0 mallory mallory 512 Jan 8 14:55 .
drwxr-xr-x 0 root root 512 Oct 11 19:58 ..
charlie@DESKTOP:~$ cp /top-secret-intel/northkorea.pdf /home/mallory
charlie@DESKTOP:~$ ls –l /home/mallory
-rw-r----- 1 charlie charlie 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~$ chmod ugo+rw /home/mallory/northkorea.pdf

Keeping Secrets?
• Suppose we have secret data that only certain users should access
• Is DAC enough to prevent leaks?
charlie@DESKTOP:~$ groups
charlie topsecret
charlie@DESKTOP:~$ ls –la /top-secret-intel/
drwxr-xr-x 0 root root 512 Jan 8 14:55 .
drwxr-xr-x 0 root root 512 Oct 11 19:58 ..
-rw-r----- 1 root topsecret 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~$ groups mallory
mallory secret
charlie@DESKTOP:~$ ls –la /home/mallory
drwxrwxrwx 0 mallory mallory 512 Jan 8 14:55 .
drwxr-xr-x 0 root root 512 Oct 11 19:58 ..
charlie@DESKTOP:~$ cp /top-secret-intel/northkorea.pdf /home/mallory
charlie@DESKTOP:~$ ls –l /home/mallory
-rw-r----- 1 charlie charlie 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~$ chmod ugo+rw /home/mallory/northkorea.pdf

Keeping Secrets?
• Suppose we have secret data that only certain users should access
• Is DAC enough to prevent leaks?
charlie@DESKTOP:~$ groups
charlie topsecret
charlie@DESKTOP:~$ ls –la /top-secret-intel/
drwxr-xr-x 0 root root 512 Jan 8 14:55 .
drwxr-xr-x 0 root root 512 Oct 11 19:58 ..
-rw-r----- 1 root topsecret 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~$ groups mallory
mallory secret
charlie@DESKTOP:~$ ls –la /home/mallory
drwxrwxrwx 0 mallory mallory 512 Jan 8 14:55 .
drwxr-xr-x 0 root root 512 Oct 11 19:58 ..
charlie@DESKTOP:~$ cp /top-secret-intel/northkorea.pdf /home/mallory
charlie@DESKTOP:~$ ls –l /home/mallory
-rw-r----- 1 charlie charlie 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~$ chmod ugo+rw /home/mallory/northkorea.pdf

Keeping Secrets?
• Suppose we have secret data that only certain users should access
• Is DAC enough to prevent leaks?
charlie@DESKTOP:~$ groups
charlie topsecret
charlie@DESKTOP:~$ ls –la /top-secret-intel/
drwxr-xr-x 0 root root 512 Jan 8 14:55 .
drwxr-xr-x 0 root root 512 Oct 11 19:58 ..
-rw-r----- 1 root topsecret 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~$ groups mallory
mallory secret
charlie@DESKTOP:~$ ls –la /home/mallory
drwxrwxrwx 0 mallory mallory 512 Jan 8 14:55 .
drwxr-xr-x 0 root root 512 Oct 11 19:58 ..
charlie@DESKTOP:~$ cp /top-secret-intel/northkorea.pdf /home/mallory
charlie@DESKTOP:~$ ls –l /home/mallory
-rw-r----- 1 charlie charlie 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~$ chmod ugo+rw /home/mallory/northkorea.pdf

Keeping Secrets?
• Suppose we have secret data that only certain users should access
• Is DAC enough to prevent leaks?
charlie@DESKTOP:~$ groups
charlie topsecret
charlie@DESKTOP:~$ ls –la /top-secret-intel/
drwxr-xr-x 0 root root 512 Jan 8 14:55 .
drwxr-xr-x 0 root root 512 Oct 11 19:58 ..
-rw-r----- 1 root topsecret 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~$ groups mallory
mallory secret
charlie@DESKTOP:~$ ls –la /home/mallory
drwxrwxrwx 0 mallory mallory 512 Jan 8 14:55 .
drwxr-xr-x 0 root root 512 Oct 11 19:58 ..
charlie@DESKTOP:~$ cp /top-secret-intel/northkorea.pdf /home/mallory
charlie@DESKTOP:~$ ls –l /home/mallory
-rw-r----- 1 charlie charlie 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~$ chmod ugo+rw /home/mallory/northkorea.pdf

Keeping Secrets?
• Suppose we have secret data that only certain users should access
• Is DAC enough to prevent leaks?
charlie@DESKTOP:~$ groups
charlie topsecret
charlie@DESKTOP:~$ ls –la /top-secret-intel/
drwxr-xr-x 0 root root 512 Jan 8 14:55 .
drwxr-xr-x 0 root root 512 Oct 11 19:58 ..
-rw-r----- 1 root topsecret 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~$ groups mallory
mallory secret
charlie@DESKTOP:~$ ls –la /home/mallory
drwxrwxrwx 0 mallory mallory 512 Jan 8 14:55 .
drwxr-xr-x 0 root root 512 Oct 11 19:58 ..
charlie@DESKTOP:~$ cp /top-secret-intel/northkorea.pdf /home/mallory
charlie@DESKTOP:~$ ls –l /home/mallory
-rw-r----- 1 charlie charlie 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~$ chmod ugo+rw /home/mallory/northkorea.pdf

Failure of DAC
•DAC cannot prevent the leaking of secrets

Secret.pdf
rwx User A
--- User B

NotSecret.pdf
rwx User A
rwx User B

User A

User B

Failure of DAC
•DAC cannot prevent the leaking of secrets

Secret.pdf
rwx User A
--- User B

NotSecret.pdf
rwx User A
rwx User B

User A

User B

Read

Write

Failure of DAC
•DAC cannot prevent the leaking of secrets

Secret.pdf
rwx User A
--- User B

NotSecret.pdf
rwx User A
rwx User B

User A

User B

Read

Write

Malicious
Trojan

Execute

Mandatory Access Control

Mandatory Access Control Goals
• Restrict the access of subjects to objects based

on a system-wide policy

Bell-Lapadula (1973)

System Model:

Security Policy:

“No read , no write ”

BLP System Model
Clearances:

Classifications:

BLP System Model

Trusted Subjects

Subjects
(have clearances)

Objects
(have classifications)

ACL
O1 O2 O3

S1
S2

S3
S4

Current
Access

Operations

Elements of the Bell-LaPadula Model

Top Secret

Secret

Confidential

o1 o2 o3

s1 RW RX

s2 R RWX RW

s3 RWX

Top Secret

Secret

Confidential

Unclassified

Subjects
Lm(s) : maximum level
Lc(s) : current level

Objects
L(o) : levelDiscretionary Access

Control Matrix
Defined by the administrator

Simplified Bell-LaPadula Example

Confidential

Top Secret

Secret

Confidential

Unclassified

• Assume Lm(s) = Lc(s) is always true

Simplified Bell-LaPadula Example

Confidential

Top Secret

Secret

Confidential

Unclassified

• Assume Lm(s) = Lc(s) is always true

• ★-property
• s can read o iff L(s) >= L(o) (no read up)
• s can write o iff L(s) <= L(o) (no write down)

Simplified Bell-LaPadula Example

Confidential

Top Secret

Secret

Confidential

Unclassified

Writeable

Readable

Read and Write

• Assume Lm(s) = Lc(s) is always true

• ★-property
• s can read o iff L(s) >= L(o) (no read up)
• s can write o iff L(s) <= L(o) (no write down)

Simplified Bell-LaPadula Example

Confidential

Top Secret

Secret

Confidential

Unclassified

Writeable

Readable

Read and Write

• Assume Lm(s) = Lc(s) is always true

• ★-property
• s can read o iff L(s) >= L(o) (no read up)
• s can write o iff L(s) <= L(o) (no write down)

Simplified Bell-LaPadula Example

Confidential

Top Secret

Secret

Confidential

Unclassified

Writeable

Readable

Read and Write

• Assume Lm(s) = Lc(s) is always true

• ★-property
• s can read o iff L(s) >= L(o) (no read up)
• s can write o iff L(s) <= L(o) (no write down)

Simplified Bell-LaPadula Example

Confidential

Top Secret

Secret

Confidential

Unclassified

Writeable

Readable

Read and Write

• Assume Lm(s) = Lc(s) is always true

• ★-property
• s can read o iff L(s) >= L(o) (no read up)
• s can write o iff L(s) <= L(o) (no write down)

BLP Idea
A computer system is in a state, and undergoes state transitions
whenever an operation occurs..

System is secure if all transitions satisfy 3 properties:

Simple:

Star:

Discretionary:

BLP Idea
A computer system is in a state, and undergoes state transitions
whenever an operation occurs..

System is secure if all transitions satisfy 3 properties:

Simple: S can read O if S has higher clearance
Star: S can write O if S has lower clearance.

Discretionary: Every access allowed by ACL.

Users are trusted

Subjects are not trusted. (Malware)

App armor

Slide from Novell/defcon 2015

Apparmor

Apparmor

Not Enough
TopSecret.pdf
rwx User A
--- User B

NotSecret.pdf
rwx User A
rwx User B

Not Enough: Covert channels

Security Lattice
Compartments:

Ordering between (Level, Compartment)

Lattice

Need-to-Know policy

Integrity Protection in Practice

• Mandatory Integrity Control in Windows
• Since Vista
• Four integrity levels: Low, Medium, High,

System
• Each process assigned a level
• Processes started by normal users are Medium
• Elevated processes have High
• Some processes intentionally run as Low
• Internet Explorer in protected mode
• Ring policy
• Reading and writing do not change integrity level

Integrity Protection in Practice

• Mandatory Integrity Control in Windows
• Since Vista
• Four integrity levels: Low, Medium, High,

System
• Each process assigned a level
• Processes started by normal users are Medium
• Elevated processes have High
• Some processes intentionally run as Low
• Internet Explorer in protected mode
• Ring policy
• Reading and writing do not change integrity level

Confidentiality? What else?

Biba Integrity Policy

Biba Integrity Model

• Proposed in 1975
• Like Bell-LaPadula, security model with provable properties based on a

state transition model
• Each subject has an integrity level
• Each object has an integrity level
• Integrity levels are totally ordered (high  low)
• Integrity levels in Biba are not the same as security levels in Bell-

LaPadula
• Some high integrity data does not need confidentiality
• Examples: stock prices, official statements from the president

Possible Mandatory Policies in Biba
1. Strict integrity
• s can read o iif i(s) <= i(o)	 	 	 	 	 (no read down)
• s can write o iff i(s) >= i(o)	 	 	 	 	 (no write up)

Possible Mandatory Policies in Biba
1. Strict integrity
• s can read o iif i(s) <= i(o)	 	 	 	 	 (no read down)
• s can write o iff i(s) >= i(o)	 	 	 	 	 (no write up)

2. Subject low-water mark
• s can always read o; afterward i(s) = min(i(s), i(o))	 	 (subject tainting)
• s can write o iff i(s) >= i(o)	 	 	 	 	 (no write up)

Possible Mandatory Policies in Biba
1. Strict integrity
• s can read o iif i(s) <= i(o)	 	 	 	 	 (no read down)
• s can write o iff i(s) >= i(o)	 	 	 	 	 (no write up)

2. Subject low-water mark
• s can always read o; afterward i(s) = min(i(s), i(o))	 	 (subject tainting)
• s can write o iff i(s) >= i(o)	 	 	 	 	 (no write up)

3. Object low-water mark
• s can read o iif i(s) <= i(o)	 	 	 	 	 (no read down)
• s can always write o; afterward o(s) = min(i(s), i(o))	 	 (object tainting)

Possible Mandatory Policies in Biba
1. Strict integrity
• s can read o iif i(s) <= i(o)	 	 	 	 	 (no read down)
• s can write o iff i(s) >= i(o)	 	 	 	 	 (no write up)

2. Subject low-water mark
• s can always read o; afterward i(s) = min(i(s), i(o))	 	 (subject tainting)
• s can write o iff i(s) >= i(o)	 	 	 	 	 (no write up)

3. Object low-water mark
• s can read o iif i(s) <= i(o)	 	 	 	 	 (no read down)
• s can always write o; afterward o(s) = min(i(s), i(o))	 	 (object tainting)

4. Low-water mark integrity audit
• s can always read o; afterward i(s) = min(i(s), i(o))	 	 (subject tainting)
• s can always write o; afterward o(s) = min(i(s), i(o))	 	 (object tainting)

Possible Mandatory Policies in Biba
1. Strict integrity
• s can read o iif i(s) <= i(o)	 	 	 	 	 (no read down)
• s can write o iff i(s) >= i(o)	 	 	 	 	 (no write up)

2. Subject low-water mark
• s can always read o; afterward i(s) = min(i(s), i(o))	 	 (subject tainting)
• s can write o iff i(s) >= i(o)	 	 	 	 	 (no write up)

3. Object low-water mark
• s can read o iif i(s) <= i(o)	 	 	 	 	 (no read down)
• s can always write o; afterward o(s) = min(i(s), i(o))	 	 (object tainting)

4. Low-water mark integrity audit
• s can always read o; afterward i(s) = min(i(s), i(o))	 	 (subject tainting)
• s can always write o; afterward o(s) = min(i(s), i(o))	 	 (object tainting)

5. Ring
• s can read any object o
• s can write o iff i(s) >= i(o)	 	 	 	 	 (no write up)

Biba Strict Integrity Example

High Integrity

Medium Integrity

Low Integrity

Unverified

• Strict integrity
• s can read o iif i(s) <= i(o) (no read down)
• s can write o iff i(s) >= i(o) (no write up)

Medium Integrity

Biba Strict Integrity Example

High Integrity

Medium Integrity

Low Integrity

Unverified

Writeable

Readable

Read and Write

• Strict integrity
• s can read o iif i(s) <= i(o) (no read down)
• s can write o iff i(s) >= i(o) (no write up)

Medium Integrity

Biba Strict Integrity Example

High Integrity

Medium Integrity

Low Integrity

Unverified

Writeable

Readable

Read and Write

• Strict integrity
• s can read o iif i(s) <= i(o) (no read down)
• s can write o iff i(s) >= i(o) (no write up)

Medium Integrity

Biba Strict Integrity Example

High Integrity

Medium Integrity

Low Integrity

Unverified

Writeable

Readable

Read and Write

• Strict integrity
• s can read o iif i(s) <= i(o) (no read down)
• s can write o iff i(s) >= i(o) (no write up)

Medium Integrity

Biba Strict Integrity Example

High Integrity

Medium Integrity

Low Integrity

Unverified

Writeable

Readable

Read and Write

• Strict integrity
• s can read o iif i(s) <= i(o) (no read down)
• s can write o iff i(s) >= i(o) (no write up)

Medium Integrity

Practical Example of Biba Integrity
• Military chain of command
• Generals may issue orders to majors and privates
• Majors may issue orders to privates, but not generals
• Privates may only take orders

Comparison

• Offers confidentiality
• “Read down, write up”
• Focuses on controlling reads
• Theoretically, no requirement

that subjects be trusted
• Even malicious programs can’t leak

secrets they don’t know

BPL Biba

Comparison

• Offers confidentiality
• “Read down, write up”
• Focuses on controlling reads
• Theoretically, no requirement

that subjects be trusted
• Even malicious programs can’t leak

secrets they don’t know

• Offers integrity

BPL Biba

Comparison

• Offers confidentiality
• “Read down, write up”
• Focuses on controlling reads
• Theoretically, no requirement

that subjects be trusted
• Even malicious programs can’t leak

secrets they don’t know

• Offers integrity
• “Read up, write down”

BPL Biba

Comparison

• Offers confidentiality
• “Read down, write up”
• Focuses on controlling reads
• Theoretically, no requirement

that subjects be trusted
• Even malicious programs can’t leak

secrets they don’t know

• Offers integrity
• “Read up, write down”
• Focuses on controlling writes

BPL Biba

Comparison

• Offers confidentiality
• “Read down, write up”
• Focuses on controlling reads
• Theoretically, no requirement

that subjects be trusted
• Even malicious programs can’t leak

secrets they don’t know

• Offers integrity
• “Read up, write down”
• Focuses on controlling writes
• Subjects must be trusted
• A malicious program can write bad

information

BPL Biba

Covert and Side Channels

Caveats of Bell-LaPadula

Caveats of Bell-LaPadula

•★-property prevents overt leakage of information
• Does not address covert channels

Caveats of Bell-LaPadula

•★-property prevents overt leakage of information
• Does not address covert channels
• What does this mean?

Covert Channels
• Access control is defined over “legitimate” channels
• Read/write an object
• Send/receive a packet from the network
• Read/write shared memory
• However, isolation in real systems is imperfect
• Actions have observable side-effects

Covert Channels
• Access control is defined over “legitimate” channels
• Read/write an object
• Send/receive a packet from the network
• Read/write shared memory
• However, isolation in real systems is imperfect
• Actions have observable side-effects
• External observations can create covert channels
• Communication via unintentional channels
• Examples:
• Existence of file(s) or locks on file(s)
• Measure the timing of events
• CPU cache (e.g. Meltdown and Spectre)

Simple Example

Unclassified

Top Secret

Secret

Confidential

Unclassified

Writeable

Read and Write

Bell-LaPadula MAC

russia_intel.docx

Simple Example

Unclassified

Top Secret

Secret

Confidential

Unclassified

Writeable

Read and Write

Bell-LaPadula MAC

russia_intel.docx

Simple Example

Unclassified

Top Secret

Secret

Confidential

Unclassified

Writeable

Read and Write

Bell-LaPadula MAC

russia_intel.docx

russia_intel.docxCreate File

Simple Example

Unclassified

Top Secret

Secret

Confidential

Unclassified

Writeable

Read and Write

Bell-LaPadula MAC

russia_intel.docx

Create File

Error

Simple Example

Unclassified

Top Secret

Secret

Confidential

Unclassified

Writeable

Read and Write

Bell-LaPadula MAC

russia_intel.docx

Create File

Error

Hmm, a classified file
named russia_intel.docx

must already exist…

Exploiting a Covert Channel

Unclassified

Top Secret

Secret

Confidential

Unclassified

Bell-LaPadula MAC

Secret

Received Message

Binary Encoded Message
010010…

Exploiting a Covert Channel

Unclassified

Top Secret

Secret

Confidential

Unclassified

Bell-LaPadula MAC

Secret

Received Message

Binary Encoded Message
010010…

Exploiting a Covert Channel

Unclassified

Top Secret

Secret

Confidential

Unclassified

Bell-LaPadula MAC

Secret

Create FileReceived Message

Binary Encoded Message
010010…

0

Exploiting a Covert Channel

Unclassified

Top Secret

Secret

Confidential

Unclassified

Bell-LaPadula MAC

Create File

Secret

Create FileReceived Message

Binary Encoded Message
010010…

0 1

0

Exploiting a Covert Channel

Unclassified

Top Secret

Secret

Confidential

Unclassified

Bell-LaPadula MAC

Create File

Secret

Create FileReceived Message

Binary Encoded Message
010010…

0 1

0
0

Exploiting a Covert Channel

Unclassified

Top Secret

Secret

Confidential

Unclassified

Bell-LaPadula MAC

Secret

Received Message

Binary Encoded Message
010010…

0 1 0

Leveraging Covert Channels

• Covert channels are typically noisy
• Based on precise timing of events
• May result in encoding errors, i.e. errors in data transmission
• Communication is probabilistic
• Information theory and coding theory can be applied to make covert

channels more robust
• Naïve approach: duplicate the data n times
• Better approach: uses Forward Error Correction (FEC) coding
• Zany approach: use Erasure Coding

Bell-LaPadula and Covert Channels
• Covert channels are not blocked by the ★-property

• It is very hard, perhaps impossible, to block all covert channels
• May appear in program code
• Or operating system code
• Or in the hardware itself (e.g. CPU covert channels)

Bell-LaPadula and Covert Channels
• Covert channels are not blocked by the ★-property

• It is very hard, perhaps impossible, to block all covert channels
• May appear in program code
• Or operating system code
• Or in the hardware itself (e.g. CPU covert channels)
• Potential mitigations:
• Limit the bandwidth of covert channels by enforcing rate limits
• Warning: may negatively impact system performance

• Intentionally make channels noisier by using randomness to introduce “chaff”
• Warning: slows down attacks, but may not stop them

• Use anomaly detection to identify subjects using a covert channel
• Warning: may result in false positives
• Warning: no guarantee this will detect all covert channels

Side Channel Attacks

• Side channels result from inadvertent information leakage
• Timing – e.g., password recovery by timing keystrokes
• Power – e.g., crypto key recovery by power fluctuations
• RF emissions – e.g., video signal recovery from video cable EM leakage
• Virtually any shared resource can be used

Side Channel Attack Example
• Victim is decrypting RSA data
• Key is not known to the attacker
• Encryption process is not directly accessible to the attacker
• Attacker is logged on to the same machine as the victim
• Secret key can be deciphered by observing the CPU voltage
• Short peaks = no multiplication (0 bit), long peaks = multiplication (1 bit)

Real Side Channel Attacks

• CPU voltage attacks against RSA
• Keystroke timing attacks against SSH
• Timing and CPU cache attacks against AES
• RF radiation attacks against computer monitors!
• Attacker can observe what is on your screen
• CPU cache attacks against process isolation
• Meltdown and Spectre
• Also leverage a covert channel ;)

