
2550 Intro to
cybersecurity

abhi shelat

L3

What does it mean to attack a system?

What are our expectations?

Authentication
• Authentication is the process of verifying an actor’s identity

• Critical for security of systems

• Permissions, capabilities, and access control are all contingent upon knowing the

identity of the actor

• Typically parameterized as a username and a secret

• The secret attempts to limit unauthorized access

• Desirable properties of secrets include being unforgeable,
unguessable, and revocable

Passwords
Main problem:

Alice Bob

Passwords

Alice Bob

Genpw pw

PIN setup

Passwords: Alice always succeeds

Alice Bob

pw pw

Passwords: Others do not succeed

Alice Bob

pw pw

Mallory

Natural authenticators

First problem: How does Bob check Alice’s password?

Alice Bob

pw pw

Checking Passwords
• System must validate passwords provided by users

• Thus, passwords must be stored somewhere

• Basic storage: plain text

Alice	 p4ssw0rd

Eve	 i heart doggies

Charlie	 93Gd9#jv*0x3N

bob	 security

password.txt

"The UNIX system was first implemented with a password
file that contained the actual passwords of all the users,
and for that reason the password file had to be heavily
protected against being either read or written. Although
historically, this had been the technique used for
remote-access systems, it was completely unsatisfactory
for several reasons.”

Attacks against the Password Model
BobMallory

{username: pwd}

Alice	 p4ssw0rd

Eve	 i heart doggies

Charlie	 93Gd9#jv*0x3N

bob	 security

password.txt

Problem: Password File Theft
• Attackers often compromise systems
• They may be able to steal the password file
• Linux: /etc/shadow
• Windows: c:\windows\system32\config\sam

• If the passwords are plain text, what happens?

Problem: Password File Theft
• Attackers often compromise systems
• They may be able to steal the password file
• Linux: /etc/shadow
• Windows: c:\windows\system32\config\sam

• If the passwords are plain text, what happens?
• The attacker can now log-in as any user, including root/administrator

• Passwords should never be stored in plain text

Pwd breaches

“The obvious solution is to arrange that the passwords not
appear in the system at all, and it is not difficult to decide
that this can be done by encrypting each user's password,
putting only the encrypted form in the pass- word file, and
throwing away his original password (the one that he typed
in). When the user later tries to log in to the system, the
password that he types is encrypted and compared with the
encrypted version in the password file. If the two match, his
login attempt is accepted.”

Hashed Passwords
• Key idea: store “hashed” versions of passwords

• Use one-way cryptographic hash functions

• Examples: MD5, SHA1, SHA256, SHA512, bcrypt, PBKDF2, scrypt

Goal of a hash function
many bits

hash function h

fewer bits

Goal of a hash function: Collision resistance

Hash function

Message 1 Message2

Resulting hash

This is a collision.

It should be hard to find a
collision for a cryptographic hash
function, even though an infinite
number of collisions are
guaranteed to exist.

MD5 is a broken hash function

abhi18: abhi$ md5 -s security

MD5 ("security") = e91e6348157868de9dd8b25c81aebfb9

abhi18: abhi$ md5 -s Security

MD5 ("Security") = 2fae32629d4ef4fc6341f1751b405e45

abhi18: abhi$ md5 -s Security1

MD5 ("Security1") = 8d01bda744a7a6392d3393e0ece561e8

abhi18: abhi$ echo -n "security" | shasum

8eec7bc461808e0b8a28783d0bec1a3a22eb0821 -

abhi18: abhi$ echo -n "security" | shasum -a 256

5d2d3ceb7abe552344276d47d36a8175b7aeb250a9bf0bf00e850cd23ecf2e43 -

Hashed Passwords
• Key idea: store “hashed” versions of passwords

• Use one-way cryptographic hash functions

• Examples: MD5, SHA1, SHA256, SHA512, bcrypt, PBKDF2, scrypt

• Cryptographic hash function transform input data into
scrambled output data

• Deterministic: hash(A) = hash(A)

• High entropy:

• MD5(‘security’) = e91e6348157868de9dd8b25c81aebfb9

• MD5(‘security1’) = 8632c375e9eba096df51844a5a43ae93

• MD5(‘Security’) = 2fae32629d4ef4fc6341f1751b405e45

• Collision resistant

• Locating A’ such that hash(A) = hash(A’) takes a long time (hopefully)

• Example: 221 tries for md5

Hashed Password Example

charlie	 2a9d119df47ff993b662a8ef36f9ea20

greta	 23eb06699da16a3ee5003e5f4636e79f

alice	 98bd0ebb3c3ec3fbe21269a8d840127c

bob	 e91e6348157868de9dd8b25c81aebfb9

hashed_password.txt

User: Charlie

Note:MD5 is broken

Hashed Password Example

charlie	 2a9d119df47ff993b662a8ef36f9ea20

greta	 23eb06699da16a3ee5003e5f4636e79f

alice	 98bd0ebb3c3ec3fbe21269a8d840127c

bob	 e91e6348157868de9dd8b25c81aebfb9

hashed_password.txt

User: Charlie

MD5(‘p4ssw0rd’) =
2a9d119df47ff993b662a8ef36f9ea20

Note:MD5 is broken

Hashed Password Example

charlie	 2a9d119df47ff993b662a8ef36f9ea20

greta	 23eb06699da16a3ee5003e5f4636e79f

alice	 98bd0ebb3c3ec3fbe21269a8d840127c

bob	 e91e6348157868de9dd8b25c81aebfb9

hashed_password.txt

User: Charlie

MD5(‘p4ssw0rd’) =
2a9d119df47ff993b662a8ef36f9ea20

Note:MD5 is broken

Hashed Password Example

charlie	 2a9d119df47ff993b662a8ef36f9ea20

greta	 23eb06699da16a3ee5003e5f4636e79f

alice	 98bd0ebb3c3ec3fbe21269a8d840127c

bob	 e91e6348157868de9dd8b25c81aebfb9

hashed_password.txt

User: Charlie

MD5(‘p4ssw0rd’) =
2a9d119df47ff993b662a8ef36f9ea20

MD5(‘2a9d119df47ff993b662a8ef36f9ea20’)
= b35596ed3f0d5134739292faa04f7ca3

Note:MD5 is broken

Hashed Password Example

charlie	 2a9d119df47ff993b662a8ef36f9ea20

greta	 23eb06699da16a3ee5003e5f4636e79f

alice	 98bd0ebb3c3ec3fbe21269a8d840127c

bob	 e91e6348157868de9dd8b25c81aebfb9

hashed_password.txt

User: Charlie

MD5(‘p4ssw0rd’) =
2a9d119df47ff993b662a8ef36f9ea20

MD5(‘2a9d119df47ff993b662a8ef36f9ea20’)
= b35596ed3f0d5134739292faa04f7ca3

Note:MD5 is broken

Attacking Password Hashes
• Recall: cryptographic hashes are collision resistant
• Locating A’ such that hash(A) = hash(A’) takes a long time (hopefully)

• Are hashed password secure from cracking?

Attacking Password Hashes
• Recall: cryptographic hashes are collision resistant
• Locating A’ such that hash(A) = hash(A’) takes a long time (hopefully)

• Are hashed password secure from cracking?
• No!

• Problem: users choose poor passwords
• Most common passwords: 123456, password
• Username: cbw, Password: cbw

•Weak passwords enable dictionary attacks

From Rockyou breach

https://www.imperva.com/docs/gated/WP_Consumer_Password_Worst_Practices.pdf

Most Common Passwords
Rank 2013 2014

1 123456 123456

2 password password

3 12345678 12345

4 qwerty 12345678

5 abc123 qwerty

6 123456789 123456789

7 111111 1234

8 1234567 baseball

9 iloveyou dragon

10 adobe123 football

2012: 6.5 million hashes leaked onto Internet 90% cracked in 2 weeks
2016: 177.5 million more hashes leaked 98% cracked in 1 week

Dictionary Attacks

English

Dictionary

Common

Passwords

Dictionary Attacks

English

Dictionary

Common

Passwords

hash()

hash()

List of
possible

password
hashes

Dictionary Attacks

English

Dictionary

Common

Passwords

hash()

hash()

List of
possible

password
hashes

hashed_

password.txt

Dictionary Attacks

• Common for 60-70% of hashed passwords to be cracked in <24
hours

English

Dictionary

Common

Passwords

hash()

hash()

List of
possible

password
hashes

hashed_

password.txt

Attack 1

Alice Bob

Genpw pw

Mallory

charlie	 2a9d119df47ff993b662a8ef36f9ea20

greta	 23eb06699da16a3ee5003e5f4636e79f

hashed_password.txt
Hash

Dictionary Attacks

• Common for 60-70% of hashed passwords to be cracked in <24
hours

English

Dictionary

Common

Passwords

hash()

hash()

List of
possible

password
hashes

hashed_

password.txt

Brute force attack estimates
How big is the alphabet from which pwd are chosen?

Brute force attack estimates
How big is the alphabet from which pwd are chosen?

How long is a password?

Size of password domain:

95 symbols

Brute force attack estimates
Size of password domain: 958 6,634,204,312,890,625

Attack 2: brute force attack
1. Buy storage system

2.

Bob

Mallory

Classic Time-memory tradeof

Pwd 0 Pwd
hash

Hash0

Pwd 1 Pwd
hash

Hash1

Classic Time-memory tradeof

Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash

Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash

Given a hash [h] that you want to invert, you can:

h

Classic Time-memory tradeof

Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash

Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash

Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash

Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash

h Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash

https://project-rainbowcrack.com/table.htm

The attack is highly effective

https://www.youtube.com/watch?v=TkMZJ3fTgrM

https://www.youtube.com/watch?v=TkMZJ3fTgrM

Attack 2: offline brute force

Alice Bob

Genpw pw

Mallory

charlie	 2a9d119df47ff993b662a8ef36f9ea20

greta	 23eb06699da16a3ee5003e5f4636e79f

hashed_password.txt
Hash

How to hamper offline brute force attacks?

Mallory

charlie	 2a9d119df47ff993b662a8ef36f9ea20

greta	 23eb06699da16a3ee5003e5f4636e79f

hashed_password.txt

Hardening Password Hashes
• Key problem: cryptographic hashes are deterministic
• hash(‘p4ssw0rd’) = hash(‘p4ssw0rd’)
• This enables attackers to build lists of hashes

Hardening Password Hashes
• Key problem: cryptographic hashes are deterministic
• hash(‘p4ssw0rd’) = hash(‘p4ssw0rd’)
• This enables attackers to build lists of hashes

• Solution: make each password hash unique
• Add a random salt to each password before hashing
• hash(salt + password) = password hash
• Each user has a unique, random salt
• Salts can be stores in plain text

Example Salted Hashes

cbw	 a8	 af19c842f0c781ad726de7aba439b033

sandi	 0X	 67710c2c2797441efb8501f063d42fb6

amislove	 hz	 9d03e1f28d39ab373c59c7bb338d0095

bob	 K@	 479a6d9e59707af4bb2c618fed89c245

hashed_and_salted_password.txt

cbw	 2a9d119df47ff993b662a8ef36f9ea20

sandi	 23eb06699da16a3ee5003e5f4636e79f

amislove	 98bd0ebb3c3ec3fbe21269a8d840127c

bob	 e91e6348157868de9dd8b25c81aebfb9

hashed_password.txt

Attacking Salted Passwords

hash()
List of

possible
password

hashes

Attacking Salted Passwords

hash()
List of

possible
password

hashes

hashed_

and_salted_

password.txt

Attacking Salted Passwords

hash()
List of

possible
password

hashes

hashed_

and_salted_

password.txt

No matches

Attacking Salted Passwords

hash()
List of

possible
password

hashes

hashed_

and_salted_

password.txt

No matches

hash(‘a8’ + word)

List of
possible

password
hashes w/

salt a8

cbw	 a8

sandi	 0X

Attacking Salted Passwords

hash()
List of

possible
password

hashes

hashed_

and_salted_

password.txt

No matches

hash(‘a8’ + word)

List of
possible

password
hashes w/

salt a8

cbw	 a8

sandi	 0X

cbw	 XXXX

Attacking Salted Passwords

hash()
List of

possible
password

hashes

hashed_

and_salted_

password.txt

No matches

hash(‘a8’ + word)

List of
possible

password
hashes w/

salt a8

List of
possible

password
hashes w/

salt 0X

cbw	 a8

sandi	 0X

hash(‘0X’ + word)
cbw	 sandi	 YYYY

Breaking Hashed Passwords
• Stored passwords should always be salted
• Forces the attacker to brute-force each password individually

Breaking Hashed Passwords
• Stored passwords should always be salted
• Forces the attacker to brute-force each password individually

• Problem: it is now possible to compute hashes very quickly
• GPU computing: hundreds of small CPU cores
• nVidia GeForce GTX Titan Z: 5,760 cores
• GPUs can be rented from the cloud very cheaply
• $0.9 per hour (2018 prices)

Examples of Hashing Speed
• A modern x86 server can hash all possible 6 character

long passwords in 3.5 hours
• Upper and lowercase letters, numbers, symbols
• (26+26+10+32)6 = 690 billion combinations

Examples of Hashing Speed
• A modern x86 server can hash all possible 6 character

long passwords in 3.5 hours
• Upper and lowercase letters, numbers, symbols
• (26+26+10+32)6 = 690 billion combinations

• A modern GPU can do the same thing in 16 minutes

Examples of Hashing Speed
• A modern x86 server can hash all possible 6 character

long passwords in 3.5 hours
• Upper and lowercase letters, numbers, symbols
• (26+26+10+32)6 = 690 billion combinations

• A modern GPU can do the same thing in 16 minutes
•Most users use (slightly permuted) dictionary words, no

symbols
• Predictability makes cracking much faster
• Lowercase + numbers ! (26+10)6 = 2B combinations

Hardening Salted Passwords
• Problem: typical hashing algorithms are too fast

• Enables GPUs to brute-force passwords

• Old solution: hash the password multiple times

• Known as key stretching

• Example: crypt used 25 rounds of DES

• New solution: use hash functions that are designed to be
slow

• Examples: bcrypt, PBKDF2, scrypt

• These algorithms include a work factor that increases the time complexity of the

calculation

• scrypt also requires a large amount of memory to compute, further complicating

brute-force attacks

Slow hash movement

Pw

Salt

Iterated hash function {x times}

Hashed pwd

bcrypt Example
• Python example; install the bcrypt package

64

[cbw@localhost ~] python

>>> import bcrypt

>>> password = “my super secret password”
>>> fast_hashed = bcrypt.hashpw(password, bcrypt.gensalt(0))

>>> slow_hashed = bcrypt.hashpw(password, bcrypt.gensalt(12))

>>> pw_from_user = raw_input(“Enter your password:”)

>>> if bcrypt.hashpw(pw_from_user, slow_hashed) == slow_hashed:

… print “It matches! You may enter the system”
… else:

… print “No match. You may not proceed”

Work factor

Best practices so far:

Dealing With Breaches

Dealing With Breaches

• Suppose you build an extremely secure password storage system

• All passwords are salted and hashed by a high-work factor function

• It is still possible for a dedicated attacker to steal and crack
passwords

• Given enough time and money, anything is possible

• E.g. The NSA

• Question: is there a principled way to detect password breaches?

Honeywords
• Key idea: store multiple salted/hashed passwords for each user
• As usual, users create a single password and use it to login
• User is unaware that additional honeywords are stored with their account

Honeywords
• Key idea: store multiple salted/hashed passwords for each user
• As usual, users create a single password and use it to login
• User is unaware that additional honeywords are stored with their account
• Implement a honeyserver that stores the index of the correct password for each user
• Honeyserver is logically and physically separate from the password database
• Silently checks that users are logging in with true passwords, not honeywords

Honeywords
• Key idea: store multiple salted/hashed passwords for each user
• As usual, users create a single password and use it to login
• User is unaware that additional honeywords are stored with their account
• Implement a honeyserver that stores the index of the correct password for each user
• Honeyserver is logically and physically separate from the password database
• Silently checks that users are logging in with true passwords, not honeywords
• What happens after a data breach?
• Attacker dumps the user/password database…
• But the attacker doesn’t know which passwords are honeywords
• Attacker cracks all passwords and uses them to login to accounts
• If the attacker logs-in with a honeyword, the honeyserver raises an alert!

Honeywords example

User Salt 1 H(PW 1) Salt 2 H(PW 2) Salt 3 H(PW 3)

Bob aB y4DvF7 fI bHDJ8l 52 Puu2s7
sandi 0x plDS4F K2 R/p3Y8 8W S8x4Gk

Alice 9j 0F3g5H /s 03d5jW cV 1sRbJ5

User Index

Bob 2
sandi 3

Alice 1

Database
Honeyserver

Honeywords example

User Salt 1 H(PW 1) Salt 2 H(PW 2) Salt 3 H(PW 3)

Bob aB y4DvF7 fI bHDJ8l 52 Puu2s7
sandi 0x plDS4F K2 R/p3Y8 8W S8x4Gk

Alice 9j 0F3g5H /s 03d5jW cV 1sRbJ5

User Index

Bob 2
sandi 3

Alice 1

Database
Honeyserver

Bob

Honeywords example

User Salt 1 H(PW 1) Salt 2 H(PW 2) Salt 3 H(PW 3)

Bob aB y4DvF7 fI bHDJ8l 52 Puu2s7
sandi 0x plDS4F K2 R/p3Y8 8W S8x4Gk

Alice 9j 0F3g5H /s 03d5jW cV 1sRbJ5

User Index

Bob 2
sandi 3

Alice 1

Database
Honeyserver

SHA512(“fI” | “p4ssW0rd”) ! bHDJ8l
Bob

Honeywords example

User Salt 1 H(PW 1) Salt 2 H(PW 2) Salt 3 H(PW 3)

Bob aB y4DvF7 fI bHDJ8l 52 Puu2s7
sandi 0x plDS4F K2 R/p3Y8 8W S8x4Gk

Alice 9j 0F3g5H /s 03d5jW cV 1sRbJ5

User Index

Bob 2
sandi 3

Alice 1

Database
Honeyserver

SHA512(“fI” | “p4ssW0rd”) ! bHDJ8l
Bob

Honeywords example

User Salt 1 H(PW 1) Salt 2 H(PW 2) Salt 3 H(PW 3)

Bob aB y4DvF7 fI bHDJ8l 52 Puu2s7
sandi 0x plDS4F K2 R/p3Y8 8W S8x4Gk

Alice 9j 0F3g5H /s 03d5jW cV 1sRbJ5

User Index

Bob 2
sandi 3

Alice 1

Database
Honeyserver

SHA512(“fI” | “p4ssW0rd”) ! bHDJ8l
Bob

Honeywords example

User Salt 1 H(PW 1) Salt 2 H(PW 2) Salt 3 H(PW 3)

Bob aB y4DvF7 fI bHDJ8l 52 Puu2s7
sandi 0x plDS4F K2 R/p3Y8 8W S8x4Gk

Alice 9j 0F3g5H /s 03d5jW cV 1sRbJ5

User Index

Bob 2
sandi 3

Alice 1

Database
Honeyserver

SHA512(“fI” | “p4ssW0rd”) ! bHDJ8l
Bob

User PW 1 PW 2 PW 3

Bob 123456 p4ssW0rd Turtles!

sandi puppies iloveyou blizzard

Alice coff33 3spr3ss0 qwerty

Cracked Passwords

Honeywords example

User Salt 1 H(PW 1) Salt 2 H(PW 2) Salt 3 H(PW 3)

Bob aB y4DvF7 fI bHDJ8l 52 Puu2s7
sandi 0x plDS4F K2 R/p3Y8 8W S8x4Gk

Alice 9j 0F3g5H /s 03d5jW cV 1sRbJ5

User Index

Bob 2
sandi 3

Alice 1

Database
Honeyserver

SHA512(“fI” | “p4ssW0rd”) ! bHDJ8l
Bob

User PW 1 PW 2 PW 3

Bob 123456 p4ssW0rd Turtles!

sandi puppies iloveyou blizzard

Alice coff33 3spr3ss0 qwerty

!

Cracked Passwords

Multiple layers of storage

Password Storage Summary
1. Never store passwords in plain text

2. Always salt and hash passwords before storing them

3. Use hash functions with a high work factor

4. Implement honeywords to detect breaches

• These rules apply to any system that needs to authenticate users

• Operating systems, websites, etc.

Still one problem?

Password Recovery/Reset
• Problem: hashed passwords cannot be recovered (hopefully)

“Hi… I forgot my password. Can
you email me a copy? Kthxbye”

• This is why systems typically implement password reset

– Use out-of-band info to authenticate the user

– Overwrite hash(old_pw) with hash(new_pw)

• Be careful: its possible to crack password reset

Cracking Password Reset

• Typical implementations use Knowledge Based Authentication (KBA)
• What was your mother’s maiden name?
• What was your prior street address?
• Where did you go to elementary school

Cracking Password Reset

• Typical implementations use Knowledge Based Authentication (KBA)
• What was your mother’s maiden name?
• What was your prior street address?
• Where did you go to elementary school

• Problems?

Cracking Password Reset

• Typical implementations use Knowledge Based Authentication (KBA)
• What was your mother’s maiden name?
• What was your prior street address?
• Where did you go to elementary school

• Problems?
• This information is widely available to anyone
• Publicly accessible social network profiles
• Background-check services like Spokeo

Cracking Password Reset

• Typical implementations use Knowledge Based Authentication (KBA)
• What was your mother’s maiden name?
• What was your prior street address?
• Where did you go to elementary school

• Problems?
• This information is widely available to anyone
• Publicly accessible social network profiles
• Background-check services like Spokeo

• Experts recommend that services not use KBA
• When asked, users should generate random answers to these questions

