2550 Intro to
 cybersecurity L11: Signatures

abhi shelat

Recap

Very old problem

The Fromando

New Problem

New Problem

New Problem

Public key digital signature

Public key digital signature

Public key digital signature

Public key digital signature

Public key digital signature
MESSAGE SPACE $\{\mathcal{M}\}_{n}$
$\operatorname{Gen}\left(1^{n}\right)$
$\operatorname{Sign}_{s k}(m)$
$\operatorname{Ver}_{\nu k}(m, s)$

Public key digital signature
MESSAGE SPACE $\{\mathcal{M}\}_{n}$
$\operatorname{Gen}\left(1^{n}\right) \quad$ GEnerates a Key pair $s k, v k$
$\operatorname{Sign}_{s k}(m)$
$\operatorname{Ver}_{\nu k}(m, s)$

Public key digital signature
MESSAGE SPACE $\{\mathcal{M}\}_{n}$
$\operatorname{Gen}\left(1^{n}\right) \quad$ GEnerates a Key pair $s k, v k$
$\operatorname{Sig}_{s k}(m) \quad$ GENERATES A SIGNATURE \boldsymbol{S} FOR

$$
m \in \mathcal{M}_{n}
$$

$\operatorname{Ver}_{v k}(m, s)$

Public key digital signature

MESSAGE SPACE $\{\mathcal{M}\}_{n}$
$\operatorname{Gen}\left(1^{n}\right) \quad$ GEnERates a Key pair $s k, v k$
$\operatorname{Sig}_{s k}(m) \quad$ GENERATES A SIGNATURE \boldsymbol{S} FOR

$$
m \in \mathcal{M}_{n}
$$

$\operatorname{Ver}_{v k}(m, s)$ accepts OR REJECTS A MSG,SIG PAIR

$$
\operatorname{Pr}\left[k \leftarrow \operatorname{Gen}\left(1^{n}\right): \operatorname{Ver}_{v k}\left(m, \operatorname{Sign}_{s k}(m)\right)=1\right]=1
$$

existential unforgability

"EVEN WHEN GIVEN A SIGNING ORACLE,
AN ADVERSARY CANNOT FORGE A SIGNATURE FOR ANY MESSAGE OF ITS CHOOSING "

existential unforgability

"EVEN WHEN GIVEN A SIGNING ORACLE,
AN ADVERSARY CANNOT FORGE A SIGNATURE FOR ANY MESSAGE OF ITS CHOOSING "

Goe

Signature security

I'm going to make a signing
key. Here is the public part
of it.

$(v k, s k) \leftarrow \operatorname{Gen}\left(1^{n}\right)$

Signature security

$$
m_{0}, m_{1}, \ldots
$$

$(v k, s k) \leftarrow \operatorname{Gen}\left(1^{n}\right)$

Signature security

$$
s_{i} \leftarrow \operatorname{Sign}_{s k}\left(m_{i}\right)
$$

Signature security

Now I will try to create a new (signature, message) pair...one that I didn't receive from yoiu. signature on a new message

$(v k, s k) \leftarrow \operatorname{Gen}\left(1^{n}\right)$
$s_{i} \leftarrow \operatorname{Sign}_{s k}\left(m_{i}\right)$

Signature security

Now I will try to create a new (msg*, sig*) pair...one that I didn't receive from you.

If you do, you have won the game!

FOR ALL NON-UNIFORM PPT A
$\longleftarrow\left[\begin{array}{l}(v k, s k) \leftarrow \operatorname{Gen}\left(1^{n}\right) ;(m, s) \leftarrow A^{\text {Sign }_{s k}(\cdot)}: \\ V e r_{v k}(m, s)=1 \\ \text { AND } A \text { DIDN'T QUERY } m\end{array}\right]<\mu(n)$

Textbook RSA Signatures (insecure)

Pick $N=p^{*} q$ where p, q are primes.
Pick e,d such that $e \cdot d=1 \bmod \phi(N)$

Sign((sk=d, N) m):
Compute the signature: $\quad \sigma \leftarrow m^{d} \bmod N$
Verify((pk=e, N), $\sigma, \mathrm{m})$:

$$
m \stackrel{?}{=} \sigma^{e} \bmod N
$$

RSA Signatures (PKCSv1.5)

Sign((sk, N) m):
Compute the padding:

$$
z \leftarrow 00 \cdot 01 \cdot F F \cdots F F \cdot 00 \cdot \mathrm{ID}_{H} \cdot H(m)
$$

Compute the signature: $\quad \sigma \leftarrow z^{s k} \bmod N$

Speed

openssl speed rsa dsa ecdsa

Doing 1024 bits private rsa's for 10s: 866881024 bits private RSA's in 9.99s Doing 1024 bits public rsa's for 10s: 13411521024 bits public RSA's in 10.00s Doing 2048 bits private rsa's for 10s: 131542048 bits private RSA's in 9.99s Doing 2048 bits public rsa's for 10s: 4370802048 bits public RSA's in 10.00s Doing 3072 bits private rsa's for 10s: 42433072 bits private RSA's in 10.00s Doing 3072 bits public rsa's for 10s: 2116053072 bits public RSA's in 10.00s Doing 4096 bits private rsa's for 10s: 18454096 bits private RSA's in $9.99 s$ Doing 4096 bits public rsa's for 10s: 1251304096 bits public RSA's in 9.99s

Doing 1024 bits sign dsa's for 10s: 744671024 bits DSA signs in 9.95s Doing 1024 bits verify dsa's for 10s: 958631024 bits DSA verify in 9.99s Doing 2048 bits sign dsa's for 10s: 301972048 bits DSA signs in 9.97s Doing 2048 bits verify dsa's for 10s: 338022048 bits DSA verify in 10.00s

Doing 256 bits sign ecdsa's for 10s: 339010256 bits ECDSA signs in 9.89s Doing 256 bits verify ecdsa's for 10s: 115106256 bits ECDSA verify in 10.00s Doing 384 bits sign ecdsa's for 10s: 7773384 bits ECDSA signs in 9.98s Doing 384 bits verify ecdsa's for 10s: 10066384 bits ECDSA verify in 10.00 s Doing 521 bits sign ecdsa's for 10s: 25316521 bits ECDSA signs in 9.98s Doing 521 bits verify ecdsa's for 10s: 12896521 bits ECDSA verify in 9.99s Doing 283 bits sign ecdsa's for 10s: 13860283 bits ECDSA signs in 9.98s Doing 283 bits verify ecdsa's for 10s: 7028283 bits ECDSA verify in 9.99s Doing 409 bits sign ecdsa's for 10s: 8441409 bits ECDSA signs in 9.99s Doing 409 bits verify ecdsa's for 10s: 4309409 bits ECDSA verify in $9.98 s$

Message Authentication codes

Construction of a MAC

Gen(1n):
$\operatorname{Sign}_{k}(m)$:
$\operatorname{Ver}_{k}(m, t)$:

Construction of a MAC

Let $\left\{F_{k}\right\} \quad$ be a PRF family like AES
Gen(1n):
$\operatorname{Sign}_{k}(m)$:
$\operatorname{Ver}_{k}(m, t)$:

Construction of a MAC

Let $\left\{F_{k}\right\} \quad$ be a PRF family like AES
$\operatorname{Gen}\left(1^{n}\right): k \longleftarrow U_{n}$
$\operatorname{Sign}_{k}(m)$:
$\operatorname{Ver}_{k}(m, t)$:

Construction of a MAC

Let $\left\{F_{k}\right\} \quad$ be a PRF family like AES
$\operatorname{Gen}\left(1^{n}\right): \quad k \leftarrow U_{n}$
$\operatorname{Sign}_{k}(m): t \leftarrow F_{k}(m)$
$\operatorname{Ver}_{k}(m, t)$:

Construction of a MAC

Let $\left\{F_{k}\right\} \quad$ be a PRF family like AES
$\operatorname{Gen}(1 n): \quad k \longleftarrow U_{n}$
$\operatorname{Sign}_{k}(m): t \leftarrow F_{k}(m)$
$\operatorname{Ver}_{k}(m, t): \quad$ accept IF $t \stackrel{?}{=} F_{k}(m)$

Security for a MAC (similar to Signature)

Security intuition

$$
\operatorname{Pr}_{1}\left[F_{k}(m)=t\right]=
$$

Lets do some class exercises in Q1.

