
2550 Intro to
cybersecurity

abhi shelat

L5

on

Universal 2nd Factor (U2F)

• Supported by Chrome, Opera, and Firefox
(must be manually enabled)
• Works with Google, Dropbox, Facebook,

Github, Gitlab, etc.

Universal 2nd Factor (U2F)

• Supported by Chrome, Opera, and Firefox
(must be manually enabled)
• Works with Google, Dropbox, Facebook,

Github, Gitlab, etc.

• Pro tip: always buy 2 security keys
• Associate both with your accounts
• Keep one locked in a safe, in case you lose your

primary key ;)

How does U2F work?

Init

Login

Website
(Relying
Party)

{register}{register}
Make a signing key
(sk,pk)

{ pk, sign_sk(“username”) }

User, pk

{login, challenge ch}{login, ch}
Sign challenge using sk

s ← Signsk(ch) { s }

Verifypk(ch)

THIS protocol hasafewflaws

D ung.am

O

I i

n

Vulnerable to simple attack
It solves a problem with

guessable puds

But it still has a big flaw

• Lure: A spammed email with a
call to action from a seemingly
legitimate source encouraging
the user to visit a hook website.

• Hook: A website designed to
mimic legitimate site and collect
confidential information.

Simple Phishing

A

U2F can help prevent this attack

Init

Login

Website
(Relying
Party)

{register}{register}
Make a signing key
(sk,pk)

{ pk, sign_sk(“username”) }

User, pk

{login, challenge ch}
Sign challenge using sk

{ s }

google

o

Rosa.ae
IiineTg

rwqd

M attach

U2F can help prevent this attack

Init

Login

Website
(Relying
Party)

{register}{register}
Make a signing key
(sk,pk)

{ pk, sign_sk(“username”) }

User, pk

{login, challenge ch}
Sign challenge using sk

{ s }

{login, ch, origin, tls_id}
s ← Signsk(ch, url, tlsid)

Verifypk(ch, s, url, tlsid)

I

e

How U2F foils phishing
1. In the beginning, I register with G and setup 2FA.

User,sk User,pkMy browser
I

How U2F foils phishing

Fake Website
Com-settingssecurity.tk

User,sk User,pk

2. I am tricked into clicking on fake
G login, who tries a PITM attack.

My browser

How U2F foils phishing

Fake Website
Com-settingssecurity.tk

User,sk User,pk

2. I am tricked into clicking on fake
G login, who tries a PITM attack.

{login, challenge ch}

My browser

losin

man

How U2F foils phishing

Fake Website
Com-settingssecurity.tk

User,sk User,pk

2. I am tricked into clicking on fake
G login, who tries a PITM attack.

{login, challenge ch}{login, challenge ch}

My browser

How U2F foils phishing

Fake Website
Com-settingssecurity.tk

User,sk User,pk

2. I am tricked into clicking on fake
G login, who tries a PITM attack.

{login, challenge ch}{login, challenge ch}

My browser

{login, ch, url, tls_id}

My browser knows the origin is “com-settingssecurity.tk”
instead of google.com, and passes this string as url.

How U2F foils phishing

Fake Website
Com-settingssecurity.tk

User,sk User,pk

2. I am tricked into clicking on fake
G login, who tries a PITM attack.

{login, challenge ch}{login, challenge ch}

My browser

{login, ch, url, tls_id}

My browser knows the origin is “com-settingssecurity.tk”
instead of google.com, and passes this string as url.

Sign challenge using sk

s ← Signsk(ch, url, tlsid)

The 2FA key signs this with url=com-settings…

whgddies

do

How U2F foils phishing

Fake Website
Com-settingssecurity.tk

User,sk User,pk

2. I am tricked into clicking on fake
G login, who tries a PITM attack.

{login, challenge ch}{login, challenge ch}

My browser

{login, ch, url, tls_id}

My browser knows the origin is “com-settingssecurity.tk”
instead of google.com, and passes this string as url.

Sign challenge using sk

s ← Signsk(ch, url, tlsid)

The 2FA key signs this with url=com-settings…

{ s } Verifypk(ch, s, url, tlsid)

Google reject the authentication and
detects the attack!

The Tracking problem

User,sk

https://badguy

https://badgirl

You

The Tracking problem

User,sk

https://badguy

https://badgirl

{register}

{register}
{ pk, sign_sk(“thunderkat”) } “Thunderkat”, pk

The Tracking problem

User,sk

https://badguy

https://badgirl

{register}

{register}
{ pk, sign_sk(“thunderkat”) } “Thunderkat”, pk

{register}

{register}

{ pk, sign_sk(“roar kitty”) } “Roar kitty”, pk

U2F can help prevent tracking

Init

Website
(Relying
Party)

{appid, register}{appid, register}
Make a signing key
(sk,pk)

{ h, pk, sign_sk(“username”) }

User, h, pk

And link it with
appid, and create
A token “h”

o
6

U2F can help prevent tracking

Init

Website
(Relying
Party)

{appid, register}{appid, register}
Make a signing key with aphid
(sk,pk)

{ h, pk, sign_sk(“username”) }

User, h, pk

And link it with
appid, and create
A token “h”

Login {login, h, challenge ch}Lookup sk using h
Sign challenge using sk

{ s,h }

{login, h, ch, origin, tls_id}
s ← Signsk(ch, url, tlsid)

Verifypk(ch, s, url, tlsid)
Check h

o_0 0

Sending request with appId: https://u2f.bin.coffee
{
 "version": "U2F_V2",
 "challenge": "uQnl3M4Rj3FZgs6WjyLaZAfwRh4"
}

Got response:
{
 "clientData": "eyJjaGFsbGVuZ2UiOiJ1UW5sM000UmozRlpnczZXanlMYVpBZndSaDQiLCJvcmlnaW4iOiJodHRwczovL3UyZi5iaW4uY29mZmVlIiwidHlwIjoibmF2aWdhdG9yLmlkLmZpbmlzaEVucm9sbG1lbnQifQ",
 "errorCode": 0,
 "registrationData": “BQRSuRLPv0p5udQ55vVhucf3N50q6…”,
 "version": "U2F_V2"
}

Key Handle: 0r0Z0p0F0E0-0d0W0c0Q0b0X0i020C0w0-0E0v0h0t0T0T0P0_0-090_0a050P0e030u0b0z0l0K0Q0r0O0f0u030_0P020B0J0M0x0D050J0_0d0P0Q0e0j060T0U0H0z0m0L0m0t0r0Z0A0u0o0h0-0b070s0w0e0V0X0w0j0g
Certificate: 3082021c3082…
Attestation Cert
Subject: Yubico U2F EE Serial 14803321578
Issuer: Yubico U2F Root CA Serial 457200631
Validity (in millis): 1136332800000
Attestation Signature
R: 00b11e3efe5ae5ac7ca0e0d4fe2c5b5cf18a2531c0f4f70b11c30b72b5f946a9a3
S: 0f37ab2d4f93ebcdaed0a51b4b17fb93403db9873f0e9cce36f17b1502734bb2
[PASS] Signature buffer has no unnecessary bytes.: 71 == 71
[PASS] navigator.id.finishEnrollment == navigator.id.finishEnrollment
[PASS] uQnl3M4Rj3FZgs6WjyLaZAfwRh4 == uQnl3M4Rj3FZgs6WjyLaZAfwRh4
[PASS] https://u2f.bin.coffee == https://u2f.bin.coffee
[PASS] Verified certificate attestation signature
[PASS] Imported credential public key
Failures: 0 TODOs: 0

Future without passwords?

Authentication Protocols
Unix, PAM, and crypt
Network Information Service (NIS, aka Yellow Pages)
Needham-Schroeder and Kerberos

Status Check

• At this point, we have discussed:
• How to securely store passwords
• Techniques used by attackers to crack passwords
• Biometrics and 2nd factors

Status Check

• At this point, we have discussed:
• How to securely store passwords
• Techniques used by attackers to crack passwords
• Biometrics and 2nd factors

• Next topic: building authentication systems
• Given a user and password, how does the system authenticate the user?
• How can we perform efficient, secure authentication in a distributed system?

Building authentication systems

Example PAM Configuration
abhi@l2:~$ cat /etc/pam.d/common-password

/etc/pam.d/common-password - password-related modules common to all services

This file is included from other service-specific PAM config files,
and should contain a list of modules that define the services to be
used to change user passwords. The default is pam_unix.

Explanation of pam_unix options:

The "sha512" option enables salted SHA512 passwords. Without this option,
the default is Unix crypt. Prior releases used the option "md5".

The "obscure" option replaces the old `OBSCURE_CHECKS_ENAB' option in
login.defs.

See the pam_unix manpage for other options.

As of pam 1.0.1-6, this file is managed by pam-auth-update by default.
To take advantage of this, it is recommended that you configure any
local modules either before or after the default block, and use
pam-auth-update to manage selection of other modules. See
pam-auth-update(8) for details.

here are the per-package modules (the "Primary" block)
password [success=1 default=ignore] pam_unix.so obscure sha512
here's the fallback if no module succeeds
password requisite pam_deny.so
prime the stack with a positive return value if there isn't one already;
this avoids us returning an error just because nothing sets a success code
since the modules above will each just jump around
password required pam_permit.so
and here are more per-package modules (the "Additional" block)
end of pam-auth-update config

• Use SHA512 as the hash function
• Use /etc/shadow for storage

Unix Passwords

• Traditional method: crypt
• 25 iterations of DES on a zeroed vector
• First eight bytes of password used as key (additional bytes are ignored)
• 12-bit salt

• Modern version of crypt are more extensible
• Support for additional hash functions like MD5, SHA256, and SHA512
• Key lengthening: defaults to 5000 iterations, up to 108 – 1
• Full password used
• Up to 16 bytes of salt

O ndTcrypt

Password Files

• Password hashes used to be in /etc/passwd
• World readable, contained usernames, password hashes, config information
• Many programs read config info from the file…
• But very few (only one?) need the password hashes

Password Files

• Password hashes used to be in /etc/passwd
• World readable, contained usernames, password hashes, config information
• Many programs read config info from the file…
• But very few (only one?) need the password hashes

• Turns out, world-readable hashes are Bad Idea

• Hashes now located in /etc/shadow
• Also includes account metadata like expiration
• Only visible to root

I

Password Storage on Linux

22

username:password:last:may:must:warn:expire:disable:reserved

cbw:$1$0nSd5ewF$0df/3G7iSV49nsbAa/5gSg:9479:0:10000::::
amislove:1l3RxU5F1$:8172:0:10000::::

/etc/shadow

username:x:UID:GID:full_name:home_directory:shell

cbw:x:1001:1000:Christo Wilson:/home/cbw/:/bin/bash
amislove:1002:2000:Alan Mislove:/home/amislove/:/bin/sh

/etc/passwd

uid groupid

Password Storage on Linux

22

username:password:last:may:must:warn:expire:disable:reserved

cbw:$1$0nSd5ewF$0df/3G7iSV49nsbAa/5gSg:9479:0:10000::::
amislove:1l3RxU5F1$:8172:0:10000::::

/etc/shadow

username:x:UID:GID:full_name:home_directory:shell

cbw:x:1001:1000:Christo Wilson:/home/cbw/:/bin/bash
amislove:1002:2000:Alan Mislove:/home/amislove/:/bin/sh

/etc/passwd

$<algo>$<salt>$<hash>
Algo: 1 = MD5, 5 = SHA256, 6 = SHA5120

O

Password Security game

Alice Bob

Genpw pw

Mallory

O O

More realistic picture of the world

Alice

Neu

pwO

More realistic picture of the world

Alice
pw

pw

pw

pw

pw

pwpw Neu

What are the problems with
this solution?

update difficulty
sync weakestlink

Weakness among
devices 2

increases attack surface

hose 0
stealthis

The problem of distributed authentication

Alice
pw

pw

NEU PWD
Server

Bob

Distributed authentication: Attacker model

Alice
pw

pw

NEU PWD
Server

What can attacker do?

See networktraffic
copy injectmessages

may be able
to break

into some devices

Distributed authentication: Bad Solution

Alice
pw

pw

NEU PWD
Server

What can attacker do?

1

2
3

4
Library

y
copythis

palswd

YIN Mmm AOidea

Yin
pacswd

check

Distributed authentication: Bad Solution

Alice
pw

pw

NEU PWD
Server

What can attacker do?

1

2
3

4
Library

1
private
channel is

needed

Basic tool: symmetric encryption

Alice Bob

𝑚 𝑚

Eve

keg

Basic tool: symmetric encryption
• Gen: generates secret key 𝑘
• Enc: given 𝑘 and 𝑚 output a ciphertext 𝑐

Denote 𝐸𝑛𝑐𝑘 𝑚 , 𝐸𝑘 𝑚 , 𝑚 𝑘

• Dec: given 𝑘 and 𝑐 output a message 𝑚
• Security (informal):

Whatever Eve can learn on 𝑚 given 𝑐 can be learned without 𝑐
• Examples:

– DES (Data Encryption Standard)
– AES (Advanced Encryption Standard)

𝑚
y

Eve can copy 1h
lockbox

Authentication from Encryption

Alice Bob

Eve

𝑘𝐴𝐵 𝑘𝐴𝐵

• Alice and Bob share a key
• They communicate over an insecure channel
• Alice wants to prove her identity to Bob
• Eve’s goal: impersonate Alice

Attempt #1

I am Alice
Alice Bob

Eve

I am Alice

𝑘𝐴𝐵 𝑘𝐴𝐵

passwd

Robwill
copy this accept

message

Attempt #2: use the key

I am Alice 𝑘𝐴𝐵
Alice Bob

Eve

𝑘𝐴𝐵 𝑘𝐴𝐵

I am Alice 𝑘𝐴𝐵
Replay attack

U opens checks it
Alice Bob

Attempt #2: use the key

I am Alice 𝑘𝐴𝐵
Alice Bob

Eve

𝑘𝐴𝐵 𝑘𝐴𝐵

I am Alice 𝑘𝐴𝐵
Replay attack

n

1
provenEoe doesn't

know the password

but still succeeds

Attempt #3: use nonce
I am AliceAlice

Bob

Eve

𝑘𝐴𝐵
𝑘𝐴𝐵

𝑁𝑎 𝑘𝐴𝐵

Pay Eve 500$ 𝑘𝐴𝐵𝑁𝑎 − 1 𝑘𝐴𝐵

I am Alice

𝑁𝑎2 𝑘𝐴𝐵

Pay Bob 500$ 𝑘𝐴𝐵

𝑁𝑎2 − 1 𝑘𝐴𝐵

𝑁𝑎2 − 1 𝑘𝐴𝐵

Pay Eve 500$ 𝑘𝐴𝐵

Man in the Middle attack

decrypt Na BANK

Attempt #3: use nonce
I am AliceAlice

Bob

Eve

𝑘𝐴𝐵
𝑘𝐴𝐵

𝑁𝑎 𝑘𝐴𝐵

Pay Eve 500$ 𝑘𝐴𝐵𝑁𝑎 − 1 𝑘𝐴𝐵

I am Alice

𝑁𝑎2 𝑘𝐴𝐵

Pay Bob 500$ 𝑘𝐴𝐵

𝑁𝑎2 − 1 𝑘𝐴𝐵

𝑁𝑎2 − 1 𝑘𝐴𝐵

Pay Eve 500$ 𝑘𝐴𝐵

Man in the Middle attack

MONDAY

Tue

Attempt #4
I am AliceAlice

Bob

Eve

𝑘𝐴𝐵
𝑘𝐴𝐵

𝑁𝑎 𝑘𝐴𝐵

𝑁𝑎 − 1, Pay Eve 500$ 𝑘𝐴𝐵

• The protocol worked because Alice and Bob shared a key

• How do parties agree on a key?
– Run a key agreement protocol (later in the semester)
– Use a trusted third party (this lecture)

• Key distribution center (KDC):
– Shares a key with each entity
– Single point of failure
– Reasonable assumption for organizations
– Not useful for open environments (e.g. the Internet)

Key establishment

Naïve solution
• KDC generates a key for each pair
• Number of keys 𝑛 𝑛 − 1 , number of key pairs 𝑛 𝑛−1

2
= 𝑛

2
• Drawbacks:

– Quadratic number of keys
– Adding new users is complex

• May be useful for static small networks

𝑘𝐴𝐵
𝑘𝐴𝐶
𝑘𝐴𝐷

𝑘𝐴𝐵
𝑘𝐵𝐶
𝑘𝐵𝐷

𝑘𝐴𝐶
𝑘𝐵𝐶
𝑘𝐶𝐷

𝑘𝐴𝐷
𝑘𝐵𝐷
𝑘𝐶𝐷

KDC

O
O 4 keys

Desire: solution with linear keys
• KDC shares a key with each user
• Number of keys 2𝑛
• Number of key pairs 𝑛
• These are long-term keys
• Alice and Bob establish a fresh session key

𝑘𝐴𝑆 𝑘𝐵𝑆

𝑘𝐶𝑆𝑘𝐷𝑆

KDC
𝑘𝐴𝑆
𝑘𝐵𝑆
𝑘𝐶𝑆
𝑘𝐷𝑆

0 u total of keys
in the
system

Needham-Schroeder Protocol (1978)

𝑘𝐴𝑆 𝑘𝐵𝑆

KDC 𝑘𝐴𝑆
𝑘𝐵𝑆

𝐴, 𝐵, 𝑁𝑎

𝑁𝑎, 𝑘𝐴𝐵, 𝑘𝐴𝐵, 𝐴 𝑘𝐵𝑆 𝑘𝐴𝑆

𝑘𝐴𝐵, 𝐴 𝑘𝐵𝑆

𝑘𝐴𝐵

𝑁𝑏 𝑘𝐴𝐵

𝑘𝐴𝐵

𝑁𝑏 − 1 𝑘𝐴𝐵

Why do we need 𝑁𝑎?

Why do we need 𝑁𝑏?

Fixed Needham-Schroeder

𝑘𝐴𝑆 𝑘𝐵𝑆

KDC 𝑘𝐴𝑆
𝑘𝐵𝑆

𝐴, 𝐵, 𝑁𝑎

𝑁𝑎, 𝑘𝐴𝐵, 𝑘𝐴𝐵, 𝐴, 𝑻 𝑘𝐵𝑆 𝑘𝐴𝑆

𝑘𝐴𝐵, 𝐴, 𝑻 𝑘𝐵𝑆

𝑘𝐴𝐵

𝑁𝑏 𝑘𝐴𝐵

𝑘𝐴𝐵

𝑁𝑏 − 1 𝑘𝐴𝐵

Use time stamps

g

timestamp

9

Kerberos

• Developed in MIT in the ‘80s
• Based on Needham-Schroeder

– Versions 1-3 not published
– Version 4 not secure
– Version 5 published in 1993

• Widely used nowadays:
– The basis of Microsoft’s active directory
– Many Unix versions

Kerberos

AC
(Authentication server)

TGT
(Ticketing granting server)

KDC

pw

Get TGT (ticketing granting ticket)
Once per login session

Get ticket for a service
Once per service

𝑘𝐵𝑆
Mutual authentication

Kerberos

• Passwords are not sent over the network
• Alice’s key 𝑘𝐴𝑆 is a hash of her password

• Kerberos weaknesses:
– KDC is a single point of failure
– DoS the KDC and the network ceases to function
– Compromise the KDC leads to network-wide compromise
– Time synchronization is a very hard problem

“Single Sign on”

Same problem as before

Alice
pw

pw

pw

pw

pw

pwpw

Internet

O

“Single Sign on”

Alice
pw

Oauth
Alice
pw

pw

Identity
Provider

Some
resource on

the internet

1. Authenticate

“I want to use your service”

D

google

Oauth
Alice
pw

pw

Identity
Provider

Some
resource on

the internet

1. Authenticate

Cy

Oauth
Alice
pw

pw

Identity
Provider

Some
resource on

the internet

1. Authenticate

Token
Yelp

Oauth
Alice
pw

pw

Identity
Provider

Some
resource on

the internet

1. Authenticate Check token

{email, u
ser profile}Token

contacts

Attacks against “Login with…” services

what is the
main
problem

singe f
pout

of

failure

0

Sources
1. Many slides courtesy of Wil Robertson: https://wkr.io

2. Many slides courtesy of Ran Cohen

