2550 Intro to
cybersecurity

abhi shelat

Universal 2nd Factor (U2F)

e Supported by Chrome, Opera, and Firefox
(must be manually enabled)

« Works with Google, Dropbox, Facebook,
Github, Gitlab, etc.

Google

2-Step Verification

Use your device to sign in to your Google Ac

Insert your Security Key

If your Security Key has a button, tap it.

If It doesn't. remove and re-insert It

¥ Remember this computer for 30 days

count.

Universal 2nd Factor (U2F)

e Supported by Chrome, Opera, and Firefox
(must be manually enabled)

« Works with Google, Dropbox, Facebook,
Github, Gitlab, etc.

e Pro tip: always buy 2 security keys
« Associate both with your accounts

« Keep one locked in a safe, in case you lose your
primary key ;)

Google

2-Step Verification

™M ™ - "-I'. ~ - ™ 1LY 1 ™ \ I 1 P -“. - A~ ~
Jse your device to sign In to Voul fjl-lx_'alt- ACCO

Insert your Security Key

If your Security Key has a button, tap Iit.
If It doesn't. remove and re-insert Iit.

¥ Remember this computer for 30 days

Unt.

How does U2F work?

Website
- (Relying
- f Party)
it 2?;5 e {register} _ lregister]
{ pk, sign_sk(“username”) }
User, pk
o deengensnet {login, ch] {login, challenge ch}

Login | <
s « 91gn_ (ch) { S }

Verifyp (ch)

Vulnerable to simple attack

https://accounts.googIe.mysecurity.tki/signin/v2/s|/pw< —

Google
Welcome
@ hi.abhi@gmail.com v

Enter your password &

Forgot password?

English (United States) ~ Help Privacy Terms

Simple Phishing

Lure: A spammed email with a
call to action from a seemingly
legitimate source encouraging
the user to visit a hook website.

Hook: A website designed to
mimic legitimate site and collect
confidential information.

Google

Someone has your password

Hi Willkam
Someone just used your password o try 10 sign in 1o your Google Account
Details:

Tuesday, 22 March, 14:925 UTC

IP Address: 134.249.139.23%
Location: Ukraine

Google stopped this sign-in attempt. You should change your password immediately.

CHANGE PASSWORD

Best,
The Gmal Team

You received ths mandatcry emad service announcement 20 update you about importan! changes 0 your Google product or account

MY ACCOUNT

o
b‘.ﬂ% TOUR ENTERPRISE RESOURCES ABOUT

http://myaccount.google.com-securitysettingpage.tk/security/signinoptions/password?
e=am90biSwb2RIc3RhQGdAtYWISLmMNvbQ%3D%3D&fn=Sm90obiBQb2RIc3Rh&N=5Sm90bg%3
D%3D&img=Ly9saDQuZ29vZ2xIdXNIcmNvbnRIbnQuY29tLy1RZVIPbHJkVGp2WS9BQUFB...

http://myaccount.google.com-securitysettingpage.tk/security/signinoptions/password?
e=am90bi5wb2RIc3RhQGdtYWIsLmNvbQ%3D%3D&fn=Sm90obiBQb2RIc3Rh&N=Sm90bg%3D%3D&Iimg=Ly9saDQuZ29vZ2xIdXNIcmNvbnRIbnQuY29tLy1RZVI
PbHJkVGp2WS9BQUFBQUFBQUFBSSSBQUFBQUFBQUFCTSSCQIdVOVQObUZUWS9waG90bybqcGc%3D&id=1sutlodlwe

bntly.corn/_[COPY]

2 i

CLICKS

JAN "16 MARCH 2016 APR 16 JUL 16 OCT 16
B Total Clicks 2

DATA IN UTC

)

U2F can help prevent this attack

: Website

- (Relying

? Party)
Make a signing ke . .

it (koK e {register} _ lregister]
{ pk, sign_sk(“username”) }
User, pk

ign challenge using s
e {login, challenge ch}

LogIn

U2F can help prevent this attack

‘ Website
= (Relying
f Party)
it 2?;5 e {register} _ lregister]
{ pk, sign_sk(“username”) }
User, pk
et {login, ch, origin, tls_id] {login, challenge ch}

Login
¢ «— Signsk(Ch’ url, tlSid) { S }

Verifypk(ch, s, url, tls;y)

How U2F folls phishing

i
@

1. In the beginning, | register with G and setup 2FA.

< G

User,sk My browser User,pk

How U2F folls phishing

2. 1 am tricked into clicking on fake
G login, who tries a PITM attack.

Fake Website

Com-settingssecurity.tk q

User,sk My browser User,pk

o

®

How U2F folls phishing

2. 1 am tricked into clicking on fake
G login, who tries a PITM attack.

> ¥ Fake Website
Com-settingssecurity.tk d

User,sk My browser User,pk

{login, challenge ch}

o

()

How U2F folls phishing

2. 1 am tricked into clicking on fake
G login, who tries a PITM attack.

> ¥ Fake Website
Com-settingssecurity.tk J

User,sk My browser User,pk

login, challenge ch} {login, challenge ch}

o

[)

How U2F folls phishing

2. 1 am tricked into clicking on fake
G login, who tries a PITM attack.

> ¥ Fake Website
v Com-settingssecurity.tk c

6
User,sk My browser User,pk
{login, ch, url, tls_id} {login, challenge ch} {login, challenge ch)

My browser knows the origin Is “com-settingssecurity.tk”
Instead of google.com, and passes this string as url.

http://google.com

How U2F folls phishing

2. 1 am tricked into clicking on fake
G login, who tries a PITM attack.

Fake Website ‘
Com-settingssecurity.tk J

6
User,sk My browser User,pk
{login, ch, url, tls_id} {login, challenge ch} {login, challenge ch)

My browser knows the origin Is “com-settingssecurity.tk”
Instead of google.com, and passes this string as url.

s < Sign_ (ch, url, tls;y)

Sign challenge using sk

The 2FA key signs this with url=com-settings...

http://google.com

How U2F folls phishing

2. 1 am tricked into clicking on fake
G login, who tries a PITM attack.

Fake Website ‘
Com-settingssecurity.tk a

6
User,sk My browser User,pk
{login, ch, url, tls_id} {login, challenge ch} {login, challenge ch)

My browser knows the origin Is “com-settingssecurity.tk”
Instead of google.com, and passes this string as url.

§ — Signsk(ch, url, tls; ;) { S }

Sign challenge using sk

Verifypk(ch, s, url, tls;)

Google reject the authentication and

The 2FA key signs this with url=com-settings... detects the attack!

http://google.com

The Tracking problem

User sk

https://badguy
https://badgirl

The Tracking problem

1" X
\on s\ak“t‘(\uﬂder\(aﬂ
S\G\ -

4‘Th U nd erkatn’ p k

&ﬂ%ﬁﬁﬁﬁ
m /

o

®

USensk

https://badgirl

https://badguy
https://badgirl

The Tracking problem

https://badguy

“Thunderkat”, pk

“Roar kitty” pk
https://badgirl

https://badguy
https://badgirl

U2F can help prevent tracking

Website
- (Relying
f Party)
. 2?(;5 e tappid, register} tappid, register}
Init And link it with))
appls any create {h, pk, sign_sk(“username”) }

User, h, pk

U2F can help prevent tracking

Website
- (Relying
? Party)
ake a signing key with aphid
. “st,pk) TR {appid, register} {appid, register}
Init And link it with))
PPl e create {h, pk, sign_sk(“username”) }
User, h, pk
Lookup sk using h . - . .
Login sien challenge ssings 11081, , ¢ch, origin, tls_id} {login, h, challenge ch}
s < Sign_ (ch, url, tls;y) [sh)

Verifypk(ch, s, url, tls;y)
Check h

Sending request with appId: https://u2f.bin.coffee

{
"version": "U2F V2",
"challenge": "uQnl3M4R]j3FZgs6WjyLaZAfwRh4"

}

Got response:

{
"clientData": "eyJjaGFsbGVuZ2Ui01J1UW5sM000UmozRlpnczZXanlMYVpBZndSaDQiLCJvcmlnaW4i0iJodHRweczovL3UyZi51iaW4uY29mZmV1IiwidHlwI joibmFZ
"errorCode": 0,
"registrationData": “BQRSuRLPvOp5udQ55vVhucf3N50g6..",
"version": "U2F V2"

}

Key Handle: 0r0ZOpOFOE0-0d0W0c0Q0b0X0i020COw0-0EOvOhOt0TOTOPO 0-090 0a050P0e030u0b0z010K0Q0r000£0u030 0P020BO0JOMOx0D050J0 0d0P0QO0e0]C

Certificate: 3082021c3082..

Attestation Cert

Subject: Yubico U2F EE Serial 14803321578

Issuer: Yubico U2F Root CA Serial 457200631

Validity (in millis): 1136332800000

Attestation Signature

R: OOblle3efebaebac7calel0d4dfe2c5b5¢c£18a2531c0£4£70bl1c30b72b5£f946a9a3
S: 0f37ab2d4f93ebcdaed0a51b4bl17fb93403db9873f0e9cce36£f17b1502734bb2

PASS] Signature buffer has no unnecessary bytes.: 71 == 71

PASS] navigator.id.finishEnrollment == nav1gator.1d.finlshEnrollment
[PASS] uQnl3M4Rj3FZgs6WjyLaZAfwRh4 == uQnl3M4Rj3FZgs6WjyLaZAfwRh4
PASS] https://u2f.bin.coffee == https://u2f.bin.coffee

PASS] Verified certificate attestation signature

PASS] Imported credential public key

Failures: 0 TODOs: 0

Future without passwords?

Authentication Protocols

Unix, PAM, and crypt
Network Information Service (NIS, aka Yellow Pages)

Needham-Schroeder and Kerberos

Status Check

e At this point, we have discussed:

« How to securely store passwords
e Techniques used by attackers to crack passwords
e Biometrics and 2nd factors

Status Check

e At this point, we have discussed:

« How to securely store passwords
e Techniques used by attackers to crack passwords
e Biometrics and 2nd factors

e Next topic: building authentication systems

e Given a user and password, how does the system authenticate the user?
« How can we perform efficient, secure authentication in a distributed system?

Bullding authentication systems

Example PAM Configuration

abhial2:~$ cat /etc/pam.d/common-password
/etc/pam.d/common-password - password-related modules common to all services
This file 1s included from other service-specific PAM config files,

and should contain a list of modules that define the services to be
used to change user passwords. The default 1s pam_unix.

H R R TS

Explanation of pam_unix options:

The "sha512" option enables salted SHA512 passwords.
the default 1s Unix crypt. Prior releases used the

{221;?32;:?6" option replaces the old "OBSCURE_CHECKESS Use SHA512 as the haSh funCt|On
See the pam_unix manpage for other options. ® Use /etC/ShadOW fOr StOrage

As of pam 1.0.1-6, this file 1s managed by pam-auth
To take advantage of this, 1t 1s recommended that yo
local modules either before or after the default block, and uj
pam-auth-update to manage selection of other modules. See
pam-auth-update(8) for details.

HTHEHEHEFRHEHFEHTFHEETR

H R R

here are the per-package modules (the "Primary" block)

password [success=1 default=ignore]pam_unix.so obscure sha512

here's the fallback 1f no module succeeds

password requisite pam_deny.so

prime the stack with a positive return value 1f there isn't one already;

this avoids us returning an error just because nothing sets a success code
since the modules above will each just jump around

password required pam_permit.so

and here are more per-package modules (the "Additional" block)

end of pam-auth-update config

Unix Passwords

o Traditional method: crypt
e 25 iterations of DES on a zeroed vector

 First eight bytes of password used as key (additional bytes are ignored)
e 12-bit salt

« Modern version of crypt are more extensible
e Support for additional hash functions like MD5, SHA256, and SHA512
« Key lengthening: defaults to 5000 iterations, up to 108 -1
o Full password used
 Up to 16 bytes of salt

Password Files

e Password hashes used to be in /etc/passwd
 World readable, contained usernames, password hashes, config information
« Many programs read config info from the file...
« But very few (only one?) need the password hashes

Password Files

e Password hashes used to be in /etc/passwd
 World readable, contained usernames, password hashes, config information
« Many programs read config info from the file...
« But very few (only one?) need the password hashes

e Turns out, world-readable hashes are Bad Idea

« Hashes now located in /etc/shadow
e Also includes account metadata like expiration
e Only visible to root

Password Storage on Linux

[etc/passwd

username:x:UID:GID:full nhame:home directory:shell

cbw:x:1001:1000:Christo Wilson:/home/cbw/:/bin/bash
amislove:1002:2000:Alan Mislove:/home/amislove/:/bin/sh

[/etc/shadow

username:password:last:may:must:warn:expire:disable:reserved

cbw:515S0nSd5ewFS0df/3G7iSV49nsbAa/5g5g:9479:0:10000::::
amislove:S1SI3RxU5F1S:8172:0:10000::::

22

Password Storage on Linux

[etc/passwd

username:x:UID:GID:full nhame:home directory:shell

cbw:x:1001:1000:Christo Wilson:/home/cbw/:/bin/bash
n Mislove:/home/amislove/:/bin/sh

S<algo>S<salt>S<hash>

Algo: 1 = MD5, 5 = SHA256, 6 = SHA512
fetc/shadow

ername:password:last:may:must:warn:expire:disable:reserved

cbw:515S0nSd5ewFS0df/3G7iSV49nsbAa/5g5g:9479:0:10000::::
amislove:S1SI3RxU5F1S:8172:0:10000::::

Password Security game

More realistic picture of the worlc

-]
New

Alece
pw .

More realistic picture of the worlc

this solution? :|

What are the problems with :|

2 i,

pw

The
problem
of di
f distributed auth
enticatl
on

pwW

Distributed authentication: Attacker model

What can attacker do?

pwW

Distributed authentication: Bad Solution

Distributed authentication: Bad Solution

Basic tool: symmetric encryption

Alice M Bob

Eve

Basic tool: symmetric encryption

Gen: generates secret key k

Enc: given kK and m output a ciphertext ¢
Denote Ency,(m), E;,(m), {m},

Dec: given k and ¢ output a message m

Security (informal):
Whatever Eve can learn on m given c¢ can be learned without ¢

Examples:
— DES (Data Encryption Standard)
— AES (Advanced Encryption Standard)

A

ST
2 '

Mo
, -

Authentication from Encryption

* Alice and Bob share a key

* They communicate over an insecure channel
* Alice wants to prove her identity to Bob

* Eve’s goal: impersonate Alice

H Bob
kap

S Eve

Alice

@r\A/\)
kas

Attempt #1

-

| am Alice

—'lnb QW

| am Alice

Eve

Attempt #2: use the key

{| am Alice}y, .

Alice 8

—1.- QM

Attempt #2: use the key

‘ Bob
{| am Alice}y, .
— 7
dab @WJ
Kap

{| am Alice}y .

Replay attack

Eve

Attempt #3: use nonce

Alice | am Alice M
{Na}k4n pob
{Ng — 13, {Pay Eve 5008}, . 0
o= T om
Kap

Kap

Attempt #3: use nonce

Alice | am Alice H
Bob
{Na}kAB
s e
{N, — 1y, {Pay Eve 5008$} , .
—>
@,—mn) | am Alice @V\N\
—>
Kap
kAB {Naz}kAB

—

%a’z — 1},
{Pay Eve 5008} , .

{Naz o 1}kAB

{Pay Bob 5008$} , .

Man in the Middle attack

Eve

Alice

Attempt #4

| am Alice

{Na}kAB
«———48

{Ng — 1,Pay Eve 5008}, .
— e ap

Eve

® ..
dab
Kap

Key establishment

* The protocol worked because Alice and Bob shared a key

* How do parties agree on a key?
— Run a key agreement protocol (later in the semester)
— Use a trusted third party (this lecture)

* Key distribution center (KDC):

— Shares a key with each entity
— Single point of failure

il N
ad \,
s A = T».
' — |
! i

— Reasonable assumption for organizations '
— Not useful for open environments (e.g. the Internet)

Naive solution

KDC generates a key for each pair

Number of keys n(n — 1), number of key pairs n(nz_l) = (

n
2

Drawbacks:

— Quadratic number of keys
— Adding new users is complex

May be useful for static small networks

Desire: solution with linear keys

KDC shares a key with each user

Number of keys 2n

Number of key pairs n

These are long-term keys

Alice and Bob establish a fresh session key

Needham-Schroeder Protocol (1978)

{kAB' A}RBS

Kps

Kap
Why do we need N,?

Fixed Needham-Schroeder

{kABI A' T}kBS
—>

{Np Y us ﬁ
Kas (N, — 1}kAB 0/{35
k
Kas AB
(A,B,N,)
Use time stamps
{Na: kAB: {kABl A, T}kBS}kAS
KDC Kas

Kps

Kerberos

* Developed in MIT in the ‘80s

e Based on Needham-Schroeder
— Versions 1-3 not published

— Version 4 not secure
— Version 5 published in 1993

* Widely used nowadays:
— The basis of Microsoft’s active directory
— Many Unix versions

Kerberos

i\e
(Authentication server)

Get TGT (ticketing granting ticket)
Once per login session

TGT
(Ticketing granting server)

Get ticket for a service

‘ Once per service
‘;

Mutual authentication

pw

Kerberos

e Passwords are not sent over the network

* Alice’s key k,< is a hash of her password

* Kerberos weaknesses:
— KDC is a single point of failure
— DoS the KDC and the network ceases to function
— Compromise the KDC leads to network-wide compromise
— Time synchronization is a very hard problem

“Single Sign on”

Sign up with your identity provider

You'll use this service to log in to your network

(G Sign up with Google

o Sign up with Microsoft

OR

Enter your email... !

Sign up with Email

Same problem as before

pw

amazon coinbase
D E ‘JExpedia facebo;
: |
LA(r InTUITMLinkedﬂﬂ

Tintervect
lyn MONSTER NETFLIX

P Pay (p@ E A rackspace
@
MurvegMonkeg

PANDORA

7 reddit

; TURO
Ten-X TransfeM |) UBER

zynga

work YAHOO! vel ;‘»

“Single Sign on”

/ Sign up with your identity provider \

You'll use this service to log in to your network

(G Sign up with Google

gm oign up with Microsoft

(Y

amazon coinbase

eb & Expedia

l A(-W ’/

L. A4

ly n match Micros

PANDORA [P Pay Pinterest

7 reddit

_
Ten-x OO

TransferWise tripadvisol

work” YAHOO! yelp%s

“[want to use your service”

Some

resource on
the internet

Oauth

Yelp wants to access your Google
Account

0 r@rdegges.com

This will allow Yelp to:

B See and download your contacts ©)

Make sure you trust Yelp SO m e

You may be sharing sensitive info with this site or app.
Learn about how Yelp will handle your data by reviewing its
terms of service and privacy policies. You can always see
or remove access in your Google Account.

resource on
the internet

Learn about the risks

Cancel

Some
resource on
the internet

Some
resource on
the internet

Attacks against “Login with..." services

Log In with Twitter

Use Log in with Twitter, also known as Sign in with Twitter, to place a button on your site or application which
allows Twitter users to enjoy the benefits of a registered user account in as little as one click. This works on
websites, iOS, mobile, and desktop applications.

W Sign in with Twitter

G Sign in with Google

Sign in with Google

Use Sign in with Apple on
your Apple device

Using Sign in with Apple is quick and easy
on any Apple device with the latest

software. Make sure you're signed in with
your Apple ID on your device.

1. Tap the Sign in with Apple button on the

participating app or website.

If the app or site has not requested any

Information to set up your account, check 4
that your Apple ID is correct and go to
St 4 Create an account for KAYAK using your
€p 4. Apple ID “j.appleseed@icloud.com”.,
If you're asked to provide your name and
: . : NAME John Appleseed &
email address, Sign in with Apple
automatically fills in the information from APl Sl el O
J.appleseed@icloud.com
your Apple ID. You can edit your name If Hide My Email
you like and choose Share My Emaill Forward To:

j.appleseed@icloud.com

or Hide My Email.

Tap Continue and confirm with a quick
Face ID, Touch ID, or device passcode to Continue

sign in. If you don't have Face ID, Touch

ID, or a passcode set up, enter your

Apple ID password.

Sources

1. Many slides courtesy of Wil Robertson: https://wkr.io

2. Many slides courtesy of Ran Cohen

https://wkr.io/

