2550 Intro to
cybersecurity

1 6: Authorization

abhi shelat , .
Thanks Christo for slides!

Authentication:

Authorization

After Authenticating a subject, what next?

Access Control

e Policy specifying how entities can interact with resources
e i.e., Who can access what?

e Requires authentication and authorization

e Access control primitives

Principal User of a system

Subject Entity that acts on behalf of principals Software program

Files
Sockets

Devices
OS APIs

Object Resource acted upon by subjects

Access Control Check

* GIven an access request from a subject, on behalf of a principal, for an
object, return an access control decision based on the policy

Object

==

Principal Subject

Allow

Deny

Policy

Access Control Models

» Discretionary Access Control (DAC)
* The kind of access control you are familiar with
* Access rights propagate and may be changed at subject’s discretion

Access Control Models

» Discretionary Access Control (DAC)
* The kind of access control you are familiar with
* Access rights propagate and may be changed at subject’s discretion

» Mandatory Access Control (MAC)

* Access of subjects to objects is based on a system-wide policy
* Denies users full control over resources they create

Discretionary Access
Control

Discretionary Access Control

» According to Trusted Computer System Evaluation Criteria (TCSEC)

"A means of restricting access to objects based on the identity and need-to-
know of users and/or groups to which they belong.

Controls are discretionary In the sense that a subject with a certain access

permission is capable of passing that permission (directly or indirectly) to any
other subject.”

Access Control Matrices

Given subjects s; € S, objects o; € O, rights {Read, Write, eXecute},

N

-R RWX RW
e Introduced by Lampson in 1971
» Static description of protection state - RWX

* Abstract model of concrete systems

Access Control List (ACL)

* Each object has an associated list of
subject—=>operation pairs

« Authorization verified for each request by
checking list of tuples

* Used pervasively In filesystems and networks
 "Users a, b, and c and read file x."
* "Hosts a and b can listen on port x."

RWX RW

RWX

Access Control List (ACL)

* Each object has an associated list of
subject—=>operation pairs

« Authorization verified for each request by
checking list of tuples

» Used pervasively in filesystems and networks
 "Users a, b, and c and read file x."

» "Hosts a and b can listen on port x." 03

RW

Windows ACLS

=
L e

_ .
_ |owusic_Dimages _pADocuments

\Music |D:\Im D:\Docum
System RWX RWX RWX
Administrators |AA'AY RW RW
Users:Bob RWX RW

Users:Alice RW R

Windows ACLS

D:\Music D:\Images D:\Documents

Administrators

Users:Bob

Users:Alice

-

l

Documents Properties

General

Sharing

Object name:

GFOUD or user names:

Security

D:\Documents

Previous Versions

Customize

52 SYSTEM
% Account Unknown(S-1-5-21-1206375286-251249764-221 ‘|j
3!, Administrators (TaylorGibb-PC\Administrators)

K2 1 loare Mandar=ikh Py loare)

< |

.

-

To change pemissions, click Edit.

Pemissions for Account

Unknown(S-1-5-21-1206375286-:

|

Ay Edit...

|

Allow

Deny

Read
Write

Full control
Modify
Read & execute
List folder contents

ANANEN

-

m

-

For special pemissions or advanced settings,

click Advanced.

Leam about access control and pemissions

Advanced]

OK

Cancel

ACL Review

The Good The Bad
 Very flexible

o Can express any possible access
control matrix

o Any principal can be configured to
have any rights on any object

ACL Review

The Good The Bad
e Very flexible « Complicated to manage
« Can express any possible access e Every object can have wildly
control matrix different policies
o Any principal can be configured to Infinite permutations of subjects,

have any rights on any object objects, and rights

Unix-style Permissions

 Based around the concept of owners and groups
* All objects have an owner and a group
 Permissions assigned to owner, group, and everyone else

e Authorization verified for each request by mapping the subject to owner,
group, or other and checking the associated permissions

Unix Permissions

Abhi~S 1s -1
drwxrwxrwx 0 abhi 512 +46

—rw-rw-rw- 1 abhi 17 :46 my file

—-rwXrwxrwx 1 faculty 313 :47 my program.py

root 896 :47 sensitive data.csv

d 2 Directory r-> Read w—> Write x> eXecute

Unix Permissions

Abhi~S 1s -1
drwxrwxrwx 0 abhi 512 +46

—rw-rw-rw- 1 abhi 17 :46 my file

—-rwXrwxrwx 1 faculty 313 :47 my program.py

root 896 :47 sensitive data.csv

Owner

d 2 Directory r-> Read w—> Write x> eXecute

Unix Permissions

Abhi~-$ 1ls -1

drwxrwxrwx 0 abhi 512 +46

—rw-rw-rw- 1 abhi 17 :46 my file

—-rwXrwxrwx 1 faculty 313 :47 my program.py

root 896 :47 sensitive data.csv

d 2 Directory r-> Read w—> Write x> eXecute

Unix Permissions

Abhi~S 1s -1
drwxrwxrwx 0 abhi abhi 512 +46
-rw-rw-rw- 1 abhi abhi 17 :46 my file

-rwxrwxrwx 1 abhi faculty 313 :47 my program.py

root root 896 :47 sensitive data.csv

e W W

O Owner Group
4
o,

d 2 Directory r-> Read w—> Write x> eXecute

Unix Permissions

Abhi~-$ 1ls -1

drwxrwxrwx 0 abhi abhi 512 :46
-rw-rw-rw- 1 abhi abhi 17 :46 my file
-rwxrwxrwx 1 abhi faculty 313 :47 my program.py
root root 896 :47 sensitive data.csv
i e — —
o @ Owner Group
2, ©
e %

d 2 Directory r-> Read w—> Write x> eXecute

Unix Permissions

Abhi~S 1s -1
drwxrwxrwx 0 abhi abhi 512 +46
-rw-rw-rw- 1 abhi abhi 17 :46 my file

-rwxrwxrwx 1 abhi faculty 313 :47 my program.py

1 root root 896 :47 sensitive data.csv

I Y
Owner Group

O @ O
2, % %
e o &

d 2 Directory r-> Read w—> Write x> eXecute

Unix Permissions

Directory

Abhi~$ 1ls -1

ldywxrwxrwx 0 abhi abhi 512 :46

-rw-rw-rw- 1 abhi abhi 17 :46 my file
-rwxrwxrwx 1 abhi faculty 313 :47 my program.py

1 root root 896 :47 sensitive data.csv

I Y
Owner Group

O @ O
2, % %
e o &

d 2> Directory r-> Read w—> Write x> eXecute

Unix Permissions

Directory 8 Permission to list the contents of a directory

Abhi~S 1ls -
|dowvxrwxriwx /0 abhi abhi 512 :46
-rw-rw-rw- 1 abhi abhi 17 :46 my file

-rwxrwxrwx 1 abhi faculty 313 :47 my program.py

——————— 1 root root 896 :47 sensitive data.csv

I =
Owner Group

O & O
2, % %
e o &

d 2> Directory r-> Read w—> Write x> eXecute

Setting Permissions

+ =2 add permissions
- = remove

permissions

chmod [who]<+/-><permissions> <file1> [file2] ...

(omitted) = user, group, and other

a = user, group, and other r > Read
Uu=> user w 2> Write

g > group X 2 eXecute

o —~> other

abhi1@DESKTOP:
drwxrwxrwx 0
-rw-rw-rw- 1
~-rwXrwxrwx 1
abhi1@DESKTOP:
abhi1i@DESKTOP:
abhi1@DESKTOP:
abhi1@DESKTOP:
abhi1@DESKTOP:

—YTWXIrwXrwx 1

R S 1

~S 1ls -1
abhi abhi 512 Jan 29 22:46
abhi abhi 17 Jan 29 22:46
abhi faculty 313 Jan 29 22:47
chmod ugo-rwx my dir
chmod go-rwx my program.py
chmod u-rw my program.py
chmod +x my file
ls -1
abhi abhi 512 Jan 29 22:46
abhi abhi 17 Jan 29 22:46
abhi faculty 313 Jan 29 22:47

my dir
my file
my program.py

my dir

my file
my program.py

Alternate Form of Setting Permissions

chmod #t <file1> [file2] ...

« #s correspond to owner, group, and other

» Each value encodes read, write, and execute permissions
* 1> execute
¢ 2> write
* 4> read

Alternate Form of Setting Permissions

chmod #t <file1> [file2] ...

« #s correspond to owner, group, and other

» Each value encodes read, write, and execute permissions

e 1> execute
e 2> Wwrite
e 4 > read

 What If you want to set something as read, write, and execute?

Alternate Form of Setting Permissions

chmod #t <file1> [file2] ...

« #s correspond to owner, group, and other

» Each value encodes read, write, and execute permissions
* 1> execute
¢ 2> write
* 4> read

 What If you want to set something as read, write, and execute?
e 1+2+4=7

abhi1@DESKTOP:~$ 1ls -1
drwxrwxrwx 0 abhi abhi 512 Jan 29 22: my dir
-rw-rw-rw- 1 abhi abhi 17 Jan 29 22: my file
-rwxrwxrwx 1 abhi faculty 313 Jan 29 22: my program.py
abhi1@DESKTOP: chmod 000 my dir
abhi@DESKTOP: chmod 100 my program.py
abhi@DESKTOP: chmod 777 my file
abhi1@DESKTOP: ls -1

abhi abhi 512 Jan 29 22: my dir

-rwXrwxrwx 1 abhi abhi 17 Jan 29 22: my file

———X—————— 1 abhi faculty 313 Jan 29 22: my program.py

Who May Change Permissions?

abhi@DESKTOP:
abhi faculty
abhi1@DESKTOP:
-rw-rw-rw- 1

—Trw-Yrw—-rw- 1

—ITWXYIWX—-—-— 1

~S groups

~S 1ls -1

abhi abhi 17 Jan
abhi faculty 17 Jan
root root 896 Jan

root faculty 313 Jan

 Which files 1s user abhi permitted to chmod?

:46 my file

:46 my other file
247
247

sensitive data.csv

program.py

Who May Change Permissions?

abhi@DESKTOP:
abhi faculty
abhi1@DESKTOP:
-rw-rw-rw- 1

—Trw-Yrw—-rw- 1

—ITWXYIWX—-—-— 1

~S groups

~S 1ls -1

abhi abhi 17 Jan
abhi faculty 17 Jan
root root 896 Jan

root faculty 313 Jan

 Which files 1s user abhi permitted to chmod?

* Only owners can chmod files
« abhi can chmod my_file and my other file

:46 my file

:46 my other file
247
247

sensitive data.csv

program.py

» Group membership doesn’t srant chmod ability (cannot chmod program.py)

Setting Ownership

* Unix uses discretionary access control
« New objects are owned by the subject that created them

« How can you modify the owner or group of an object?

chown <owner>:<group> <file1> [file2] ...

Who May Change Ownership?

abhi1@DESKTOP:
abhi faculty
abhi1@DESKTOP:
-rw-rw-rw- 1

—YrW-Yw—-rw- 1

—ITWXYIWX—=—— 1

~S groups

~S 1ls -1

abhi abhi 17
abhi faculty 17
root root 896
root faculty 313

 Which operations are permitted?

chown cbw:faculty my file

chown root:root my other file

chown cbw:cbw sensitive date.csv

chown cbw:faculty program.py

:46 my file

:46 my other file

:47 sensitive data.csv

:47 program.py

Who May Change Ownership?

abhi1@DESKTOP:~$S groups

abhi faculty

abhi@DESKTOP:~$ 1ls -1

-rw-rw-rw- 1 abhi abhi 17 :46 my file

-rw-rw-rw- 1 abhi faculty 17 :46 my other file

root root 896 :47 sensitive data.csv

-rwXrwx--- 1 root faculty 313 :47 program.py

 Which operations are permitted?

chown abhi:faculty my file Yes, cbw belongs to the faculty group
chown root:root my other file No, only root many change file owners!
chown abhi:abhi sensitive date.csv No, only root many change file owners!

chown abhi:faculty program.py No, only root many change file owners!

Unix Access Control Exercise (1)

 What Unix group and permission assignments satisfy this access control
matrix?

Desired Permissions

T e e

userl r-- r'WX
user? r-- rW-
user3 r-- rw-

user4 rwx rW-

Unix Access Control Exercise (1)

 What Unix group and permission assignments satisfy this access control
matrix?

Desired Permissions

userl r-- rwx user2 user2
user? r-- r'W- user3 user3
user3 r-- r'w- userd user4

user4 rwx rw-

~S 1ls -1

—-YwXr—--r—-- 1 userd4d userd 0 filel

—YrwXrw-rw- 1 userl userl 0 file?2

Unix Access Control Exercise (2)

 What Unix group and permission assignments satisfy this access control
matrix?

Desired Permissions

I N R

userl r-- --X
user2 r-X rwx
user3 r-X r--

userd rwx r--

Unix Access Control Exercise (2)

 What Unix group and permission assignments satisfy this access control

matrix?
Desired Permissions userl userl
user2 user2, groupl
userl r-- --X
user3 user3, groupl, group?2
user2 r-X rwx
userd user4, group?2
user3 r-X r--
userd rwXx r--

~S 1ls -1

-rwxXr-xr-- 1 user4d groupl 0 filel

-rwxXr—----x 1 user2 group2 0 file2

Unix Access Control Exercise (3)

 What Unix group and permission assignments satisfy this access control
matrix?

Desired Permissions

I N

user 1 -—- rW-
user 2 r-- r--
user 3 rwx rwx

user 4 rWX

Unix Access Control Exercise (3)

 What Unix group and permission assignments satisfy this access control
matrix?

Desired Permissions

I N

e Trick question! This matrix cannot be represented

user 1 -—- rW-
user 2 r-- r--
user 3 rwx rwx

user 4 rWX

Unix Access Control Exercise (3)

 What Unix group and permission assignments satisfy this access control
matrix?

Desired Permissions

I N

e Trick question! This matrix cannot be represented

user 1 rw- . file2: four distinct privilege levels
user 2 r-- - e Maximum of three levels (user, group, other)
user 3 rwx rwx

user 4 rWX

Unix Access Control Exercise (3)

 What Unix group and permission assignments satisfy this access control

Desired Permissions

I N

user 1
user 2
user 3

user 4

matrix?

F'W-

e Trick question! This matrix cannot be represented

o file2: four distinct privilege levels
« Maximum of three levels (user, group, other)

e filel: two users have high privileges

e If user3 and user4 are in a group, how to give user2
read and userl nothing?

e If userl or user2 are owner, they can grant themselve
write and execute permissions :(

Unix Access Control Review

The Good The Bad

e Very simple model

« Owners, groups, and other
« Read, write, execute

« Relatively simple to manage and
understand

Unix Access Control Review

The Good The Bad
e Very simple model e Not all policies can be encoded!
 Owners, groups, and other e Contrast to ACL

« Read, write, execute

« Relatively simple to manage and
understand

Unix Access Control Review

The Good The Bad
e Very simple model e Not all policies can be encoded!
 Owners, groups, and other e Contrast to ACL
» Read, write, execute Not quite as simple as it seems
e Relatively simple to manage and e setuid

understand

Problems with Principals

The Confused Deputy Problem
Capability-based Access Control

From Principals to Subjects

» Thus far, we have focused on principals
» What user created/owns an object?
 What groups does a user belong to?

» What about subjects?

 When you run a program, what permissions does It have?
 Who Is the “owner” of a running program?

Process Qwners

abhi@DESKTOP:~S 1ls -1
-rwxr-xr-x 1 abhi abhi 313 Jan 29 22:47 my program.py

abhi@DESKTOP:~S$./my program.py

Process Owners

abhi@DESKTOP:~S 1ls -1
-rwxr-xr-x 1 abhi abhi 313 Jan 29 22:47 my program.py

abhi@DESKTOP:~S$./my program.py

Who is the
owner of this
process?

Process Owners

abhi@DESKTOP:~S 1ls -1
-rwxr-xr-x 1 abhi abhi 313 Jan 29 22:47 my program.py
abhi@DESKTOP:~S$./my program.py

Who is the
owner of this
process?

abhi@DESKTOP:~$ ps aux | grep my program.py

abhi ttyl S 01:06 0:00 python3 ./my program.py

Process Owners

abhi@DESKTOP:~S 1ls -1
-rwxr-xr-x 1 abhi abhi 313 Jan 29 22:47 my program.py
abhi@DESKTOP:~S$./my program.py

Who is the
owner of this
process?

abhi is the
owner. Why?

abh #UDESKTOP:~$ ps aux | grep my program.py

abhi ttyl S 01:06 0:00 python3 ./my program.py

Process Qwners

abhi@DESKTOP:~S 1ls -1 /bin/ls*
—rwXr-xXr-x 1 root root 110080 Mar 10 2016 /bin/ls
—rwXr-xXr-x 1 root root 44688 Nov 23 2016 /bin/lsblk

abhi@DESKTOP:~S 1s

Process

abhi1@DESKTOP:
—-IrwXr-xXr-x 1
-rwXr-Xr-x 1
abhi1@DESKTOP:

owners

~$ 1s =1 /bin/ls*

root root 110080 Mar 10
root root 44688 Nov 23
~S 1s

Who is the
owner of this
process?

2016 /bin/ls
2016 /bin/lsblk

Process Owners

abhi@DESKTOP:~S 1ls -1 /bin/ls*
—rwXr-xXr-x 1 root root 110080 Mar 10 2016 /bin/ls
—rwXr-xXr-x 1 root root 44688 Nov 23 2016 /bin/lsblk

abhi@DESKTOP:~S 1s

Who is the
owner of this
process?

abhi@DESKTOP:~$ ps aux | grep ls
abhi ttyl S 01:06 0:00 /bin/ls

Process Owners

abhi@DESKTOP:~S 1ls -1 /bin/ls*
—rwXr-xXr-x 1 root root 110080 Mar 10 2016 /bin/ls
—rwXr-xXr-x 1 root root 44688 Nov 23 2016 /bin/lsblk

abhi@DESKTOP:~S 1s

Who is the
owner of this

process?
abhi is the
owner. Why?

abhi@DASKTOP:~$S ps aux | grep ls
abhi ttyl S 01:06 0:00 /bin/ls

Process Owners

abhi@DESKTOP:~S 1ls -1 /bin/ls*
—rwXr-xXr-x 1 root root 110080 Mar 10 2016 /bin/ls
—rwXr-xXr-x 1 root root 44688 Nov 23 2016 /bin/lsblk

abhi@DESKTOP:~S 1s

Who is the
owner of this

process?
abhi is the
owner. Why?

abhi@DASKTOP:~$S ps aux | grep ls
abhi ttyl S 01:06 0:00 /bin/ls

Subject Ownership

Subject Ownership

 Under normal circumstances, subjects are owned by the principal that

executes them
e File ownership is irrelevant

 Why Is this important for security?

« A principal that is able to execute a file owned by root should not be granted root
privileges

Subject Ownership

 Under normal circumstances, subjects are owned by the principal that

executes them
e File ownership is irrelevant

 Why Is this important for security?

« A principal that is able to execute a file owned by root should not be granted root
privileges

abhi@DESKTOP:~S 1ls -1 /bin/bash

—rwXr-Xr-x 1 root root 110080 Mar 10 2016 /bin/bash

Corner Cases

abhi@DESKTOP:~S$ passwd

Changing password for abhi.

(current) UNIX password:

Corner Cases

abhi@DESKTOP:~S$ passwd

Changing password for abhi.

(current) UNIX password:

* Consider the passwd program

» All users must be able to execute it (to set and change their passwords)
» Must have write access to /etc/shadow (file where password hashes are stored)

* Problem: /etc/shadow Is only writable by root user

abhi@DESKTOP:~S 1ls -1 /etc/shadow

—YW—Y————— 1 root shadow 922 Jan 8 14:56 /etc/shadow

setulg

abhi@DESKTOP:~$ 1ls -1 /usr/bin/passwd

-rwsr-xr-x 1 root root 47032 May 16 2017 /usr/bin/passwd
abhi@DESKTOP:~S$ passwd
Changing password for abhi.

(current) UNIX password:

setulg

abhi@DESKTOP:~$ 1ls -1 /usr/bin/passwd

-riwsi-xr-x 1 root root 47032 May 16 2017 /usr/bin/passwd
abhi@DESKTOP:~S$ passwd
Changing password for abhi.

(current) UNIX password:

setulg

* Objects may have the setuid permission
« Program may execute as the file owner, rather than executing principal

abhi@DESKTOP:~$ 1ls -1 /usr/bin/passwd

-riwsi-xr-x 1 root root 47032 May 16 2017 /usr/bin/passwd
abhi@DESKTOP:~S$ passwd
Changing password for abhi.

(current) UNIX password:

setulg

* Objects may have the setuid permission
« Program may execute as the file owner, rather than executing principal

abhi@DESKTOP:~$S 1ls -1 /usr/bin/passwd

-rwsi-xr-x 1 root root 47032 May 16 2017 /usr/bin/passwd
abhi@DESKTOP:~S$ passwd

Changing password for abhi.

(current) UNIX password:

abhi@DESKTOP:~$ ps aux | grep passwd

root ttyl S 01:06 0:00 python ./my program.py

setulg

* Objects may have the setuid permission
« Program may execute as the file owner, rather than executing principal

abhi@DESKTOP:~$S 1ls -1 /usr/bin/passwd

-rws1-xr-x { root root 47032 May 16 2017 /usr/bin/passwd
abhi@DESKTOP:~S$ passwd

Changing password for abhi.

(current) UNIX password:

abhi@DESKTOP:~$S ps aux | grep passwd

ttyl S 01:06 0:00 python ./my program.py

chmod Revisited

* How to add setuid to an object?

chmod u+s <file1> [file2] ...
chmod 24ttt <file1> [file2] ...

chmod Revisited

* How to add setuid to an object?

chmod u+s <file1> [file2] ...
chmod 24ttt <file1> [file2] ...

« WARNING: NEVER SET A SCRIPT AS SETUID

e Only set setuid on compiled binary programs
» Scripts with setuid lead to Time of Check Time of Use (TOCTOU) vulnerabilities

Another setuid Example

« Consider an example turnin program

[cs2550/turnin <project #> <in_file> <out_file>

1. Copies <in_file>to <out file>

2. Grades the assignment
3. Writes the grade to /cs2550/<projectt#>/grades

Another setuid Example

« Consider an example turnin program

[cs2550/turnin <project #> <in_file> <out_file>

1. Copies <in_file>to <out file>

2. Grades the assignment
3. Writes the grade to /cs2550/<projectt#>/grades

» Challenge: students cannot have write access to project directories or grade

files
o turnin program must be setuid

alice@login:~$S /cs2550/turnin projectl pwcrack.py /cs2550/projectl/
pwcrack.py

Thank you for turning in project 1.

alice@login:~$S /cs2550/turnin projectl pwcrack.py /cs2550/projectl/
pwcrack.py

Thank you for turning in project 1.

alice@login:~$ 1ls —1 /cs2550/
drwx--x--x 0 cbw faculty 512 Jan 29 22:46 projectl

-rwsr-xXr-x 1 cbw faculty 17 Jan 29 22:46 turnin

alice@login:~$S /cs2550/turnin projectl pwcrack.py /cs2550/projectl/
pwcrack.py

Thank you for turning i1n project 1.
alice@login:~$ 1s —1 /cs2550/

drwx--x--x 0 cbw faculty 512 Jan 29 22:46 projectl

-rwsr-xXr-x 1 cbw faculty 17 Jan 29 22:46 turnin

alice@login:~$ 1ls —1 /cs2550/projectl/

-r-X-————- 0 cbw faculty 512 Jan 29 22:46 pwcrack.py
1l cbw faculty 17 Jan 29 22:46 grades

Ambient Authority

Ambient Authority

* Ambient authority

 Asubject’'s permissions are automatically
exercised

* No need to select specific permissions

» Systems that use ACLs or Unix-style
permissions grant ambient authority
* Asubject automatically gains all permissions
of the principal
* A setuid subject also gains permissions of
the file owner

« Ambient authority Is a security
vulnerability

The Confused Deputy Problem

mallory@login:~$ /cs2550/turnin projectl best grade.txt /cs2550/projectl/grades

Thank you for turning in project 1.

alice@login:~$ 1ls —1 /cs2550/projectl/

The Confused Deputy Problem

mallory@login:~$ /cs2550/turnin projectl best grade.txt /cs2550/projectl/grades

Thank you for turning in project 1.
alice@login:~$ 1ls —1 /cs2550/projectl/
1 cbw faculty 17 Jan 29 22:46 grades

The Confused Deputy Problem

mallory@login:~$ /cs2550/turnin projectl best grade.txt /cs2550/projectl/grades

Thank you for turning in project 1.
alice@login:~$ 1ls —1 /cs2550/projectl/
1 cbw faculty 17 Jan 29 22:46 grades

» The turnin program is a

* |tisthe deputy of two principals: mallory and cbw
« mallory cannot directly access /cs2550/project1/grades

* However, cbw can access /cs2550/projectl/grades

The Confused Deputy Problem

mallory@login:~$ /cs2550/turnin projectl best grade.txt /cs2550/projectl/grades

Thank you for turning in project 1.
alice@login:~$ 1ls —1 /cs2550/projectl/
1 cbw faculty 17 Jan 29 22:46 grades

» The turnin program is a

* |tisthe deputy of two principals: mallory and cbw
« mallory cannot directly access /cs2550/project1/grades

* However, cbw can access /cs2550/projectl/grades

» Key problem: the subject cannot tell which principal it is serving when It performs a
write

Preventing Confused Deputies

 ACL and Unix-style systems are fundamentally
vulnerable to confused deputies

« Cannot prevent misuse of ambient authority

* Solution: move to capability-based access control
system

Capabilities

e Encode columns of an access
control matrix

ms Capabilities
RW | RX
R |RWX RW

RWX

Capabilities

e Encode columns of an access e Encode rows of an access control
control matrix matrix

ms Capabilities

- Capabilities

RW RX for Sq
R

RWX RW

RWX

Capability-based Access Control

* Principals and subjects have capabilities which:

* Glve them access to objects
* Files, keys, devices, etc.

« Are transferable and unforgeable tokens of authority
« Can be passed from principal to subject, and subject to subject
« Similar to file descriptors

 Why do capabilities solve the confused deputy problem?
 When attempting to access an object, a capability must be selected
« Selecting a capability inherently also selects a master

Confused Deputy Revisited

mallory@login:~$ /cs2550/turnin projectl best grade.txt /

cs2550/projectl/grades

Confused Deputy Revisited

princial I._/home/mallon/™
... RWX --

mallory

/cs2550/turnin projectl best grade.txt /
cs2550/projectl/grades

Confused Deputy Revisited

Principal |... |/home/mallory/* |/cs2550/projectl/grades
... RWX -

mallory

/cs2550/turnin projectl best grade.txt /
cs2550/projectl/grades

Deny

Confused Deputy Revisited

Princar |_Jhorefmalonr™

mallory

/cs2550/turnin projectl best grade.txt /
cs2550/projectl/grades

EI ROR: Permission denied to /cs2550/projectl/grades

Deny

Confused Deputy Revisited

m. home/mallory/* /cs2550/projectl/grades -

mallory

mallory@login:~$ /cs2550/turnin projectl best grade.txt /
cs2550/projectl/grades

EI ROR: Permission denied to /cs2550/projectl/grades

eny * Principal must pass capabilities to objects at invocation time

 mallory has permission to access best grade.txt
« mallory does not have permission to access /cs2550/project1/grades

Confused Deputy Revisited

m. home/mallory/* /cs2550/projectl/grades -

mallory

mallory@login:~$ /cs2550/turnin projectl best grade.txt /
cs2550/projectl/grades

EI ROR: Permission denied to /cs2550/projectl/grades

eny * Principal must pass capabilities to objects at invocation time

 mallory has permission to access best grade.txt
« mallory does not have permission to access /cs2550/project1/grades

 No ambient authority in a capability-based access control system
e Principal cannot pass a capability 1t doesn't have

Capabilities vs. ACLs

» Consider two security mechanisms for bank accounts

1. ldentity-based
« Each account has multiple authorized owners
 To authenticate, show a valid ID at the bank
* Once authenticated, you may access all authorized accounts

2. Token-based
« When opening an account, you are given a unique hardware key
» To access an account, you must possess the corresponding key
 Keys may be passed from person to person

Capabilities vs. ACLs

» Consider two security mechanisms for bank accounts

e ACL system
« Ambient authority to

1. ldentity-based
« Each account has multiple authorized owners
 To authenticate, show a valid ID at the bank
* Once authenticated, you may access all authorized accounts

access all authorized
accounts

2. Token-based

« When opening an account, you are given a unique hardware key
« To access an account, you must possess the corresponding key
 Keys may be passed from person to person

Capabilities vs. ACLs

» Consider two security mechanisms for bank accounts

e ACL system

« Ambient authority to
access all authorized
accounts

1. ldentity-based
« Each account has multiple authorized owners
 To authenticate, show a valid ID at the bank
* Once authenticated, you may access all authorized accounts

2. Token-based
« When opening an account, you are given a unique hardware key
« To access an account, you must possess the corresponding key
 Keys may be passed from person to person

e Capability
system

« No ambient
authority

Capabilities IRL

* From a security perspective, capability systems are more secure than ACL
and Unix-style systems

e ... and yet, most major operating systems use the latter

e Why?
 Easier for users

 ACLs are good for user-level sharing, intuitive
« Capabilities are good for process-level sharing, not untuitive

« Easier for developers
* Processes are tightly coupled in capability systems
 Must carefully manage passing capabilities around
* In contrast, ambient authority makes programming easy, but insecure

Small Steps Towards Capabilities

 Some limited examples of capability systems exist
» Android/i0S app permissions
 POSIX capabilities
e SELinux

2 N 3 4f25% 8 11:20 AM
D:0KB U: 1KB

Android/i10S Capabilities

» Android and i0S support (relatively) Dropcam
fine grained capabilities for apps e
* User must grant permissions to apps at et
Install time
« May only access sensitive APIs with user Photos/Media/Flles
consent : Camera/Microphone
¢ AppS Cal “bOH’OW" CapabllltleS fI‘Om : Wi-Fi connection information

each other by exporting intents

 Example: an app without camera access can
ask the camera app to return a photo

}/0 (mogk play

Android/10S just-in-time capability

“"BlueJeans” Would Like to

Access the Microphone

Allow access to the microphone so you
can be heard during a meeting.

"BlueJeans” Would Like to

Access the Camera

Allow access to the camera so you can
be seen during a meeting.

“"BlueJeans” Would Like to

Send You Notifications

Notifications may include alerts,
sounds, and icon badges. These can
be configured in Settings.

Per-event capability

Allow “Weather" to access
your location while you are
using the app?

App explanation for While Use App:
"Your location is used to show
local weather.”

Allow While Using App

Allow Once

Don't Allow

POSIX Capabilities

» Traditional Unix systems had two types of processes

e Privileged, 1.e. root processes
* Bypass all security and access control checks

* Unprivileged, I.e. everything else
* Subject to access controls
» Modern Unix/Linux systems offer some finer grained capabilities
« Specified processes may be granted a subset of root privileges
« CAP_CHOWN: make arbitrary changes to file owners and groups
 CAP_KILL: kill arbitrary processes
 CAP_SYS_TIME: change the system clock

Keeping Secrets?

 Suppose we have secret data that only certain users should access
* |s DAC enough to prevent leaks?

charlie@DESKTOP:~$ groups

charlie topsecret

Keeping Secrets?

 Suppose we have secret data that only certain users should access
* |s DAC enough to prevent leaks?

charlie@DESKTOP:~$ groups
charlie topsecret
charlie@DESKTOP:~$ ls —la /top-secret-intel/

drwxr-xr-x 0 root root 512 Jan 8 14:55
drwxr-xr-x 0 root root 512 Oct 11 19:58
— W= ————— 1l root topsecret 896 Jan 29 22:47 northkorea.pdf

Keeping Secrets?

 Suppose we have secret data that only certain users should access

* |s DAC enough to prevent leaks?

charliefoesmeep—t groups
charlie

charlie@DESKTOP:~$S ls —la /top-secret-intel/

drwxr-xr-x 0 root root 512 Jan 8 14:55
S S 512 Oct 11 19:58

— W= ————— 1 root topsecretl 896 Jan 29 22:47 northkorea.pdf

Keeping Secrets?

 Suppose we have secret data that only certain users should access
* |s DAC enough to prevent leaks?

charlie@DESKTOP:~$ groups
charlie topsecret

charlie@DESKTOP:~$ ls —la /top-secret-intel/

drwxr-xr-x 0 root root 512 Jan 8 14:55

drwxr-xr-x 0 root root 512 Oct 11 19:58

- rw—Yr————-— 1 root topsecret 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~$ groups mallory

mallory secret

Keeping Secrets?

 Suppose we have secret data that only certain users should access
* |s DAC enough to prevent leaks?

charlie@DESKTOP:~$ groups
charlie topsecret

charlie@DESKTOP:~$ ls —la /top-secret-intel/

drwxr-xr-x 0 root root 512 Jan 8 14:55

drwxr-xr-x 0 root root 512 Oct 11 19:58

- rw—Yr————-— 1 root topsecret 896 Jan 29 22:47 northkorea.pdf
charlilelRiskamale: ~5 groups mallory

mallorvll secret

Keeping Secrets?

 Suppose we have secret data that only certain users should access
* |s DAC enough to prevent leaks?

charlie@DESKTOP:~$ groups

charlie topsecret

charlie@DESKTOP:~$ ls —la /top-secret-intel/

drwxr-xr-x 0 root root 512 Jan 8 14:55

drwxr-xr-x 0 root root 512 Oct 11 19:58

- rw—Yr————-— 1 root topsecret 896 Jan 29 22:47 northkorea.pdf

charlie@DESKTOP:~$ groups mallory

mallory secret

charlie@DESKTOP:~$ l1ls —la /home/mallory
drwxrwxrwx 0 mallory mallory 512 Jan 8 14:55
drwxr-xr-x 0 root root 512 Oct 11 19:58

Keeping Secrets?

 Suppose we have secret data that only certain users should access
* |s DAC enough to prevent leaks?

charlie@DESKTOP:~$ groups

charlie topsecret

charlie@DESKTOP:~$ l1ls —la /top-secret-intel/

drwxr-xr-x 0 root root 512 Jan 8 14:55

drwxr-xr-x 0 root root 512 Oct 11 19:58

- rw—Yr————-— 1 root topsecret 896 Jan 29 22:47 northkorea.pdf

charlie@DESKTOP:~$ groups mallory

mallory secret
LR s TOP:~S 1ls —la /home/mallory

O mallory mallory 512 Jan 8

drwxr-xr-x 0 root root 512 Oct 11

Keeping Secrets?

 Suppose we have secret data that only certain users should access

* |s DAC enough to prevent leaks?

charlie@DESKTOP:~$ groups

charlie topsecret

charlie@DESKTOP:~$S ls —la /top-secret-intel/

drwxr-xr-x 0 root root 512 Jan 8 14:55

drwxr-xr-x 0 root root 512 Oct 11 19:58

- rw—Yr————-— 1 root topsecret 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~$ groups mallory

mallory secret

charlie@DESKTOP:~$ ls —la /home/mallory

drwxrwxrwx 0 mallory mallory 512 Jan 8 14:55

drwxr-xr-x 0 root root 512 Oct 11 19:58
charlie@DESKTOP:~$S cp /top-secret-intel/northkorea.pdf /home/mallory
charlie@DESKTOP:~S$ 1ls —1 /home/mallory

—rw—Yr—-———-— 1 charlie charlie 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~S$ chmod ugo+rw /home/mallory/northkorea.pdf

Keeping Secrets?

 Suppose we have secret data that only certain users should access

* |s DAC enough to prevent leaks?

charlie@DESKTOP:~$ groups

charlie topsecret

charlie@DESKTOP:~$ l1ls —la /top-secret-intel/

drwxr-xr-x 0 root root 512 Jan 8 14:55

drwxr-xr-x 0 root root 512 Oct 11 19:58

- rw—Yr————-— 1 root topsecret 896 Jan 29 22:47 northkorea.pdf

charlie@DESKTOP:~$ groups mallory

mallory secret

charlie@DESKTOP:~$ 1ls —la /home/mallory

drwxrwxrwx 0 mallory mallory 512 Jan 8 14:55

drwxr-xr-x 0 root root 512 Oct 11 19:58

charlie@DESKTOP:~$S cp /top-secret-intel/northkorea.pdf /home/mallory
1A+ 1{cdDESKTOD .- — — home/mallory

—rw—Yr—-———-— 1 charlie charlief 896 Jan 29 22:47 northkorea.pdf

char1edDESKTOP:~5 chmod ugo+rw /home/mallory/northkorea.pdf

Keeping Secrets?

 Suppose we have secret data that only certain users should access

* |s DAC enough to prevent leaks?

charlie@DESKTOP:~$ groups

charlie topsecret

charlie@DESKTOP:~$S ls —la /top-secret-intel/

drwxr-xr-x 0 root root 512 Jan 8 14:55

drwxr-xr-x 0 root root 512 Oct 11 19:58

- rw—Yr————-— 1 root topsecret 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~$ groups mallory

mallory secret

charlie@DESKTOP:~$ ls —la /home/mallory

drwxrwxrwx 0 mallory mallory 512 Jan 8 14:55

drwxr-xr-x 0 root root 512 Oct 11 19:58
charlie@DESKTOP:~$S cp /top-secret-intel/northkorea.pdf /home/mallory
charlie@DESKTOP:~S$ 1ls —1 /home/mallory

—rw—Yr—-———-— 1 charlie charlie 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~S$ chmod ugo+rw /home/mallory/northkorea.pdf

Fallure of DAC

 DAC cannot prevent the leaking of secrets

Secret.pdf
rwx User A
——— User B

User A

NotSecret.pdf

User B

rwxXx User A
rwX User B

Fallure of DAC

 DAC cannot prevent the leaking of secrets

PDF Secret.pdf
——— User B

rwX User B

PDF NotSecret.pdf
User B rwx User A

Fallure of DAC

 DAC cannot prevent the leaking of secrets

Malicious
Trojan

User A

Secret.pdf
——— User B

rwX User B

NotSecret.pdf
User B rwx User A

Mandatory Access Control

Mandatory Access Control Goals

e Restrict the access of subjects to objects based
on a system-wide policy

Bell-Lapadula (1973) ™= =

System Model:

Security Policy:

BLP System Model

Clearances:

Classlifications:

BLP System State

Current
Access
Operations

Trusted Subjects

Flements of the Bell-LaPadula Model

Subjects :
: : : Objects
L(s) : maximum level Discretionary Access L(o) : level
L.(s) : current level Control Matrix |

Defined by the administrator

Q Top Secret
1op ecret o1 02 03
- RW RX Secret
Socret @ - R RWX RW
Confidential

e

Confidential Q

m Unclassified

Simplified Bell-LaPadula Example

o Assume L (s)=L.(s)is always true

Confidential Q

"JPEG
Confidential
Unclassified

Simplified Bell-LaPadula Example

o Assume L (s)=L.(s)is always true

* Yk -property
e scanreadoiff L(s) >=L(o) (no read up)
e« scan writeoiff L(s)<=L(o) (no write down)

Confidential

"JPEG)
%i Confidential

bUU
Unclassified

Simplified Bell-LaPadula Example

o Assume L (s)=L.(s)is always true

* Yk -property

e scanreadoiff L(s) >=L(o) (no read up)
e« scan writeoiff L(s)<=L(o) (no write down)

Confidential

aC harpis egostas. Sed pulinas sl

Confidential

Writeable

Read and Write

Readable

Simplified Bell-LaPadula Example

o Assume L (s)=L.(s)is always true

* Yk -property
e scanread o iff L(s) >=L(o)
e scanwriteoiff L(s) <= L(0)

Confidential

(no read up)
(no write down)

aC harpis egostas. Sed pulinas sl

JPEG . .
Confidential

Writeable

Read and Write

Readable

Simplified Bell-LaPadula Example

o Assume L (s)=L.(s)is always true

* Yk -property
e scanreadoiff L(s) >=L(o) (no read up)
e« scan writeoiff L(s)<=L(o) (no write down)

Writeable

Confidential Confidential

Read and Write

~—_

Readable

Simplified Bell-LaPadula Example

o Assume L (s)=L.(s)is always true

* Yk -property
e scanreadoiff L(s) >=L(o) (no read up)
e« scan writeoiff L(s)<=L(o) (no write down)

fpaum color st amat,
adipiscing oit. stodio ut
. Nune
telts
dictum et
' Bcnia
1gula intardum ewismod.

JPEG

Writeable

Confidential

T~

Confidential Read and Write

Readable

BLP Idea

A computer system Is In a state, and undergoes state transitions
whenever an operation occurs..

System Is secure If all transitions satisfy 3 properties:

Simple:
Star:

Discretionary:

BLP Idea

A computer system Is In a state, and undergoes state transitions
whenever an operation occurs..

System Is secure If all transitions satisfy 3 properties:

Simple: S can read O If S has higher clearance
Star: S can write O If S has lower clearance.

Discretionary: Every access allowed by ACL.

Jsers are trusted

Subjects are not trusted. (Malware)

ApPp armor

Whenever a protected R — .
E l t

program runs regardless #include <abstractions/base> xample security

Of U I D AppArmor #include <abstractions/nameservice> pl'Ofl le fOI’ ntpd

. capability ipc_ lock,
(:C)r]trt)lss' capability net bind service,
- The POSIX capabilities capability sys_time,

it can have (even if it is sapasi Rty Sys_shmoot

' capability setuid,
running as root)

" " " " /etc/ntp.conf r,
- The directories/files it ete/mtn/dniter oy
can read/write/execute /ete/ntp/keys r,
——py /@tc/ntp/step-tickers r,
/tmp/ntp* rwl,
/usr/sbin/ntpd rix,
/var/log/ntp w,
/var/log/ntp.log W,
/var/run/ntpd.pid W,
/var/lib/ntp/drift rwl,
/var/lib/ntp/drift. TEMP rwl,
/var/lib/ntp/var/run/ntp/ntpd.pid W,
/var/lib/ntp/drift/ntp.drift r,
/drift/ntp.drift.TEMP rwl,
/drift/ntp.drift rwl,

17 ® Novell Ine All ricdhte recarved Slide from Novell/defcon 2015

ApparmOr—_

N

AppArmor Architecture

N Reporting
& Alerting
user inmterfaces

YaST
Console

Linux OS Desktop Server
Component 8§ Application | Application

4 2 Novdl nc. All nghts reserved

abhi@abhi-VirtualBox: ~

:~%$ aa-
aa-audit aa-complain aa-enabled aa-genprof aa-remove-unknown aa-unconfined

aa-autodep aa-decode aa-enforce aa- lLogprof aa-status aa-update-browser
aa-cleanprof aa-disable aa-exec aa-mergeprof aa-teardown
$ aa-

[+1 abhi@abhi-VirtualBox: ~
vim:syntax=apparmor
#include <tunables/global>
/usr/sbin/tcpdump {

#include <abstractions/base>

#include <abstractions/nameservice>

#include <abstractions/user-tmp>

capability net raw,
capability setuid,
capability setgid,
capability dac override,
capability chown,
network raw,

network packet,

for -D
@{PROC}/bus/usb/ r,
@{PROC}/bus/usb/** r,

for finding an interface
/dev/ r,
@{PROC}/[0-9]*/net/dev r,
/sys/bus/usb/devices/ r,
/sys/class/net/ r,
/sys/devices/**/net/** r,

for -j
capability net admin,

for tracing USB bus, which libpcap supports
/dev/usbmon* r,

/dev/bus/usb/ r,

/dev/bus/usb/** r,

for init etherarray(), with -e
/etc/ethers r,

for USB probing (see libpcap-1l.1.x/pcap-usb-linux.c:probe devices())
/dev/bus/usb/**/[0-9]* w,

RO 7
/{usr/,}bin/gzip ixr,
/{usr/,}bin/bzip2 ixr,

for -F and -w
audit deny @{HOME}/.* mrwkl,
audit deny @{HOME}/.*/ rw,

/etc/apparmor.d/usr.sbin.tcpdump

Not Enough

TopSecret.pdf

rwx User A
——— User B

NotSecret.pdf
rwx User A
rwx User B

Not Enough: Covert channels

S -

Security Lattice

Compartments:

Ordering between (Level, Compartment)

| attice

(Top Secret, {nuclear,crypto})

/\

(Top Secret, {nuclear}) (Secret, {nuclear,crypto}) (Top Secret, {crypto})

(Secret, {nuclear}) (Top Secret, {}) (Secret, {crypto})

=

(Secret, {})

Need-to-Know policy

Integrity Protection in Practice

 Mandatory Integrity Control in Windows
e Since Vista
e Four integrity levels: Low, Medium, High, System
* Each process assigned a level

* Processes started by normal users are Medium
« Elevated processes have High

 Some processes Intentionally run as Low
* Internet Explorer in protected mode

* Ring policy
 Reading and writing do not change integrity level

Integrity Protection in Practice

 Mandatory Integrity Control in Windows
e Since Vista

e Four integrity levels: Low, Medium, High, System ——
o EaCh prOCESS aSS|gned d level Do you want to allow the following program to make
. changes to this computer?
* Processes started by normal users are Medium
+ Elevated processes have High G ormmme Momhsau Seasupe
. . File origin: etwork drive

» Some processes intentionally runaStowm "> e

* Internet Explorer in protected mode () Show detals TR
o Ring pOlicy Change when these notifications appear

 Reading and writing do not change integrity level

Confidentiality? What else?

Biba Integrity Policy

Biba Integrity Model

* Proposed in 1975

* Like Bell-LaPadula, security model with provable properties based on a state
transition model

e Each subject has an integrity level
* Each object has an integrity level
» Integrity levels are totally ordered (hish > low)

* Integrity levels in Biba are not the same as security levels in Bell-LaPadula
 Some high integrity data does not need confidentiality

 Examples: stock prices, official statements from the president

Possible Mandatory Policies in Biba

1. Strict integrity

e scanread oiif i(s) <=i(o) (no read down)
e scan write o iff i(s) >=i(o) (no write up)

Possible Mandatory Policies in Biba

1. Strict integrity

e scanread oiif i(s) <=i(o) (no read down)
e scan write o iff i(s) >=i(o) (no write up)

2. Subject low-water mark
e s can always read o; afterward i(s) = min(i(s), i(o)) (subject tainting)

e scan write o iffi(s) >=i(o) (no write up)

Possible Mandatory Policies in Biba

1.

Strict integrity

e scanread oiifi(s) <=i(o)
e scan write o iffi(s) >=i(o)

Subject low-water mark

e s can always read o; afterward i(s) = min(i(s), i(o))
e scan write o iffi(s) >=i(o)

Object low-water mark

e scanread oiifi(s) <=i(o)
e s can always write o; afterward o(s) = min(i(s), i(o))

(no read down)
(no write up)

(subject tainting)
(no write up)

(no read down)
(object tainting)

Possible Mandatory Policies in Biba

1. Strict integrity

e scanread oiifi(s) <=i(o)
e scan write o iffi(s) >=i(o)

2. Subject low-water mark
e s can always read o; afterward i(s) = min(i(s), i(o))

e scan write o iff i(s) >=i(o)

3. Object low-water mark
e scanread oiifi(s) <=i(o)

e s can always write o; afterward o(s) = min(i(s), i(o))

4. Low-water mark integrity audit
e s can always read o; afterward i(s) = min(i(s), i(o))

e s can always write o; afterward o(s) = min(i(s), i(o))

(no read down)
(no write up)

(subject tainting)
(no write up)

(no read down)
(object tainting)

(subject tainting)
(object tainting)

Possible Mandatory Policies in Biba

1. Strict integrity

e scanread oiifi(s) <=i(o)
e scan write o iffi(s) >=i(o)

2. Subject low-water mark
e s can always read o; afterward i(s) = min(i(s), i(o))

e scan write o iff i(s) >=i(o)

3. Object low-water mark
e scanread oiifi(s) <=i(o)

e s can always write o; afterward o(s) = min(i(s), i(o))

4. Low-water mark integrity audit
e s can always read o; afterward i(s) = min(i(s), i(o))

e s can always write o; afterward o(s) = min(i(s), i(o))

5. Ring

e scanread any object o
e scan write o iff i(s) >=i(o)

(no read down)
(no write up)

(subject tainting)
(no write up)

(no read down)
(object tainting)

(subject tainting)
(object tainting)

(no write up)

Biba Strict Integrity Example

o Strict integrity
e scanread o iifi(s) <=ifo) (noread down)
e scan write o iffi(s) >=i(o) (no write up)

Medium Integrity

"JPEG]
Low Integrity
Unverified

Biba Strict Integrity Example

e Strict integrity
e scanread oiif i(s)<=i(o) (noread down)
e s can write o iff i(s) >=i(o) (no write up)

Medium Integrity Q

Readable

' Medium Integrity :I. Read and Write

Writeable

Biba Strict Integrity Example

e Strict integrity
e scanread oiif i(s)<=i(o) (noread down)
e s can write o iff i(s) >=i(o) (no write up)

Medium Integrity @ C——)

Readable

' Medium Integrity :I. Read and Write

= -

Biba Strict Integrity Example

e Strict integrity
e scanread oiif i(s)<=i(o) (noread down)
e s can write o iff i(s) >=i(o) (no write up)

Medium Integrity @
I

Readable

' Medium Integrity :I. Read and Write

Writeable

Biba Strict Integrity Example

o Strict integrity

e scanread oiif i(s)<=i(o) (noread down)
e s can write o iff i(s) >=i(o) (no write up)

Medium Integrity @

' Medium Integrity

m

]
]

Readable

Read and Write

Writeable

Practical Example of Biba Integrity

« Military chain of command
e Generals may 1ssue orders to majors and privates
 Majors may Issue orders to privates, but not generals
e Privates may only take orders

Comparison

BPL Biba

o Offers confidentiality
e “Read down, write up”
e Focuses on controlling reads

e Theoretically, no requirement
that subjects be trusted

 Even malicious programs can’t leak
secrets they don’t know

Comparison

BPL Biba

o Offers confidentiality o Offers integrity
e “Read down, write up”
e Focuses on controlling reads

e Theoretically, no requirement
that subjects be trusted

 Even malicious programs can’t leak
secrets they don’t know

Comparison

BPL Biba
o Offers confidentiality o Offers integrity
e “Read down, write up” e “Read up, write down”

e Focuses on controlling reads

e Theoretically, no requirement
that subjects be trusted

 Even malicious programs can’t leak
secrets they don’t know

Comparison

BPL Biba
o Offers confidentiality o Offers integrity
e “Read down, write up” e “Read up, write down”
e Focuses on controlling reads e Focuses on controlling writes

e Theoretically, no requirement
that subjects be trusted

 Even malicious programs can’t leak
secrets they don’t know

Comparison

BPL Biba
o Offers confidentiality o Offers integrity
e “Read down, write up” e “Read up, write down”
e Focuses on controlling reads e Focuses on controlling writes
e Theoretically, no requirement e Subjects must be trusted
that subjects be trusted « A malicious program can write bad
. Even malicious programs can’t leak information

secrets they don’t know

Covert and Side Channels

Caveats of Bell-LaPadula

Caveats of Bell-LaPadula

» Y -property prevents overt leakage of information
* Does not address covert channels

Caveats of Bell-LaPadula

* Y -property prevents overt leakage of information
* Does not address covert channels
 What does this mean?

Covert Channels

* Access control Is defined over “legitimate” channels
* Read/write an object
» Send/receive a packet from the network
* Read/write shared memory

 However, 1solation In real systems Is imperfect
* Actions have observable side-effects

Covert Channels

* Access control Is defined over “legitimate” channels
* Read/write an object
» Send/receive a packet from the network
* Read/write shared memory

 However, 1solation In real systems Is imperfect
* Actions have observable side-effects

e External observations can create covert channels
 Communication via unintentional channels

 Examples:
« Existence of file(s) or locks on file(s)
 Measure the timing of events
* CPU cache (e.g. Meltdown and Spectre)

Simple Example

Bell-LaPadula MAC

- e

Unclassified Q

Simple Example

Bell-LaPadula MAC

Unclassified Q

Simple Example

Bell-LaPadula MAC

Unclassified Q Create File } Read and Write

Simple Example

Bell-LaPadula MAC

Simple Example

Bell-LaPadula MAC

Hmm, a classified file
named russia intel.docx
must already exist...

Unclassified g

} Read and Write

Fxploiting a Covert Channel

Bell-LaPadula MAC Binary Encoded Message
010010...
Received Message Q

Secret
Unclassified

Fxploiting a Covert Channel

Bell-LaPadula MAC Bmary Encoded Message
010010...

Q

Secret

Received Message

UI sified

Fxploiting a Covert Channel

Bell-LaPadula MAC Binary Encoded Message
010010...
Received Message

Create File g
Unclassified

Secret

Fxploiting a Covert Channel

Bell-LaPadula MAC Binary Encoded Message

- —

Secret

Fxploiting a Covert Channel

Bell-LaPadula MAC Binary Encoded Message

- —

Secret

Fxploiting a Covert Channel

Bell-LaPadula MAC Bmary Encoded Message
010010...

Q

Secret

Received Message
010

UI sified

Leveraging Covert Channels

« Covert channels are typically noisy
« Based on precise timing of events
 May result in encoding errors, I.e. errors in data transmission
« Communication is probabilistic

* Information theory and coding theory can be applied to make covert
channels more robust

« Naive approach: duplicate the data n times

» Better approach: uses Forward Error Correction (FEC) coding
e Zany approach: use Erasure Coding

Bell-LaPadula and Covert Channels

» Covert channels are not blocked by the Y -property

* |t Is very hard, perhaps impossible, to block all covert channels
« May appear In program code
» Or operating system code
e Orin the hardware itself (e.g. CPU covert channels)

Bell-LaPadula and Covert Channels

» Covert channels are not blocked by the Y -property

* |t Is very hard, perhaps impossible, to block all covert channels
« May appear In program code
» Or operating system code
e Orin the hardware itself (e.g. CPU covert channels)

e Potential mitigations:

o Limit the bandwidth of covert channels by enforcing rate limits
 Warning: may negatively impact system performance

» Intentionally make channels noisier by using randomness to introduce “chaff”
 Warning: slows down attacks, but may not stop them

» Use anomaly detection to identify subjects using a covert channel
 Warning: may result in false positives
 Warning: no guarantee this will detect all covert channels

Side Channel Attacks

* Side channels result from inadvertent information leakage
 Timing - e.g., password recovery by timing keystrokes
 Power - e.g., crypto key recovery by power fluctuations
* RF emissions - e.g., video signal recovery from video cable EM leakage

« Virtually any shared resource can be used

Side Channel Attack Example

« Victim Is decrypting RSA data
« Key Is not known to the attacker
* Encryption process Is not directly accessible to the attacker

» Attacker is logged on to the same machine as the victim
* Secret key can be deciphered by observing the CPU voltage
» Short peaks = no multiplication (0 bit), long peaks = multiplication (1 bit)

)mn*v"r’wJ”WH”*}M]M“ﬂ«fw\.lwunwmuh J‘ J.r,tw,ul,}wl,‘ﬂ'[.,,.,,»w-%.rﬂW‘nu,'qumu,‘}'LL;,.W"AM"l"bwb'“"mLL‘“\'-”"'*“"""'l-,uf*‘q'ﬂmh“|ﬂ
" | | |

"
bl wM“J‘”‘mh’n"rw-"-'\wr\!;f“'JwW"'W"ﬂ'p NIWII“WI'

Real Side Channel Attacks

 CPU voltage attacks against RSA
» Keystroke timing attacks against SSH
* Timing and CPU cache attacks against AES

* RF radiation attacks against computer monitors!
e Attacker can observe what 1s on your screen

 CPU cache attacks against process 1solation
 Meltdown and Spectre
» Also leverage a covert channel ;)

