2550 Intro to
 cybersecurity
 L10: Public key Crypto

abhi shelat

Is this game strong enough to capture all feasible attacks?

A summary of the attack

A summary of the attack

Can you encrypt "Midway"?

A summary of the attack

A summary of the attack

A summary of the attack

Eve was allowed to ask for encryptions of arbitrary messages before step2.

IND-CPA attack for Symmetric Enc

IND-CPA attack for Symmetric Enc

IND-CPA attack for Symmetric Enc

IND-CPA attack for Symmetric Enc

IND-CPA attack for Symmetric Enc

IND-CPA attack for Symmetric Enc

To satisfy IND-CPA, Enc must be randomized.

Enc(k, "hello")

Enc(k, "hello")

To satisfy IND-CPA, Enc must be randomized.

Enc(k, "hello")
Enc(k, "hello")

If the encryption of a message is always the same cipher text, then the scheme CANNOT be IND-CPA secure!

Theorem: If One-way functions exist, Then IND-CPA secure symmetric encryption exists.

Example of IND-CPA: AES-CTR

Example of IND-CPA: AES-CTR

$\operatorname{Enc}_{k}\left(m_{1} \cdots m_{\ell} ; r\right)$
$=\left(r, F_{k}(r+1) \oplus m_{1}, F_{k}(r+2) \oplus m_{2}, \ldots, F_{k}(r+\ell) \oplus m_{\ell}\right)$

Example of IND-CPA: AES-CTR

$\operatorname{Enc}_{k}\left(m_{1} \cdots m_{\ell} ; r\right)$
$=\left(r, F_{k}(r+1) \oplus m_{1}, F_{k}(r+2) \oplus m_{2}, \ldots, F_{k}(r+\ell) \oplus m_{\ell}\right)$

Example of IND-CPA: AES-CTR

$$
\begin{aligned}
& \operatorname{Enc}_{k}\left(m_{1} \cdots m_{\ell} ; r\right) \\
& =\left(r, F_{k}(r+1) \oplus m_{1}, F_{k}(r+2) \oplus m_{2}, \ldots, F_{k}(r+\ell) \oplus m_{\ell}\right)
\end{aligned}
$$

How to use AES-CTR with openssl
\$ openssl enc -aes-128-ctr -a

Revisit our model for Encryption

Symmetric key enc has 1 major drawback.

Bob Garol

Dave

Alice

Buan
George
Francis

Symmetric key enc has 1 major drawback.

$$
\begin{array}{cc}
k_{b c} k_{b c}, k_{b d}, k_{b e}, k_{b p}, k_{b g} & k_{c a}, k_{c b}, k_{c d}, k_{c e}, k_{c f}, k_{c g} \\
\mathscr{B} o b & \text { Oarol }
\end{array}
$$

Alice
$k_{a b}, k_{a c}, k_{a d}, k_{a e}, k_{a f}, k_{a g}$
$0\left(n^{2}\right)$ keys to manage!

$$
\begin{aligned}
& \text { Buan } \\
& \text { George } \\
& k_{g c}, k_{g b}, k_{g c}, k_{g b}, k_{g e}, k_{g f} \\
& \text { Trancis } \\
& k_{f o} k_{f b}, k_{f o}, k_{f d}, k_{f c}, k_{f s}
\end{aligned}
$$

Pk can be used to encrypt.
sk can be used to decrypt.

PKC key enc

$$
s k_{d}
$$

Dave
$p k_{a}, p k_{b}, p k_{c}, p k_{d}, p k_{e}, p k_{f}, p k_{g}$
Are publicly posted

public key encryption

Gen Enc Dec
3 algorithms

Gen (key generation)

$$
(p k, s k) \leftarrow \operatorname{Gen}\left(1^{n}\right)
$$

Enc (encryption)

$$
c \leftarrow \operatorname{Enc}_{p k}(m) \text { for } p k \in \mathcal{K}, m \in \mathcal{M}
$$

Dec (decryption)

public key encryption

Gen Enc Dec 3 algorithms

Gen (key generation)

$$
(p k, s k) \leftarrow \operatorname{Gen}\left(1^{n}\right)
$$

Enc (encryption)

$$
c \leftarrow \operatorname{Enc}_{p k}(m) \text { for } p k \in \mathcal{K}, m \in \mathcal{M}
$$

Dec (decryption)

$$
\begin{aligned}
& \forall m \in \mathcal{M},(p k, s k) \leftarrow \operatorname{Gen}\left(1^{n}\right) \\
& \operatorname{Pr}\left[\operatorname{Dec}_{s k}\left(\operatorname{Enc}_{p k}(m)\right)=m\right]=1
\end{aligned}
$$

"for any pair of messages m_{1}, m_{2},
Bove cannot tell whether $c=E n c_{p k}\left(m_{i}\right)$."

IND-CPA security for pke

 (weakest notion of security)

IND-CPA security for pke

(weakest notion of security)

Now I will think.
Then I will give you 2 messages, m0, m1.

IND-CPA security for pke

(weakest notion of security)
Now I will think.
Then I will give
you 2 messages,
m0, m1.

I will pick one, encrypt it, and send you the ciphertext.

$p k, s k \leftarrow \operatorname{gen}\left(1^{n}\right)$

$$
m_{0}, m_{1} \leftarrow A(p k)
$$

$$
\begin{aligned}
& b \leftarrow\{0,1\} \\
& c \leftarrow \operatorname{enc}_{p k}\left(m_{b}\right)
\end{aligned}
$$

IND-CPA security for pke

(weakest notion of security)
Now I will need to figure out if c corresponds to m0 or m1.

$$
b^{\prime} \leftarrow A\left(p k, m_{0}, m_{1}, c\right)
$$

IND-CPA security for pke

(weakest notion of security)

$$
\begin{aligned}
p k, s k & \leftarrow \operatorname{gen}\left(1^{n}\right) \\
m_{0}, m_{1} & \leftarrow A(p k) \\
b & \leftarrow\{0,1\} \\
c & \leftarrow \mathrm{enc}_{p k}\left(m_{b}\right) \\
b^{\prime} & \leftarrow A\left(p k, m_{0}, m_{1}, c\right)
\end{aligned}
$$

$$
\operatorname{Pr}\left[b=b^{\prime}\right]=1 / 2+\epsilon(n)
$$

How to build public key encryption?

Basic Number theory

$a \bmod p$ p

$17 \bmod 11$
$135433238 \bmod 11$

$a \bmod$ p

$17 \bmod 11$
$135433238 \bmod 11$
$=6$

Basic number theory

Modular arithmetic
Claim 28.1. For $n>0$ and $a, b \in \mathbb{Z}$,

1. $(a \bmod n)+(b \bmod n)=(a+b) \bmod n$
2. $(a \bmod n)(b \bmod n) \bmod n=a b \bmod n$

Modular Exponentiation $(a, x, n) \rightarrow a^{x} \bmod n$

 $7^{19} \bmod 31$

19 times

Modular Exponentiation
 $(a, x, n) \rightarrow a^{x} \bmod n$

$7^{19} \bmod 31$

Modular Exponentiation
 $(a, x, n) \rightarrow a^{x} \bmod n$

$7^{19} \bmod 31$

Modular Exponentiation
 $(a, x, n) \rightarrow a^{x} \bmod n$

$7^{19} \bmod 31$

$$
\begin{array}{lllll}
7^{1} & 7^{2} & 7^{4} & 7^{8} & 7^{16}
\end{array}
$$

Modular Exponentiation
 $(a, x, n) \rightarrow a^{x} \bmod n$

$7^{19} \bmod 31$
7^{1}
7^{2}
7^{4}
7^{8}
7^{16}
7
18
14
10
7
$(\bmod 31)$

Modular Exponentiation

$$
(a, x, n) \rightarrow a^{x} \bmod n
$$

```
Algorithm 2: ModularExponentiation \((a, x, n)\)
    Input: \(a, x \in[1, n]\)
    \(1 r \leftarrow 1\)
    2 while \(x>0\) do
    3 if \(x\) is odd then
            \(\lfloor r \leftarrow r \cdot a \bmod n\)
            \(x \leftarrow\lfloor x / 2\rfloor\)
            \(a \leftarrow a^{2} \bmod n\)
    7 Return \(r\)
```


Modular Exponentiation

$$
\begin{aligned}
& (a, x, n) \rightarrow a^{x} \bmod n \\
& \quad a^{x} \bmod n=\prod_{i=0}^{\ell} x_{i} a^{2^{i}} \bmod n
\end{aligned}
$$

	lgorithm 2: ModularExponentiation (a, x, n)
Input: $a, x \in[1, n]$	
$1 r \leftarrow 1$	
2 while $x>0$ do	
3	if x is odd then
4	$\lfloor r \leftarrow r \cdot a \bmod n$
5	$x \leftarrow\lfloor x / 2\rfloor$
	$\square a \leftarrow a^{2} \bmod n$
	Return r

Greatest Common Divisor
GCD $(\mathrm{A}, \mathrm{B})=\mathrm{GCD}($

Greatest Common Divisor
$G C D(A, B)=G C D(B, A \bmod B)$

Greatest Common Divisor
GCD (6809,1641)

Greatest Common Divisor

GCD (6809, 1641)
GCD $(1641,245)$
GCD $(245,171)$
GCD $(171,74)$
GCD $(74,23)$
GCD $(23,5)$
$\operatorname{GCD}(5,3)$
$\operatorname{GCD}(3,2)$
$\operatorname{GCD}(2,1)$

given (a,b), finds (x,y) s.t.

 $a x+b y=\operatorname{gcd}(a, b)$```
Algorithm 1: ExtendedEuclid \((a, b)\)
 Input: \((a, b)\) s.t \(a>b \geq 0\)
 Output: \((x, y)\) s.t. \(a x+b y=\operatorname{gcd}(a, b)\)
 1 if \(a \bmod b=0\) then
 2 Return \((0,1)\)
 3 else
 \(4 \quad(x, y) \leftarrow\) ExtendedEuclid \((b, a \bmod b)\)
 \(5 \quad \operatorname{Return}(y, x-y(\lfloor a / b\rfloor))\)
```


## Greatest Common Divisor

GCD (6809,1641)
GCD $(1641,245)$
$\operatorname{GCD}(245,171)$
GCD $(171,74)$
GCD $(74,23)$
GCD $(23,5)$
$\operatorname{GCD}(5,3)$
$\operatorname{GCD}(3,2)$
(1, 0-1*1)
$\operatorname{GCD}(2,1)$
$(0,1)$

## Greatest Common Divisor

GCD $(6809,1641)$
GCD $(1641,245)$
GCD $(245,171)$
GCD $(171,74)$
GCD $(74,23)$
$6809=4.1641+245$

GCD $(23,5)$
$\operatorname{GCD}(5,3)$
$\operatorname{GCD}(3,2)$
$\operatorname{GCD}(2,1)$
$(0,1)$

## Greatest Common Divisor

GCD (6809,1641)
GCD $(1641,245)$
GCD $(245,171)$
GCD $(171,74)$
GCD $(74,23)$
$6809=4.1641+245$

GCD $(23,5)$
$\operatorname{GCD}(5,3)$
$\operatorname{GCD}(3,2) \quad(1,0-1 * 1)$
$\operatorname{GCD}(2,1)$
$(0,1)$

## Greatest Common Divisor

GCD (6809,1641)
GCD $(1641,245)$
GCD $(245,171)$
GCD $(171,74)$
GCD $(74,23)$
$6809=4.1641+245$

GCD $(23,5)$
$\operatorname{GCD}(5,3)$
$1641=6.245+171$
$\operatorname{GCD}(3,2)$
$\operatorname{GCD}(2,1)$
$(1,-1)$
$(0,1)$

## Greatest Common Divisor

GCD (6809,1641)
GCD $(1641,245)$
GCD $(245,171)$
GCD $(171,74)$
GCD $(74,23)$
$\operatorname{GCD}(23,5)$
$\operatorname{GCD}(5,3)$
$\operatorname{GCD}(3,2)$
$\operatorname{GCD}(2,1)$
$(-1,2)$
$(1,-1)$
$6809=4.1641+245$ $1641=6.245+171$
$171=2.74+23$
$74=3.23+5$
$(0,1)$

## Greatest Common Divisor

GCD (6809, 1641)
GCD $(1641,245)$
$\operatorname{GCD}(245,171)$
GCD $(171,74)$
GCD $(74,23)$
$\operatorname{GCD}(23,5)$
$\operatorname{GCD}(5,3)$
GCD $(3,2)$
$\operatorname{GCD}(2,1)$
$(2,-9)$
$(-1,2)$
$(1,-1)$
$(0,1)$
$6809=4.1641+245 \quad-643,2668)$ $1641=6.245+171 \quad(96,643$ $245=4 \cdot 171+74 \quad(-67,96)$

$$
74=3 \cdot 23+5 \quad(-9,29)
$$

$2.3=4.5+3 \quad(2,-9)$
$S_{1}=1 \cdot 3+2 \quad(-1,2)$
$3=102+1$
$2=2 \cdot 1+0$

Greatest Common Divisor
GCD $(6809,1641)$
$6809 *(-643)+1641 * 2668=$

Greatest Common Divisor
GCD $(6809,1641)$
$6809 *(-643)+1641 * 2668=1$
-4378187 4378188

Euler totient


## Euler totient

$\phi(15)=$

## 123456789101112131415

## Euler totient

prime
product
of 2 primes

$$
\Phi(p)=p-1
$$

$$
\Phi(n)=(p-1)(q-1)
$$

Example of groups

$$
\left(\mathbb{Z}_{n}, \star\right) \underset{\substack{\{a \mid \operatorname{mulpp} p \text { icative group, } \bmod \mathrm{n}}}{\{a, n)=1\}}
$$

$$
\begin{gathered}
2^{Z_{-}^{*} 15=\{1,2,4,7,8,11,13,14\}} \\
\left|\mathbb{Z}_{n}^{\star}\right|=\Phi(n)
\end{gathered}
$$

## Euler theorem

$\forall a \in \mathbb{Z}_{n}^{\star}, a^{\Phi(n)}=1 \bmod n$

## Examples

$7^{30} \bmod 31=$

$$
\begin{array}{cccc}
1 & 2 & 4 & 8 \\
7 & 18 & 14 & 10 \\
7
\end{array}
$$

## Examples

$2^{8} \bmod 15=$

## Implications of Euler

$a^{10 \phi(N)} \bmod N=$

$a^{k \phi(N)+1} \bmod N=$


## "Textbook" RSA (insecure)

Pick $N=p^{*} q$ where $p, q$ are primes.

## "Textbook" RSA (insecure)

Pick $N=p^{*} q$ where $p, q$ are primes.
Pick e,d such that $e \cdot d=1 \bmod \phi(N)$

## "Textbook" RSA (insecure)

Pick $N=p^{*} q$ where $p, q$ are primes.
Pick e,d such that $e \cdot d=1 \bmod \phi(N)$

$$
\begin{aligned}
& \operatorname{Enc}_{N, e}(m)=m^{e} \quad \bmod N \\
& \operatorname{Dec}_{N, d}(c)=c^{d} \quad \bmod N
\end{aligned}
$$

## "Textbook" RSA (insecure)

Pick $N=p^{*} q$ where $p, q$ are primes.
Pick e,d such that $e \cdot d=1 \bmod \phi(N)$

$$
\begin{aligned}
& \operatorname{Enc}_{N, e}(m)=m^{e} \quad \bmod N \\
& \operatorname{Dec}_{N, d}(c)=c^{d} \quad \bmod N
\end{aligned}
$$

$$
\left(m^{e}\right)^{d} \bmod N=
$$

## Example of Textbook RSA

 $\mathrm{m}=5$$$
P K=(N=143, e=7) S K=(d=103)
$$

## "Textbook" RSA (insecure)

Pick $N=p^{*} q$ where $p, q$ are primes.
Pick e,d such that $e \cdot d=1 \bmod \phi(N)$

$$
\begin{aligned}
& \operatorname{Enc}_{N, e}(m)=m^{e} \quad \bmod N \\
& \operatorname{Dec}_{N, d}(c)=c^{d} \quad \bmod N
\end{aligned}
$$

Why is it insecure against IND-CPA attack?
$\operatorname{ENCpk}(m)$

$$
\text { PICK } r \text { AS A RANDOM STRING WITH NO } 0 s
$$

$$
\begin{gathered}
\text { (TYPICALLY } 8 \text { bYtes) } \\
c \leftarrow(0\|2\| r\|0\| m)^{e} \bmod N
\end{gathered}
$$

"PADDING ORACLE" ATTACK AGAINST THIS SCHEME

## RSA-OAEP+

$\operatorname{GEN}\left(1^{n}\right)$

$$
f, f^{-1} \leftarrow \text { TRAPDOOR OWP }()
$$

$\operatorname{ENCpk}(m)$

$$
\begin{array}{ll}
r \leftarrow U_{n} & R_{1}:\{0,1\}^{k_{0}} \rightarrow\{0,1\}^{n} \\
s \leftarrow R_{1}(r) \oplus m \| R_{2}(r \| m) & R_{2}:\{0,1\}^{n+k_{0}} \rightarrow\{0,1 \\
t \leftarrow R_{3}(s) \oplus r & R_{3}:\{0,1\}^{n+k_{1}} \rightarrow\{0,1 \\
c \leftarrow f(s \| t) &
\end{array}
$$

DECsk( $C$ )

$$
\begin{aligned}
& \left(s=\left(s_{1}, s_{2}\right), t\right) \leftarrow f^{-1}(c) \\
& r \leftarrow R_{3}(s) \oplus t \\
& m \leftarrow R_{1}(r) \oplus s_{1} \\
& R_{2}(r \| m) \stackrel{?}{=} s_{2} \quad \text { OUTPUT } m \text { ELSE FAIL }
\end{aligned}
$$

## Example: apple.com

## Safari is using an encrypted connection to www.apple.com.

ncryption with a digital certificate keeps information private as it's sent to or from the https website www.apple.com.

DigiCert, Inc. has identified www.apple.com as being owned by Apple Inc. in Cupertino California, US.

## 픙 DigiCert High Assurance EV Root CA

풍 DigiCert SHA2 Extended Validation Server CA-3
L 팡 www.apple.com
Serial Number 03 8E 3F 9E 09 D7 ED C7 B1 80 3F 74 A7 4C 35 AB
Version 3
Signature Algorithm SHA-256 with RSA Encryption (1.2.840.113549.1.1.11)
Parameters None
Not Valid Before Tuesday, October 6, 2020 at 8:00:00 PM Eastern Daylight Time
Not Valid After Friday, October 8, 2021 at 8:00:00 AM Eastern Daylight Time

## Public Key Info

Algorithm RSA Encryption (1.2.840.113549.1.1.1)
Parameters None
Public Key 256 bytes: CA 1B 1C 217815 3D 40 CF A3 79 3F 9D CF B2 53 AB A9 41 FF 3 E 06 A1 2969 8A $04469 E$ FB C4 OD 56 7A CA E6 80 E7 AF C6 CO BF 8B 6071 CA 9 A E8 76 OC $06 \mathrm{C8} 9 \mathrm{~B} 77 \mathrm{B8}$ F3 1B EA 7 E E7 3A 84 CB A3 88 A5 93043 F 696677 CF AE 06 D1 D9 E1 1008 7A EO 2498 E7 5697 OF 7368 7B 4D 69462826 FF 0581 OC CO DA FC 217181 65 9A 39 C9 E9 68363602 5F 8180 B7 7E 8 A 5B FE 34 D0 CE 7620
 2F 23 F2 04 AB 658222 B8 $08 \mathrm{CEBAC8} 0005 \mathrm{E4} 6734$ GE 76 3D 2F 23 F2 OA AB 658222 B8 98 CE BA C8 0095 E4 6734 EE 76 31 E9 56 FD 0E 68 F4 36 F9 1B 5F 886162 8F 60 A8 DE 43 7B 5C C1 1573 D4 0612 GE $859 B 509 \mathrm{C} 24 \mathrm{BF} 5 \mathrm{FFC}$ F4 689567 D5 BF 4471
Exponent 65537
Key Size 2,048 bits

## Very old problem

The Fromando


New Problem


New Problem


New Problem


Public key digital signature


Public key digital signature


Public key digital signature


Public key digital signature


Public key digital signature
MESSAGE SPACE $\{\mathcal{M}\}_{n}$
$\operatorname{Gen}\left(1^{n}\right)$
$\operatorname{Sign}_{s k}(m)$
$\operatorname{Ver}_{\nu k}(m, s)$

Public key digital signature
MESSAGE SPACE $\{\mathcal{M}\}_{n}$
$\operatorname{Gen}\left(1^{n}\right) \quad$ GEnerates a Key pair $s k, v k$
$\operatorname{Sign}_{s k}(m)$
$\operatorname{Ver}_{\nu k}(m, s)$

Public key digital signature
MESSAGE SPACE $\{\mathcal{M}\}_{n}$
$\operatorname{Gen}\left(1^{n}\right) \quad$ GEnerates a Key pair $s k, v k$
$\operatorname{Sig}_{s k}(m) \quad$ GENERATES A SIGNATURE $\boldsymbol{S}$ FOR

$$
m \in \mathcal{M}_{n}
$$

$\operatorname{Ver}_{v k}(m, s)$

## Public key digital signature

MESSAGE SPACE $\{\mathcal{M}\}_{n}$
$\operatorname{Gen}\left(1^{n}\right) \quad$ GEnERates a Key pair $s k, v k$
$\operatorname{Sig}_{s k}(m) \quad$ GENERATES A SIGNATURE $\boldsymbol{S}$ FOR

$$
m \in \mathcal{M}_{n}
$$

$\operatorname{Ver}_{v k}(m, s)$ accepts OR REJECTS A MSG,SIG PAIR

$$
\operatorname{Pr}\left[k \leftarrow \operatorname{Gen}\left(1^{n}\right): \operatorname{Ver}_{v k}\left(m, \operatorname{Sign}_{s k}(m)\right)=1\right]=1
$$

## existential unforgability

"EVEN WHEN GIVEN A SIGNING ORACLE,
AN ADVERSARY CANNOT FORGE A SIGNATURE FOR ANY MESSAGE OF ITS CHOOSING "


## existential unforgability

"EVEN WHEN GIVEN A SIGNING ORACLE,
AN ADVERSARY CANNOT FORGE A SIGNATURE FOR ANY MESSAGE OF ITS CHOOSING "

Goe


## Signature security

I'm going to make a signing
key. Here is the public part
of it.

$(v k, s k) \leftarrow \operatorname{Gen}\left(1^{n}\right)$

## Signature security



$$
m_{0}, m_{1}, \ldots
$$


$(v k, s k) \leftarrow \operatorname{Gen}\left(1^{n}\right)$

## Signature security



$$
s_{i} \leftarrow \operatorname{Sign}_{s k}\left(m_{i}\right)
$$

## Signature security

Now I will try to create a new (signature, message) pair...one that I didn't receive from yoiu. signature on a new message

$(v k, s k) \leftarrow \operatorname{Gen}\left(1^{n}\right)$
$s_{i} \leftarrow \operatorname{Sign}_{s k}\left(m_{i}\right)$

## Signature security

Now I will try to create a new (msg*, sig*) pair...one that I didn't receive from you.

If you do, you have won the game!


## Textbook RSA Signatures (insecure)

Pick $N=p^{*} q$ where $p, q$ are primes.
Pick e,d such that $e \cdot d=1 \bmod \phi(N)$

Sign((sk=d, N) m):
Compute the signature: $\quad \sigma \leftarrow m^{d} \bmod N$
Verify((pk=e, N), $\sigma, \mathrm{m})$ :

$$
m \stackrel{?}{=} \sigma^{e} \bmod N
$$

## RSA Signatures in GPG

Sign((sk, N) m):
Compute the padding:

$$
z \leftarrow 00 \cdot 01 \cdot F F \cdots F F \cdot 00 \cdot \mathrm{ID}_{H} \cdot H(m)
$$

Compute the signature: $\quad \sigma \leftarrow z^{s k} \bmod N$

